Das Projekt AWECplusplus ist im Themengebiet 1 der Technologieoffensive unter 'Erzeugung von grünem Wasserstoff' angesiedelt. Im Projekt soll die bestehende alkalische Elektrolyse (AEL) in die nächste Generation überführt werden. Die nächste Generation der AEL AWEC++ kennzeichnet sich durch vier wesentliche Komponenten: 1. Stabilität bei erhöhten Temperatur- und Druckbedingungen (180 Grad C, 35 bar), um höhere Stromdichten zu erreichen ( größer als 1000 mA cm 2). Dies führt zur Halbierung des CAPEX durch Steigerung der H2-Produktion bei konstanten Installationskosten. 2. Ein Modernes Stack-Design, welches für hohe Leistungsklassen ( größer als 500 kW) skalier-bar ist. Dessen Herzstück ist ein keramisches, plasmagespritztes MEA, sowie laminierte 3D-Gewebe-Elektroden und Laser- oder ECM-prozessierte Bipolarplatten, 3. Dynamik in der Wasserstoff-Produktionsleistung, um den volatilen Erneuerbaren Energien ohne kostspielige Zwischenspeicher gerecht zu werden (500 ms). 4. Nachhaltige, automatisierungsfähige und skalierbare Herstellungs- und Prozessschritte, um größer als 150 GW an installierter Leistung langfristig umsetzen zu können. Grundlage des Projektes sind hier die Arbeiten von Allebrod et al. für AEL bei erhöhten Temperaturen auf Laborskala. Das Funktionsprinzip bedarf neben der Skalierung einer Material-, Komponenten, Stack und Anlagenanpassung, da es aktuell keine Möglichkeit gibt, den aggressiven Bedingungen standzuhalten. Im Projekt wird die gesamte Wertschöpfungskette für die Installation von alkalischen Elektrolyseuren der nächsten Generation abgebildet. Durch die Fortentwicklung von alkalischer Elektrolyse wird auf ressourcenschonende Materialien (kein Pt, Rh oder Sc) und eine günstige Umweltbilanz (einfach recyclebar) gesetzt. Das Konzept von AWECplusplus führt zu höheren Leistungen bei gleichem Materialeinsatz - also einer höheren Menge Wasserstoff pro Modul.
Im Projekt LuftBlock soll die Hochtemperatur-Wärmespeicherlösung der Firma Kraftblock weiterentwickelt und bei hohen Temperaturen mit gasförmigem Wärmeträger bei der Firma Comet in industriellem Maßstab demonstriert werden. Damit wird einerseits die Rückgewinnung einer großen Menge gespeicherter Wärme für einen Batch-Prozess, und andererseits gleichzeitig die damit verbundene Möglichkeit der kosteneffizienten Teilelektrifizierung eines Gasheizprozesses in der Anwendung realisiert. Herausforderungen, die dabei im Projekt adressiert werden, sind: - Direkte Nutzung der Abluft aus industriellen Prozessen, die u.U. mit Stäuben oder Kondensaten beaufschlagt ist - Verständnis der plastischen Verformung der Speicherwände in Schüttgutspeichern durch zyklische thermische Belastung. Ableitung von Auslegungsregeln zur Vermeidung von Materialversagen bei gleichzeitigen Materialeinsparungen - Optimale Integration in den bestehenden Prozess im Bezug auf Auslegung/Dimensionierung der einzelnen Komponenten und Betriebsführung des Speichers Ziel des geplanten Vorhabens ist es daher, Hindernisse zu überwinden, die bisher eine breite kommerzielle Einführung von Schüttgutspeichern verhindert haben oder kostentreibende Konstruktionslösungen und Überdimensionierungen erforderlich machten.
Im Projekt LuftBlock soll die Hochtemperatur-Wärmespeicherlösung der Firma Kraftblock weiterentwickelt und bei hohen Temperaturen mit gasförmigem Wärmeträger bei der Firma Comet in industriellem Maßstab demonstriert werden. Damit wird einerseits die Rückgewinnung einer großen Menge gespeicherter Wärme für einen Batch-Prozess, und andererseits gleichzeitig die damit verbundene Möglichkeit der kosteneffizienten Teilelektrifizierung eines Gasheizprozesses in der Anwendung realisiert. Herausforderungen, die dabei im Projekt adressiert werden, sind: - Direkte Nutzung der Abluft aus industriellen Prozessen, die u.U. mit Stäuben oder Kondensaten beaufschlagt ist - Verständnis der plastischen Verformung der Speicherwände in Schüttgutspeichern durch zyklische thermische Belastung. Ableitung von Auslegungsregeln zur Vermeidung von Materialversagen bei gleichzeitigen Materialeinsparungen - Optimale Integration in den bestehenden Prozess im Bezug auf Auslegung/Dimensionierung der einzelnen Komponenten und Betriebsführung des Speichers Ziel des geplanten Vorhabens ist es daher, Hindernisse zu überwinden, die bisher eine breite kommerzielle Einführung von Schüttgutspeichern verhindert haben oder kostentreibende Konstruktionslösungen und Überdimensionierungen erforderlich machten.