API src

Found 64 results.

Related terms

Kernspaltung

Otto Hahn und Fritz Straßmann beobachten, dass Uran 235 in radioaktives Ba und Kr zerfällt, wenn man es mit langsamen Neutronen beschiesst. Lise Meitner und Otto Robert Frisch interpretieren als erste diesen Prozess als Kernspaltung.

Die radiologische Situation in Berlin

Auch in Berlin kommt zur natürlichen Radioaktivität , die ohnehin in der Umwelt vorhanden ist, die künstliche, die vom Menschen verursachte Strahlenbelastung hinzu. Radioaktive Stoffe sind in erheblicher Menge bei den über 600 oberirdischen Tests von Kernwaffen in den Jahren zwischen 1945 und 1980 freigesetzt und verbreitet worden (“Fallout”). Sie konnten auch in Berlin nachgewiesen werden. Ein weiterer messbarer Anstieg der Umweltradioaktivität war in Berlin nach dem Unfall im ukrainischen Kernkraftwerk Tschernobyl am 26. April 1986 zu verzeichnen. Radioaktive Stoffe wurden durch den Brand bei diesem Unglück hoch in die Atmosphäre gerissen. Vom 05. bis 09. Mai des Jahres 1986 zog eine Fahne mit Luft aus dem Unfallgebiet über Berlin. Zu Ablagerungen kam es vor allem dort, wo Regen radioaktive Stoffe aus der Luft niederschlug (Washout). In Berlin regnete es in der ersten Maiwoche nicht. Die Belastung blieb sowohl absolut als auch im Vergleich zu anderen deutschen Regionen sehr gering. Die Aktivität der in Berlin produzierten Lebensmittel (z.B. Rohmilch) ist ein Abbild der örtlichen Umweltbelastung. Die Aktivität der in Berlin konsumierten Lebensmittel (die aus allen Weltteilen kommen können), ist ein Abbild der Verbreitung der radioaktiven Stoffe. Zur Untersuchung dient die Gesamtnahrung, die eine Person an einem Tag an Getränken und Speisen verzehrt. Es wird dazu ein Personenkreis ausgewählt, für den die Verpflegung überschaubar ist (z.B. Krankenhauspatienten oder Häftlinge). Für diese beiden Medien (produzierte und konsumierte Lebensmittel) liegen Messreihen seit etwa 50 Jahren vor. Die Proben werden auf ihre Caesium-Aktivität hin untersucht. Da der radioaktive Stoff Caesium (Cs-137) eine Halbwertzeit von 30 Jahren aufweist und bei allen Kernspaltungen gebildet wird, eignet er sich für solche Langzeituntersuchungen. Die Belastung der Gesamtnahrung war nach dem Tschernobyl-Unfall in etwa so hoch wie 1965/66. Dieser geringe Anstieg erklärt sich dadurch, dass die räumliche Verbreitung der Radioaktivität auf Teile Europas und Asiens beschränkt war. Die Kernwaffenversuche belasteten die gesamte Erdoberfläche mit radioaktiven Stoffen. Dementsprechend waren Produkte aus allen Anbaugebieten betroffen. Die Gesamtnahrung setzt sich aus Einzellebensmitteln vieler Ursprungsgebiete zusammen. Der Tschernobyl-Effekt wurde dadurch teilweise ausgemittelt. Den Bericht zur radiologischen Situation in Berlin 25 Jahre nach dem Reaktorunfall in Tschernobyl finden Sie hier: Während in den meisten Lebensmitteln wie, Milch, Gemüse, Obst und Fleisch der Gehalt an Caesium inzwischen weit unterhalb von einem Becquerel pro Kilogramm bzw. pro Liter liegt, können Lebensmittel aus Waldgebieten wie Pilze, Wildfleisch, Wildbeeren und selbst Teichfisch auch heute noch deutlich höhere Aktivitäten aufweisen. Sie sind damit praktisch die einzigen Lebensmittel, deren Aktivität eventuell noch auffällt. Pilze können große Flächen des Waldbodens durchwurzeln und haben die Eigenschaft, Caesium einzusammeln und in sich anzureichern. Diese Pilze sind Teil der Nahrung des Wildes. In Maronenröhrlingen aus Berlin wurden in den vergangenen Jahren noch Caesium Aktivitäten von bis zu 150 Bq/kg gemessen, in Steinpilzen bis zu 90 Bq/kg. Zum Vergleich, in den höher kontaminierten Regionen Deutschlands wurden für Maronenröhrlinge noch bis zu mehreren 1000 Bq/kg und für Steinpilze bis zu mehreren 100 Bq/kg gemessen. In Proben von Rehfleisch aus Berlin wurden Werte zwischen 7 und 90 Bq/kg gemessen. Die Werte sind allmählich fallend. Bei Wildschweinen hingegen ist keine kontinuierliche Abnahme der radiologischen Belastung festzustellen. Das liegt daran, dass Wildschweine bei ihrer Nahrungsaufnahme neben Pflanzen auch Erde zu sich nehmen und sich gern von Hirschtrüffeln ernähren, einer besonders belasteten Pilzart. Gelegentlich findet man daher sogar einen Anstieg der Aktivität in Wildschweinfleisch. Orientiert man sich an dem für die Einfuhr in die EG festgelegten Grenzwert von 600 Bq/kg Caesium, liegen die Messwerte für Pilze- und Wildproben aus Berlin weit unter dieser Grenze. Der Gehalt eines Umweltmediums an radioaktivem Caesium nimmt dennoch aus zwei Gründen ständig ab: Zum einen zerfallen die Atome mit einer praktisch nicht beeinflussbaren Geschwindigkeit, so dass sich die Menge alle 30 Jahre halbiert, zum anderen nimmt das Caesium am allgemeinen Stoffwechsel teil und örtliche erhöhte Konzentrationen verteilen sich und verflachen allmählich. Das Ergebnis der Pilzuntersuchungen ist nun, dass die Konzentrationen in Deutschland so weit gesunken sind, dass der Genuss aus radiologischer Sicht nicht mehr bedenklich erscheint. Dabei ist zu berücksichtigen, dass Pilze kein häufig verzehrtes Lebensmittel sind und, dass sie ebenso wie Caesium auch andere Stoffe wie z.B. giftige Schwermetalle in sich anreichern und daher im allgemeinen vom Verzehr großer Mengen abgeraten wird. Der Einfluss der zivilisatorisch bedingten Strahlenbelastung durch kerntechnische Anlagen, Atombombenversuche und den Reaktorunfall in Tschernobyl wird in der Bundesrepublik Deutschland flächendeckend überwacht. Auch die Strahlenmessstelle des Landes Berlin ist in dieses überwachungsprogramm eingebunden. Die hauptsächliche Strahlenbelastung von Personen, nämlich im Durchschnitt fast die Hälfte, rührt von medizinischen Anwendungen her. Von Mensch zu Mensch schwankt dies, je nach dem ob der bzw. diejenige schon einmal geröntgt wurde oder ob eine Radiotherapie angesetzt war. Durchschnittlich ein Viertel der Belastung rührt von dem natürlichen radioaktiven Gas Radon her, das überall (aber im unterschiedlichen Maß – in Berlin dank der “sandigen“ Geologie nur in geringer Menge) aus dem Boden strömt. Ein weiteres Viertel ist etwa zu gleichen Teilen auf natürliche radioaktive Stoffe in der Nahrung, auf die Höhenstrahlung (aus dem Weltall) und die Bodenstrahlung (von natürlichen radioaktiven Stoffen im Erdboden) zurückzuführen. In Berlin ist wegen der geologischen Verhältnisse die natürliche radiologische Belastung sehr gering. Das gilt dank der Gunst des Wetters 1986 auch für die unfallbedingte Belastung. Die zusätzliche Dosisbelastung der Berliner Bevölkerung im Zeitraum nach dem Reaktorunfall in Tschernobyl betrug weniger als 5 % der mittleren Strahlenexposition durch natürliche Radionuklide – das ist etwa soviel wie die Zusatzbelastung durch die Höhenstrahlung bei einem Transatlantikflug. Am 11. März kam es in Japan in Folge eines schweren Erdbebens und des nachfolgenden Tsunami im Atomkernkraftwerk (AKW) Fukushima II zu einem Unfall. Radioaktivität trat zeitweise aus, da die AKW-Blöcke von der Energiezufuhr abgeschnitten waren und dadurch nicht ausreichend gekühlt werden konnten. In den Medien wurden immer wieder Vergleiche zum Tschernobylunfall von 1986 gezogen. Die beiden Unfälle unterscheiden sich jedoch grundlegend, insbesondere da in Japan kein Brand radioaktive Stoffe in die oberen Luftschichten verbracht hat. Diese Gedankenverbindung hat viele Menschen in Deutschland und ganz Europa verunsichert. Dies spiegelte sich deutlich an Meldungen über steigende Verkaufszahlen von Strahlenmessgeräten und Jodtabletten. Problematisch ist, dass eine zuverlässige Ermittlung der Messdaten ohne Fachwissen nicht möglich ist. Besonders gefährlich ist der Trend Jodtabletten ohne medizinische Notwendigkeit einzunehmen, da dies gesundheitliche Schäden hervorrufen kann. Vor einer vorsorglichen Jodeinnahme muss daher gewarnt werden. Weitergehende Informationen zum Jod erhalten Sie auf der Internetseite des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit . Die Entfernung zu Deutschland und die vorherrschenden Wetterbedingungen führten dazu, dass Europa nicht durch in Japan freigesetzte Radioaktivität gefährdet ist. Radioaktivität ist nicht in gesundheitsbedenklicher Konzentration in Deutschland angekommen. Das System zur überwachung des Vertrages über das Verbot von Kernwaffenversuchen in der Atmosphäre, im Weltraum und unter Wasser kann selbst geringfügige änderungen bzw. Erhöhungen der Radioaktivität in der Umwelt registrieren. Radioaktive Stoffe aus Japan können inzwischen in geringsten Spuren an deutschen Feinmessstellen nachgewiesen werden. Die Konzentration ist allerdings so gering, dass nach bisherigem Kenntnisstand keine Erhöhung der Umweltradioaktivität zu verzeichnen sein wird. Die Messergebnisse können auf der Internetseite des Bundesamtes für Strahlenschutz eingesehen werden.

Kalenderwochen 13 und 14/2018

Aktuelle Arbeiten - Endlager Morsleben Übersicht über die wesentlichen Arbeiten in den Kalenderwochen 13 und 14/2018 Gewährleistung der Betriebssicherheit Bergleute müssen das Endlager nach Berg- und Atomrecht betreiben. Auf der 1. Ebene (Sohle) wird in der Nordstrecke damit begonnen, mehrere Bohrungen zu erstellen. In ihnen soll mittels Messtechnik (Mikroakustik) der Bereich um den Abbau 1a, einer Lösungszutrittsstelle, zukünftig umfangreicher geomechanisch überwacht werden. Die Seilfahrtanlagen im Schacht Bartensleben werden durch Sachverständige (TÜV Nord und DMT) untersucht. Diese gesetzlich vorgeschriebenen Prüfungen erfolgen Jährlich, bzw. zweijährlich. Die Ergebnisse zeigen, dass diese sicher betrieben werden können. Die Giebelwand des Umformergebäudes wird durch den Betrieb verschlossen. Die Wand musste geöffnet werden, um den Leonardsatz, eine ehemalige Anlage zur Spannungsumformung, aus dem Gebäude zu entfernen. Die Anlage wird für den Betrieb bereits seit längerem nicht mehr benötigt. In der Abluftüberwachung des Schacht Bartensleben werden die Sammler für die Überwachung von Tritium und Kohlenstoff-14 gewartet. Die Grubenluft wird auf die zwei radioaktiven Gase untersucht. Die Wartung findet halbjährlich statt. Einblick Aufgenommen im April 2018 Das Labor der betrieblichen Umgebungsüberwachung. Eine Mitarbeiterin arbeitet mit einer Probe, um die Konzentration von Tritium (H-3) zu bestimmen. Tritium oder auch schwerer Wasserstoff ist ein radioaktives Gas, das mit den radioaktiven Abfällen in das Endlager eingebracht wurde. Es entsteht als Nebenprodukt der Kernspaltung. Tritium ist ein Betastrahler mit einer Halbwertszeit von 12,32 Jahren. Eine Überwachung der Ab- und Raumluft wird so vorgenommen, dass die zu überwachende Luft durch sogenannte Tritium- und Kohlenstoff-14-Sammler geschickt wird. Beim Durchgang durch die Sammler wird das Tritium durch Absorption in Wasser und das als CO2 vorliegende Kohlenstoff-14 (C-14) durch Absorption in Natronlauge gebunden. Die gewonnenen Proben werden im eigenen Labor ausgewertet. Im Endlager Morsleben wird sowohl die Raumluft im Bereich der Einlagerungsbereiche auf der 4. Ebene mit H-3- und C-14-Sammlern überwacht, als auch die Abluft an den Schächten Marie und Bartensleben. Die Abluftüberwachung ist nach der „Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischer Anlagen“ organisiert. Über die Aktuellen Arbeiten Mit den aktuellen Arbeiten bieten wir Ihnen einen regelmäßigen Überblick zu den wichtigsten Arbeiten und Meilensteinen im Endlager Morsleben. Die Arbeiten sind den wesentlichen Projekten zugeordnet, um den Fortschritt der einzelnen Projekte nachvollziehbar zu dokumentieren. Wir bitten zu beachten, dass nicht alle Arbeiten, die täglich über und unter Tage stattfinden, an dieser Stelle dokumentiert werden können. Bei Bedarf steht Ihnen das Team der Infostelle Morsleben gerne für weitere Auskünfte zur Verfügung. Links zum Thema Alle Wochenberichte im Überblick

Faktencheck: Ist Strom aus Atomenergie CO2-frei bzw. umweltfreundlich?

Faktencheck: Ist Strom aus Atomenergie CO2-frei bzw. umweltfreundlich? Die Stromerzeugung durch Kernspaltung erzeugt im Gegensatz zur Verbrennung in fossilen Kraftwerken keine direkten CO2-Emissionen. Allerdings entstehen beim Betrieb langlebige und hochradioaktive Abfälle , deren Management eine große und langfristige gesellschaftliche Herausforderung darstellt. Die Stromerzeugung durch Kernspaltung erzeugt im Gegensatz zur chemischen Verbrennung in fossilen Kraftwerken keine direkten CO2-Emissionen. Allerdings entstehen beim Betrieb langlebige und hochradioaktive Abfälle , deren Management eine große und langfristige gesellschaftliche Herausforderung darstellt. In Hinblick auf radioaktive Abfallstoffe kann Kernkraft daher nicht als Kreislaufwirtschaft betrieben werden. Obwohl der kernphysikalische Vorgang der Spaltung keine Kohlenstoffdioxidemissionen aufweist, ist die Kernenergie nicht vollständig emissionsfrei. Denn entlang der Wertschöpfungskette (Uranabbau, Anreicherung, Transporte, Zwischen- und Endlagerung etc.) sowie dem beim Bau und Rückbau des Kraftwerkes selbst wird CO2 emittiert. Der Begriff der Umweltfreundlichkeit umfasst nicht nur C02, sondern auch Schutz vor anderen Stoffen, die Mensch und Umwelt schaden. Dazu zählt also auch die ionisierende Strahlung durch den Umgang mit Radioaktivität während des Betriebs sowie die Produktion von radioaktiven Abfällen. Wichtig ist und bleibt festzuhalten: Atomkraft ist eine Hochrisikotechnologie, weshalb beim Umgang mit radioaktiven Stoffen immer eine Schutzbarriere aufrechtzuerhalten ist – was historisch betrachtet dem Menschen nicht immer gelungen ist und so zu Kontaminationen geführt hat. Zudem können zukünftige Unfälle nie ausgeschlossen werden. Radioaktive Stoffe bleiben dann teilweise über sehr lange Zeiträume in der Umwelt und können so ins Grundwasser gelangen und in die Nahrungsketten von Tieren und Mensch gelangen. Ebenso darf nicht unerwähnt bleiben, dass während des Uranabbaus Uranabfälle anfallen, die vorher fest im Stein verankert sind, und durch den Abbau mobilisiert und leichter verbreitet werden und so zu lokalen Belastungen führen (Uranstaub). Grundsätzlich stellt „Umweltfreundlichkeit“ nur eine der Dimensionen dar, die die Nutzung einer Technologie für zukünftige Energiesysteme charakterisiert. Weitere problematische Aspekte der Kernkraft sind die Ausbeutung in Uranabbauländern, das Risiko der Proliferation spaltbaren Materials sowie zum Teil sehr hohen Baukosten und -zeiten. Weitere Informationen des Umweltbundesamts (UBA) Sollten wir mehr Kernkraftwerke bauen, um das Klima zu schützen? Weitere Informationen von Scientists for Future Deutschland Kernenergie keine Technologie zur Lösung der Klimakrise Weitere Informationen von ScienceDirect Valuing the greenhouse gas emissions from nuclear power: A critical survey Stellungnahme des BASE zur Klassifizierung der Atomenergie in der EU-Taxonomie Fachliche Stellungnahme zum delegierten Rechtsakt zur Klassifizierung der Atomenergie nach der Verordnung (EU) 2020/852 (EUTaxonomie) Herunterladen (PDF, 503KB, nicht barrierefrei)

CABB GmbH - Wesentliche Änderung der Anlage zur Herstellung von Dichloracetylchlorid (DAC)

Die CABB GmbH hat beim Landratsamt Augsburg die immissionsschutzrechtliche Genehmigung gemäß § 16 BImSchG für die wesentliche Änderung der Anlage zur Herstellung von Dichloracetylchlorid (DAC-Anlage) auf dem o.g. Betriebsgrundstück in Gersthofen beantragt. Dieser Antrag umfasst folgende Maßnahmen: • Errichtung und Inbetriebnahme eines dritten DAC-Reaktors (Geb. 232), • Rückbau der Kälteanlage (Geb. 232), • Optimierung des Sicherheitskonzeptes sowie • Überführung von Anzeigen nach § 15 BImSchG in die Genehmigung. Die Errichtung und der Betrieb einer Anlage zur Herstellung von Stoffen oder Stoffgruppen durch chemische Umwandlung im industriellen Umfang, ausgenommen integrierte chemische Anlagen nach Nummer 4.1, Anlagen nach Nummer 10.1 und Anlagen zur Erzeugung oder Spaltung von Kernbrennstoffen oder zur Aufarbeitung bestrahlter Kernbrennstoffe nach Nummer 11.1, ist der Nummer 4.2 der Anlage 1 zum UVPG zuzuordnen und in Spalte 2 mit „A“ gekennzeichnet. Für das geplante Vorhaben war deshalb im Rahmen des immissionsschutzrechtlichen Genehmigungsverfahrens vom Landratsamt Augsburg eine allgemeine Vorprüfung zur Feststellung der UVP-Pflicht entsprechend den §§ 9 Abs. 2 und 4 i.V.m. § 7 Abs. 1 UVPG durchzuführen.

Umgebungsüberwachung kerntechnischer Einrichtungen

Gemäß § 103 der Strahlenschutzverordnung ist die Ableitung radioaktiver Stoffe aus Anlagen zu überwachen. Die Grundlage zur Überwachung der ermittelten Messwerte ist die Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischer Anlagen (REI). Zum einen werden die Emissionen innerhalb der Anlage z.B. am Abluftkamin vom Betreiber der Anlage selbst gemessen. Zum anderen werden die Immissionen in der Umgebung der Anlage im Auftrag der Aufsichtsbehörde durch eine unabhängige Messstelle überwacht. Die Ergebnisse der Umgebungsüberwachung werden vierteljährlich und als Jahresbericht der atomrechtlichen Aufsichtsbehörde und dem Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit vorgelegt. In Berlin gibt es nur eine kerntechnische Einrichtung, welche entsprechend der Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischer Anlagen zu überwachen ist, der Forschungsreaktor BER II . Er gehört zu den modernsten Neutronenquellen Europas. Er dient der Grundlagenforschung und der anwendungsnahen Forschung und befindet sich neben anderen experimentellen Anlagen im Helmholtz-Zentrums für Materialien und Energie in Berlin. In ihm werden Neutronen für wissenschaftliche Zwecke produziert. Gastwissenschaftler aus aller Welt arbeiten neben deutschen Kollegen an hochmodernen Experimentierplätzen. Das Helmholtz-Zentrum Berlin verfügt über die einzigartige Möglichkeit, für die Untersuchungen nicht nur den Neutronenstrom des BER II, sondern unter anderem auch das Röntgenlicht des Berliner Elektronenspeicherrings für Synchrotronstrahlung (BESSY II) anbieten zu können. Durch den Neutronenstrom gewinnt man Einblicke in Materie ähnlich wie mit Hilfe der Röntgenstrahlen. Das Röntgenbild und das Neutronenbild liefern dabei unterschiedliche, sich ergänzende Informationen über die Struktur des untersuchten Objekts. Während z.B. das Röntgenbild schwere Atome zeigt, werden durch den Neutronenstrahl die leichten Atome sichtbar gemacht. Kleinste Strukturen können so dargestellt werden. Durch die Untersuchung von Materialien mit Hilfe von Neutronenquellen sind viele Innovationen möglich gewesen, z.B. die Entwicklung neuer und sicherer Werkstoffe für die Verkehrstechnik, eine moderne Spurenanalytik in der Umwelttechnik oder das Entschlüsseln grundlegender medizinischer Prozesse. Der BER II dient aber nicht der kerntechnischen Forschung, sondern fungiert ausschließlich als Quelle für Neutronenstrahlung für die Materialforschung. Informationen zu den einzelnen Forschungsarbeiten finden Sie auf der Internetseite des Helmholtz-Zentrums für Materialien und Energie Bei dem BER II handelt es sich um einen sogenannten Schwimmbadreaktor. Er wird drucklos und bei niedriger Temperatur betrieben. Im Gegensatz zu Kernkraftwerken kann dieser daher sehr schnell abgefahren werden, ohne dass es zu einer erhöhten Belastung für die Anlage kommt. Die Anlage braucht nach einer Abschaltung nur für weniger als eine Minute eine aktive (pumpenunterstützte) Kühlung und ist daher beliebig lange auch ohne Netzverbindung stabil zu halten. Der Kern befindet sich in einem etwa zehn Meter tiefen Becken, das von einer zwei Meter dicken Betonwand umschlossen wird, und ist von einer 9 m hohen Wasserschicht überdeckt. Während des Betriebs der Forschungsneutronenquelle entsteht eine Wärmeleistung von 10 Megawatt. Diese Leistung ist im Vergleich zu einem Kernkraftwerk (~ 4000 MW) rund vierhundert mal geringer. Das Kühlwasser wird maximal nur auf etwa 40 °C aufgewärmt. Die Uranmenge beträgt rund 35 kg (im Gegensatz zu den über hundert Tonnen eines konventionellen Kernkraftwerks). Entsprechend geringer ist auch die bei der Reaktion gebildete Menge an Spaltprodukten (was wichtig für die Abschätzung maximal möglicher Einwirkungen auf die Umgebung im Rahmen der Notfallschutzplanung ist). Der BER II ist ausschließlich als Neutronenquelle für wissenschaftliche Experimente ausgelegt und kann nicht zur Energieerzeugung eingesetzt werden. Die Brennstoffplatten sind nur eine von mehreren Barrieren gegen das Entweichen radioaktiver Stoffe, denn auch das Wasser des Reaktorbeckens (mit einer künstlichen Warmschicht gegen Diffusion aus dem Becken und einer permanenten Wasserreinigung über Filter und Ionenaustauscher), die Unterdruck haltende Reaktorhalle mit ihrer luftdicht verschweißten Innenauskleidung (Stahlliner) und die mit Filtereinrichtungen versehene Entlüftung tragen messtechnisch nachgewiesen zu einer Minimierung der radioaktiven Emissionen bei. In jedem Betriebszustand ist gewährleistet, dass das radioaktive Inventar von der Umwelt abgeschirmt bleibt, ohne dass hierfür Anlagen oder Apparate von Hand bedient werden müssen. So fallen bei Ausfall der Stromversorgung sofort Kontrollstäbe, die an einem Elektromagneten hingen, allein durch ihr Gewicht in den Reaktorkern und unterbrechen die Kernspaltung. Nach Stillstand der Kernspaltung genügt nur eine Minute zur Nachkühlung. Dies wird bereits durch den Nachlauf der Pumpen gesichert. Eine Kernschmelze infolge eines Ereignisses in der Anlage ist beim BER II damit ausgeschlossen. Bei Stromausfall stehen zudem Notdiesel und Batteriebänke zur Verfügung. Auf dem Gelände ist eine Betriebsfeuerwehr stationiert. Die Forschungsneutronenquelle wird durch ein Kernanlagen-Fernüberwachungssystem (KFü) kontrolliert. In ihm werden Betriebsdaten der Anlage selbst und Daten von Messstellen in der Umgebung der Anlage ununterbrochen zusammengefasst und durch die Aufsichtsbehörde überwacht. Die Strahlenmessstelle Berlin der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt – Abteilung “Integrativer Umweltschutz” – ist als unabhängige Messstelle mit der überwachung des BER II beauftragt. Sie untersucht Proben, die aus der Umgebung des Forschungsreaktors stammen und vergleichen sie mit Proben aus anderen Teilen Berlins. Des weiteren überwacht sie das Strahlungsniveau entlang der Institutsgrenze und kontrolliert an Kaminluftproben die Emissionen. Der BER II gibt auch im Normalbetrieb radioaktive Substanzen in geringer Menge an die Umgebung ab. Bei Ausstoß selbst der genehmigten Abgabemenge ist für Mensch und Tier keine gesundheitliche Beeinträchtigung gegeben. In der Praxis wird dieser Unbedenklichkeitswert sogar weit unterschritten. Im langjährigen Betrieb hat sich gezeigt, dass die Abgabe durch den Reaktor für Gase bei 5 – 7 , bei Iod-131 bei 1 – 2 der genehmigten Abgabemenge liegt und dass die Abgabe von an Aerosole gebundenen radioaktiven Stoffen die Nachweisgrenze der Messgeräte (Promille der Grenzwerte) noch nicht einmal erreicht (Darstellung dazu im Abschnitt Abgabegrenzen künstlicher Radioaktivität ). Entsprechend § 106 der Strahlenschutzverordnung ist der Betreiber verpflichtet, alle fünf Jahre die Anwohner in der Umgebung der Anlage über die Sicherheitsvorkehrungen und Notfallpläne zu informieren. Die letzte Verteilung der Broschüre erfolgte im Jahr 2019 und steht zum Download zur Verfügung.

CABB GmbH - Wesentliche Änderung der Anlage zur Herstellung von Monochloressigsäuremethyl- / -ethylester

Die CABB GmbH hat beim Landratsamt Augsburg die immissionsschutzrechtliche Genehmigung nach § 16 BImSchG für eine wesentliche Änderung der Anlage zur Herstellung von Monochloressigsäuremethyl-/-ethylester (MME/MEE-Anlage) auf ihrem Betriebsgelände in der Ludwig-Hermann-Str. 100, 86368 Gersthofen, Flur-Nr. 2235/47 der Gemarkung Gersthofen, durch Umbau eines vorhandenen Fahrtanklagers nördlich Geb. 232, Abfüllung eines zusätzlichen Stoffes an der Kleingebindeabfüllung (Geb. 419), Überführung von Anzeigen nach § 15 BImSchG in die Genehmigung sowie geringfügige apparative Änderungen beantragt. Die Errichtung und der Betrieb einer Anlage zur Herstellung von Stoffen oder Stoffgruppen durch chemische Umwandlung im industriellen Umfang, ausgenommen integrierte chemische Anlagen nach Nummer 4.1, Anlagen nach Nummer 10.1 und Anlagen zur Erzeugung oder Spaltung von Kernbrennstoffen oder zur Aufarbeitung bestrahlter Kernbrennstoffe nach Nummer 11.1 ist der Nummer 4.2 der Anlage 1 zum UVPG zuzuordnen und in Spalte 2 mit „A“ gekennzeichnet. Für das geplante Vorhaben war deshalb im Rahmen des immissionsschutzrechtlichen Genehmigungsverfahrens vom Landratsamt Augsburg eine allgemeine Vorprüfung zur Feststellung der UVP-Pflicht entsprechend den §§ 9 Abs. 2 und 4 UVPG durchzuführen.

Studie zu alternativen Reaktorkonzepten

Studie zu alternativen Reaktorkonzepten Im Auftrag des BASE wurden im Rahmen eines Forschungsvorhabens aktuelle Entwicklungen von alternativen Reaktorkonzepten, die sich wesentlich von Leichtwasserreaktoren unterscheiden, untersucht. In dieser Studie wird der Begriff „sogenannte ‚neuartige‘ Reaktorkonzepte“ verwendet. Seit der Mitte des 20. Jahrhunderts werden Reaktorkonzepte erforscht, die sich von Leichtwasserreaktoren teils signifikant unterscheiden. Diese sollen laut den Entwickler:innen Vorteile gegenüber heute weit verbreiteten Leichtwasserreaktoren aufweisen. Die wissenschaftliche Studie kommt zu dem Schluss, dass bei diesen Konzepten weiterhin zahlreiche sicherheitstechnische und ökonomische Fragestellungen offen sind. Sie werden bis zur Mitte dieses Jahrhunderts nicht in relevantem Umfang zum Einsatz kommen. International werden seit Jahrzehnten alternative Reaktorkonzepte diskutiert, erforscht und entwickelt. Sie sollen als Lösungsstrategie zur Dekarbonisierung der Stromerzeugung sowie teilweise auch der Wärmeversorgung für den Industrie- und Wohnsektor beitragen. Studie: "Analyse und Bewertung des Entwicklungsstandards, der Sicherheit und des regulatorischen Rahmens für sogenannte neuartige Reaktorkonzepte" Im Auftrag des BASE wurden im Rahmen eines Forschungsvorhabens aktuelle Entwicklungen von solchen Reaktorkonzepten, die sich wesentlich von Leichtwasserreaktoren unterscheiden, untersucht. Die Unterschiede finden sich meist bei Kühlmittel, Moderator , Neutronenspektrum sowie Art und Form des Brennstoffs. Die untersuchten Konzepte sind: Natriumgekühlte Schnelle Reaktoren (Sodium-cooled Fast Reactor, SFR) Bleigekühlte Schnelle Reaktoren (Lead-cooled Fast Reactor, LFR) Gasgekühlte Schnelle Reaktoren (Gas-cooled Fast Reactor, GFR) Salzschmelzereaktoren (Molten Salt Reactor, MSR) Mit superkritischem Wasser gekühlte Reaktoren (Supercritical-water-cooled Reactor, SCWR) Hochtemperaturreaktoren (Very High Temperature Reactor, VHTR) Beschleunigergetriebene Systeme (ADS) Die ersten sechs Reaktorkonzepte werden teilweise auch als „Generation IV“-Konzepte bezeichnet, da sie von dem sogenannten „Generation IV International Forum“ (GIF) mitentwickelt werden. Bei dem GIF handelt es sich um einen 2001 gegründeten, internationalen Verbund von Staaten und Industrieunternehmen, welche die Entwicklung der entsprechenden Reaktorkonzepte voranzutreiben versuchen. Studie betrachtet Sicherheit der Reaktorkonzepte und Entsorgungsfrage Die untersuchten Konzepte wurden anhand der Kriterien des technologischen Entwicklungsstands, der Sicherheit, Ver- und Entsorgungsfragen, Proliferationsrisiken und der erwarteten Kosten bewertet. Die Studie kommt zum Ergebnis: In manchen Kategorien weisen die untersuchten Reaktorkonzepte Vorteile gegenüber Leichtwasserreaktoren auf. Es ist aber nicht zu erwarten, dass eines der Konzepte in allen Bereichen Vorteile aufweisen wird. In einzelnen Bereichen sind auch Nachteile gegenüber heutigen Leichtwasserreaktoren absehbar. Einige Reaktorkonzepte werfen neue sicherheitstechnische Fragestellungen auf. Beispielsweise die Möglichkeit von Kühlmittelbränden bei natriumgekühlten Reaktoren, ein verstärktes Auftreten von Korrosion bei Salzschmelzereaktoren oder eine schwierigere Regelbarkeit des Reaktors aufgrund einer anspruchsvolleren Neutronenphysik bei schnellen Reaktoren, bedingt durch einen geringeren Anteil verzögerter Neutronen . Trotz der Tatsache, dass die Reaktorkonzepte teils seit Jahrzehnten in Entwicklung sind, existiert bis heute kein kommerziell konkurrenzfähiges Reaktorkonzept. Der weitere Zeitbedarf für die Entwicklung der untersuchten Konzepte wird im Bereich von mehreren Jahrzehnten gesehen. Teilweise könnten die untersuchten Konzepte Kostenvorteile gegenüber Leichtwasserreaktoren aufweisen. Es ist nicht davon auszugehen, dass diese Kostenvorteile die bisherigen Kostennachteile heutiger Leichtwasserreaktoren gegenüber anderen Stromerzeugungstechnologien, insbesondere erneuerbaren Energien, ausgleichen oder gar in einen Kostenvorteil umkehren könnten. In Summe geht die Studie davon aus, dass die untersuchten Konzepte bis zur Mitte des 21. Jahrhunderts nicht im relevanten Umfang zum Einsatz kommen werden. Einfluss alternativer Reaktorkonzepte auf radioaktive Abfallmengen Das Vorhaben untersuchte, in welchem Umfang alternative Reaktorkonzepte radioaktive Abfälle erzeugen oder sogar reduzieren können und wie sich diese Abfälle von jenen aus Leichtwasserreaktoren unterscheiden. Diese Fragen lassen sich jedoch nicht pauschal beantworten. Das liegt zum einen daran, dass sich die Technologien noch in der Entwicklung befinden und zum anderem daran, dass dies maßgeblich davon abhängt, in welches System aus Kernkraftwerken die alternativen Reaktorkonzepte integriert werden. Beispielsweise ob eine Wiederaufbereitung angedacht ist. Eigenschaften der Abfälle Heutige Leichtwasserreaktoren nutzen hauptsächlich Uranoxid- Brennelemente . Diese werden nach der Nutzung aus dem Reaktor entnommen und erst zwischen- und dann endgelagert. Als Kühlmittel und Moderator kommt Wasser zum Einsatz. Einige der alternativen Reaktorkonzepte sollen andere Brennstoffe, Kühlmittel und Moderatoren verwenden. Dies hat einen Einfluss auf die entstehenden Abfälle. Nachfolgend werden exemplarisch einige der Herausforderungen dargestellt. Brennstoff SFR, LFR, SCWR, GFR und ADS werden, wie Leichtwasserreaktoren auch, feste Brennelemente nutzen. Sie haben allerdings einen höheren Abbrand als Brennelemente aus Leichtwasserreaktoren, das heißt, pro Masse finden mehr Kernspaltungen statt. Aufgrund dieses höheren Abbrands werden die abgebrannten Brennelemente aus den alternativen Reaktorkonzepten absehbar ein höheres Strahlungsniveau haben und mehr Wärme freisetzen. Dies erschwert den Umgang. Bei den meisten Konzepten für Flüssigsalzreaktoren (MSR) liegt der Brennstoff nicht in fester Form, sondern als flüssige Salzschmelze vor. Diese Salzschmelzen weisen eine höhere Wasserlöslichkeit auf, was die Endlagerung erschwert. Aus diesem Grund müssen Verfahren entwickelt werden, um die Abfälle so aufzubereiten, dass ihre Mobilität im Erdreich reduziert ist . Hochtemperaturreaktoren (VHTR) nutzen sogenannte TRISO-Partikel. Dabei handelt es sich um kleine Brennstoffkugeln mit einem Durchmesser von ungefähr 1 mm, die von mehreren dünnen Schutzschichten umgeben sind. Eine Vielzahl von TRISO-Brennstoffpartikeln ist dann in einer Graphitmatrix eingebettet. Diskutiert werden Graphitmatrizen in Kugelform (etwa in der Größe eines Tennisballs) oder in Form eines Prismas. Die Graphitmatrix führt zu einem deutlich höheren Abfallvolumen als bei Leichtwasserreaktoren. Am wahrscheinlichsten ist die direkte Endlagerung des Gebindes aus Graphitmatrix und TRISO-Partikeln. Hierfür braucht es ein geeignetes Konditionierungsverfahren, untersucht werden hier beispielsweise die Zementierung oder Sandverfüllung. Kühlmittel Während Leichtwasserreaktoren Wasser als Kühlmittel nutzen, kommen bei alternativen Reaktorkonzepten teilweise andere Kühlmittel zum Einsatz. Beispielsweise Natrium (SFR) oder Blei (LFR). Diese müssen aufgrund der Aktivierung bzw. Kontaminierung mit Radionukliden ebenfalls einer Endlagerung zugeführt werden. Das Natrium beispielsweise enthält eine Reihe von Aktivierungsprodukten wie Na-22 oder Co -60 (aus der Stahlstruktur) sowie Kontaminationen durch Spaltprodukte und Aktiniden . Weitere Herausforderungen resultieren aus den chemischen Eigenschaften der Kühlmittel, Natrium ist beispielsweise brennbar. Moderator Die meisten alternativen Reaktorkonzepte nutzen ein schnelles Neutronenspektrum. Das heißt, es braucht keinen Moderator , der die Neutronen von einem schnellen zu einem thermischen Neutronenspektrum abbremst. Beim thermischen Salzschmelzereaktor und beim VHTR kommt jedoch Graphit als Moderator zum Einsatz. Dabei bildet sich u. a. das langlebige und biologisch wirksame radioaktive Isotop Kohlenstoff-14. Der Graphit muss daher ebenfalls entsorgt werden. Ggf. kann dies gemeinsam mit dem Brennstoff erfolgen. Fazit In Summe lässt sich festhalten, dass sich durch den Einsatz alternativer Reaktorkonzepte neue Fragestellungen für die Entsorgung der entstehenden Abfälle ergeben, für die noch keine Lösungen gefunden wurden. Ein Beispiel hierfür ist das Molten Salt Reactor Experiment von 1965 bis 1969 in den USA . Seit der Abschaltung befindet sich das Reaktorgebäude in unverändertem Zustand, die Salzschmelze befindet sich noch in erstarrter Form im Reaktor, da die Frage der Entsorgung noch nicht geklärt ist. Abfallmengen Zur Frage, wie sich der Einsatz alternativer Reaktorkonzepte auf die Abfallmengen auswirken könnte, wurden bestehende Untersuchungen ausgewertet. Diese kommen zum Ergebnis, dass es möglich sein könnte, die anfallende Masse hochradioaktiver Abfälle pro erzeugter Energiemenge deutlich (bis zum Faktor 37) zu reduzieren. Dieser Effekt ist aber hauptsächlich darauf zurückzuführen, dass Uran 238 – dieses ist der Hauptbestandteil des hochradioaktiven Abfalls – abgetrennt und als schwach- und mittelradioaktiver Abfall bewertet wird. Die Größe eines Endlagers, bzw. der Platzbedarf für die Einlagerung, und damit die Höhe der Kosten werden wesentlich bestimmt durch das Gesamtvolumen der Abfälle und deren Wärmeleistung. Die Analyse der bestehenden Untersuchungen zeigt, dass beim Einsatz alternativer Reaktorkonzepte die Reduzierung der Abfallvolumina deutlich geringer ausfällt: Abfallvolumina ließen sich nur auf ungefähr ein Drittel reduzieren. Der Grund für die geringere Reduzierung ist, dass die Abwärme dieser Abfälle pro Masse deutlich höher ist. Die Abfälle können daher weniger dicht gepackt werden. Berücksichtigt man nicht nur hochradioaktive sondern auch schwach- und mittelradioaktive Abfälle , fallen in allen untersuchten Szenarien mit alternativen Reaktorkonzepten deutlich höhere Abfallvolumina an. Entwicklungsstand der Reaktorkonzepte in anderen Ländern Die Studie untersuchte auch die Forschungs- und Entwicklungstätigkeiten zu den Reaktorkonzepten im Ausland. Die Auswertung ausgewählter Länder ergab, dass neben dem (fraglichen) Ziel einer günstigen Erzeugung von Strom (und ggf. Wärme) folgende Motive vorhanden sind: Geopolitischer Einfluss (beispielsweise die Möglichkeit durch Exporte Einfluss auf die Atom -Programme anderer Länder zu nehmen), Nutzung von Synergien mit militärischen Atom -Programmen, Aufrechterhaltung von Wissen und industriellen Kapazitäten im Bereich der Kernenergie, die Dekarbonisierung des Energiesystems, die Entwicklung eines sogenannten geschlossenen Brennstoffkreislaufs; also der Möglichkeit durch Wiederaufbereitung einen Teil der Abfälle aus Leichtwasserreaktoren zu nutzen oder neuen Brennstoff für Leichtwasserreaktoren zu erbrüten. Im Rahmen der Studie wurden die Forschungsaktivitäten der USA , Chinas, Russlands (Staaten mit Atomwaffen und Atomkraftwerken ), Südkoreas und Belgiens (Staaten mit Atomkraftwerken aber ohne Atomwaffen) sowie Polen (ein potentielles Einstiegsland in die Atomenergie) auf dem Gebiet von alternativen Reaktorkonzepten vertieft analysiert. USA Die USA waren seit den 1950er Jahren durch das Manhattan-Projekt weltweit führend in der Entwicklung von Reaktortechnologien. Jedoch erfolgte die erfolgreiche Vermarktung, sowohl in den USA als auch international, lediglich bei Leichtwasserreaktoren und nicht - wie ursprünglich erwartet - auch in den anderen Technologielinien. Mit der weitgehenden Einstellung von Aufträgen für den Bau von Leichtwasserreaktoren seit den 1980er Jahren befindet sich die US-Atomkraftwerkstechnik im Rückgang, den auch das Energiegesetz von 2005 bisher nicht aufgehalten hat. Die seit ca. zehn Jahren beobachteten Aktivitäten zur Förderung sowohl von Leichtwasserreaktoren mit geringen Leistungen ( SMR -Konzepte) als auch von alternativen Reaktorkonzepten, sind ein Versuch, für die US-Kernkraftwerkstechnik wieder einen Anspruch auf internationale Technologieführerschaft zu entwickeln. Derzeit ist kein kommerzieller Durchbruch abzusehen. Russland In Russland lag in der Anfangszeit der kerntechnischen Entwicklung der Schwerpunkt bei Reaktoren mit schnellem Neutronenspektrum (SFR, später auch LFR) in Verbindung mit Wiederaufarbeitung (Mayak, Pilotanalage sowie Brennelemente -Fabrik Uran - Plutonium -Mischoxidbrennstoffe in Zheleznogorsk). In der Folge wurde dieser Schwerpunkt vertieft (BN-600, BN-800). Aktuell befindet sich das russische Innovationssystem bzgl. alternativer Reaktorkonzepte in einer Phase, in der die Forschungsinfrastruktur älter wird (BOR-60, seit 1969 in Betrieb) und Projekte aufgeschoben werden ( z. B. BN-1200), derzeit wird der BREST-OD-300 priorisiert. Russland hält an der Langzeitstrategie fest, einen sogenannten geschlossen Brennstoffkreislauf mit Hilfe von Reaktoren mit schnellem Neutronenspektrum zu erreichen und parallel die Entwicklung von Leichtwasserreaktoren voranzutreiben. China China hat seit den 1960er Jahren sein nukleares Innovationssystem durch eine Importstrategie vorangetrieben. Nach militärischen Entwicklungen in den 1950er Jahren wurden sowohl bei Leichtwasserreaktoren als auch bei alternativen Reaktorkonzepten Fortschritte erzielt. Letztere werden parallel zum Ausbau der Leichtwasserreaktoren entwickelt. Dabei hat China ein breites Spektrum von Technologielinien aufgebaut, insbesondere Schnelle Reaktoren und Hochtemperaturreaktoren. Derzeit befinden sich die Projekte noch im Bereich der Forschung und Entwicklung bzw. im Bau und Betrieb von Prototypen. Ende 2023 ist Hochtemperatur-Reaktor (Shidao Bay-1) in den kommerziellen Betrieb übergegangen. Eine breite, kommerzielle Nutzung ist noch nicht abzusehen. Südkorea Südkorea ist eines der führenden Industrieländer und hat sich, ursprünglich mit Unterstützung der USA , zu einem der wenigen Anbieter für Reaktortechnik entwickelt. Südkorea verfügt über ein umfangreiches eigenes kommerzielles Atomkraftprogramm, welches in den 2000er Jahren auch Exporte verzeichnen konnte. Das Land unterhält bezüglich Forschung und Entwicklung besonders intensive Beziehungen mit den USA . Im Bereich alternativer Reaktorkonzepte intensiviert Südkorea die Beteiligung an ausländischen, insbesondere amerikanischen Entwicklungen. Darüber hinaus werden eigene Entwicklungen weitergeführt, z. B. von Wiederaufarbeitungstechnologien in Verbindung mit Schnellen Reaktoren. Eine kommerzielle Nutzung dieser Reaktorkonzepte ist derzeit nicht absehbar. Belgien Nachdem Belgien historisch bedingt in den 1950er Jahren zu den ersten Ländern mit kommerzieller Atomkraftwerksnutzung wurde, hat es seit dieser Anfangsphase ein kleines nationales Innovationssystem entwickelt. Belgiens Aktivitäten für die Entwicklung von alternativen Reaktorkonzepten fokussieren sich auf die Entwicklung und Internationalisierung des Forschungsprojektes MYRRHA, einer Kombination von einem beschleunigergetriebenen unterkritischen Reaktor (ADS) und einem Blei-Bismutgekühlten Schnellen Reaktor (eine Variante des LFR). Initiale Zeitpläne und Kostenschätzungen wurden überschritten und es bestehen Schwierigkeiten bei der Finanzierung des Projektes. Polen In Polen wird seit mehreren Jahrzehnten der Einstieg in die kommerzielle Kernenergie diskutiert. Dieser ist jedoch bis heute noch nicht umgesetzt. Seit den 1950er Jahren wird in geringem Maßstab an Reaktortechnik geforscht, vor allem am Forschungsreaktor MARIA (seit 1974 in Betrieb). Bezogen auf alternative Reaktorkonzepte ist zu beobachten, dass Polen Wissen aufbaut, indem sich polnische Wissenschaftler:innen an europäischen Forschungsprojekten beteiligen. Insbesondere wird ein Fokus auf die Entwicklung von Hochtemperaturreaktoren gesetzt, u. a. mit Erwägungen zum Bau eines gasgekühlten Hochtemperatur-Forschungsreaktors (TeResa). Untersuchung ausgewählter Regelwerke Damit ein Kernkraftwerk gebaut und betrieben werden darf, muss im Vorfeld ein Sicherheitsnachweis erbracht werden. Darin muss der Betreiber darlegen, welche Risiken von der Anlage ausgehen und welche Maßnahmen er zu Reduzierung dieser Risiken ergreift. Das nationale Regelwerk eines Landes legt dabei fest, welche Anforderungen ein Reaktor erbringen muss, um eine Genehmigung zu erhalten. Die Regelwerke legen zum einen grundlegende Anforderungen fest (zielorientierte Regelwerke), zum anderen geben sie auch konkrete technische Ausführungen vor bzw. stellen Anforderungen mit Bezug auf konkrete technologische Lösungen (präskriptive Regelwerke). Die Regelwerke wurden überwiegend auf Basis der Erkenntnisse aus Bau und Betrieb der heutigen, wassergekühlten Reaktorkonzepte entwickelt. Die untersuchten alternativen Reaktorkonzepte unterscheiden sich jedoch in mehreren Aspekten deutlich von wassergekühlten Reaktorkonzepten. Die präskriptiven Regeln sind daher oft nicht direkt auf alternative Reaktorkonzepte übertragbar. Nationaler und internationaler Stand der Regelwerke Im Forschungsvorhaben untersuchten die Autoren der Studie, inwieweit sich die Regelwerke der USA , von Kanada und dem Vereinigten Königreich auf alternative Reaktorkonzepte anwenden lassen. Auch Regelwerke folgender internationaler Organisationen werden in der Studie betrachtet: die Internationale Atomenergie Organisation ( IAEO ), die Nuklearenergieagentur der Organisation für wirtschaftliche Zusammenarbeit und Entwicklung ( OECD/NEA ) und der Verband Westeuropäischer Nuklearregulierungsbehörden (WENRA) Zusammenfassend lässt sich darstellen, dass es in den untersuchten Ländern noch kein Regelwerk gibt, das geeignet ist, um einen Sicherheitsnachweis für alternative Reaktorkonzepte zu erbringen. Die untersuchten Länder und Organisationen überarbeiten daher ihre Regelwerke. Bei den neuen Regelwerken soll verstärkt auf zielorientierte, technologieoffene Vorgaben gesetzt werden. Dieses Vorgehen könnte aber dazu führen, dass der Aufwand für Antragsteller und Genehmigungsbehörde zur Erstellung und Prüfung des Sicherheitsnachweises steigt. Ein Grund hierfür ist das Fehlen von Erfahrungen aus dem Betrieb der Anlagen. Dies kann zur Folge haben, dass entsprechende Genehmigungsverfahren einen längeren Zeitraum in Anspruch nehmen werden. Regelwerke ausgewählter Länder Die Auswertung der Regelwerke der USA , von Kanada und dem Vereinigtem Königreich ergab folgende Ergebnisse: USA: In den USA gibt es aktuell zwei Verfahren zur Genehmigung von Kernkraftwerken. Beide enthalten präskriptive Anforderungen, die sich nicht einfach auf alternative Reaktorkonzepte übertragen lassen. Daher entwickelt die US-amerikanische Genehmigungsbehörde (Nuclear Regulatory Commission - NRC ) ein neues Regelwerk, das stärker zielorientiert und technologieoffen sein soll. Das Regelwerk soll 2027 fertiggestellt sein. Kanada: Das kanadische kerntechnische Regelwerk ist eher zielorientiert als präskriptiv aufgebaut, was die Nutzung für alternative Reaktorkonzepte erleichtern sollte. Dennoch sieht die zuständige Genehmigungsbehörde (Canadian Nuclear Safety Commission - CNSC ) die Notwendigkeit einer Überarbeitung. Ziel ist die Entwicklung eines technologieneutralen Regelwerks, ein Zieldatum steht noch nicht fest. Vereinigtes Königreich: Die Aufsichtsbehörde im Vereinigten Königreich (Office for Nuclear Regulation - ONR) verfolgt ein Arbeits- und Forschungsprogramm, um ihre Kompetenzen im Bereich alternativer Reaktorkonzepte zu verstärken und Anforderungen für die Genehmigung von neuen Reaktoren zu überarbeiten. In einem ersten Schritt wurde das Verfahren zur Durchführung eines Generic Design Assessments erneuert. Hierbei handelt es sich um eine unverbindliche Vorprüfung des Konzepts durch das ONR mit dem Ziel, dem Entwickler frühzeitig mögliche Probleme aufzuzeigen. Eine Überprüfung grundlegender Richtlinien durch das ONR hinsichtlich ihrer Anwendbarkeit auf alternative Reaktorkonzepte ist vorgesehen. Erste Forschungsberichte hierzu liegen vor, das ONR sieht allerdings noch erheblichen zukünftigen Forschungsbedarf. Eigenschaften der Abfälle Heutige Leichtwasserreaktoren nutzen hauptsächlich Uranoxid- Brennelemente . Diese werden nach der Nutzung aus dem Reaktor entnommen und erst zwischen- und dann endgelagert. Als Kühlmittel und Moderator kommt Wasser zum Einsatz. Einige der alternativen Reaktorkonzepte sollen andere Brennstoffe, Kühlmittel und Moderatoren verwenden. Dies hat einen Einfluss auf die entstehenden Abfälle. Nachfolgend werden exemplarisch einige der Herausforderungen dargestellt. Brennstoff SFR, LFR, SCWR, GFR und ADS werden, wie Leichtwasserreaktoren auch, feste Brennelemente nutzen. Sie haben allerdings einen höheren Abbrand als Brennelemente aus Leichtwasserreaktoren, das heißt, pro Masse finden mehr Kernspaltungen statt. Aufgrund dieses höheren Abbrands werden die abgebrannten Brennelemente aus den alternativen Reaktorkonzepten absehbar ein höheres Strahlungsniveau haben und mehr Wärme freisetzen. Dies erschwert den Umgang. Bei den meisten Konzepten für Flüssigsalzreaktoren (MSR) liegt der Brennstoff nicht in fester Form, sondern als flüssige Salzschmelze vor. Diese Salzschmelzen weisen eine höhere Wasserlöslichkeit auf, was die Endlagerung erschwert. Aus diesem Grund müssen Verfahren entwickelt werden, um die Abfälle so aufzubereiten, dass ihre Mobilität im Erdreich reduziert ist . Hochtemperaturreaktoren (VHTR) nutzen sogenannte TRISO-Partikel. Dabei handelt es sich um kleine Brennstoffkugeln mit einem Durchmesser von ungefähr 1 mm, die von mehreren dünnen Schutzschichten umgeben sind. Eine Vielzahl von TRISO-Brennstoffpartikeln ist dann in einer Graphitmatrix eingebettet. Diskutiert werden Graphitmatrizen in Kugelform (etwa in der Größe eines Tennisballs) oder in Form eines Prismas. Die Graphitmatrix führt zu einem deutlich höheren Abfallvolumen als bei Leichtwasserreaktoren. Am wahrscheinlichsten ist die direkte Endlagerung des Gebindes aus Graphitmatrix und TRISO-Partikeln. Hierfür braucht es ein geeignetes Konditionierungsverfahren, untersucht werden hier beispielsweise die Zementierung oder Sandverfüllung. Kühlmittel Während Leichtwasserreaktoren Wasser als Kühlmittel nutzen, kommen bei alternativen Reaktorkonzepten teilweise andere Kühlmittel zum Einsatz. Beispielsweise Natrium (SFR) oder Blei (LFR). Diese müssen aufgrund der Aktivierung bzw. Kontaminierung mit Radionukliden ebenfalls einer Endlagerung zugeführt werden. Das Natrium beispielsweise enthält eine Reihe von Aktivierungsprodukten wie Na-22 oder Co -60 (aus der Stahlstruktur) sowie Kontaminationen durch Spaltprodukte und Aktiniden . Weitere Herausforderungen resultieren aus den chemischen Eigenschaften der Kühlmittel, Natrium ist beispielsweise brennbar. Moderator Die meisten alternativen Reaktorkonzepte nutzen ein schnelles Neutronenspektrum. Das heißt, es braucht keinen Moderator , der die Neutronen von einem schnellen zu einem thermischen Neutronenspektrum abbremst. Beim thermischen Salzschmelzereaktor und beim VHTR kommt jedoch Graphit als Moderator zum Einsatz. Dabei bildet sich u. a. das langlebige und biologisch wirksame radioaktive Isotop Kohlenstoff-14. Der Graphit muss daher ebenfalls entsorgt werden. Ggf. kann dies gemeinsam mit dem Brennstoff erfolgen. Fazit In Summe lässt sich festhalten, dass sich durch den Einsatz alternativer Reaktorkonzepte neue Fragestellungen für die Entsorgung der entstehenden Abfälle ergeben, für die noch keine Lösungen gefunden wurden. Ein Beispiel hierfür ist das Molten Salt Reactor Experiment von 1965 bis 1969 in den USA . Seit der Abschaltung befindet sich das Reaktorgebäude in unverändertem Zustand, die Salzschmelze befindet sich noch in erstarrter Form im Reaktor, da die Frage der Entsorgung noch nicht geklärt ist. Abfallmengen Zur Frage, wie sich der Einsatz alternativer Reaktorkonzepte auf die Abfallmengen auswirken könnte, wurden bestehende Untersuchungen ausgewertet. Diese kommen zum Ergebnis, dass es möglich sein könnte, die anfallende Masse hochradioaktiver Abfälle pro erzeugter Energiemenge deutlich (bis zum Faktor 37) zu reduzieren. Dieser Effekt ist aber hauptsächlich darauf zurückzuführen, dass Uran 238 – dieses ist der Hauptbestandteil des hochradioaktiven Abfalls – abgetrennt und als schwach- und mittelradioaktiver Abfall bewertet wird. Die Größe eines Endlagers, bzw. der Platzbedarf für die Einlagerung, und damit die Höhe der Kosten werden wesentlich bestimmt durch das Gesamtvolumen der Abfälle und deren Wärmeleistung. Die Analyse der bestehenden Untersuchungen zeigt, dass beim Einsatz alternativer Reaktorkonzepte die Reduzierung der Abfallvolumina deutlich geringer ausfällt: Abfallvolumina ließen sich nur auf ungefähr ein Drittel reduzieren. Der Grund für die geringere Reduzierung ist, dass die Abwärme dieser Abfälle pro Masse deutlich höher ist. Die Abfälle können daher weniger dicht gepackt werden. Berücksichtigt man nicht nur hochradioaktive sondern auch schwach- und mittelradioaktive Abfälle , fallen in allen untersuchten Szenarien mit alternativen Reaktorkonzepten deutlich höhere Abfallvolumina an. USA Die USA waren seit den 1950er Jahren durch das Manhattan-Projekt weltweit führend in der Entwicklung von Reaktortechnologien. Jedoch erfolgte die erfolgreiche Vermarktung, sowohl in den USA als auch international, lediglich bei Leichtwasserreaktoren und nicht - wie ursprünglich erwartet - auch in den anderen Technologielinien. Mit der weitgehenden Einstellung von Aufträgen für den Bau von Leichtwasserreaktoren seit den 1980er Jahren befindet sich die US-Atomkraftwerkstechnik im Rückgang, den auch das Energiegesetz von 2005 bisher nicht aufgehalten hat. Die seit ca. zehn Jahren beobachteten Aktivitäten zur Förderung sowohl von Leichtwasserreaktoren mit geringen Leistungen ( SMR -Konzepte) als auch von alternativen Reaktorkonzepten, sind ein Versuch, für die US-Kernkraftwerkstechnik wieder einen Anspruch auf internationale Technologieführerschaft zu entwickeln. Derzeit ist kein kommerzieller Durchbruch abzusehen. Russland In Russland lag in der Anfangszeit der kerntechnischen Entwicklung der Schwerpunkt bei Reaktoren mit schnellem Neutronenspektrum (SFR, später auch LFR) in Verbindung mit Wiederaufarbeitung (Mayak, Pilotanalage sowie Brennelemente -Fabrik Uran - Plutonium -Mischoxidbrennstoffe in Zheleznogorsk). In der Folge wurde dieser Schwerpunkt vertieft (BN-600, BN-800). Aktuell befindet sich das russische Innovationssystem bzgl. alternativer Reaktorkonzepte in einer Phase, in der die Forschungsinfrastruktur älter wird (BOR-60, seit 1969 in Betrieb) und Projekte aufgeschoben werden ( z. B. BN-1200), derzeit wird der BREST-OD-300 priorisiert. Russland hält an der Langzeitstrategie fest, einen sogenannten geschlossen Brennstoffkreislauf mit Hilfe von Reaktoren mit schnellem Neutronenspektrum zu erreichen und parallel die Entwicklung von Leichtwasserreaktoren voranzutreiben. China China hat seit den 1960er Jahren sein nukleares Innovationssystem durch eine Importstrategie vorangetrieben. Nach militärischen Entwicklungen in den 1950er Jahren wurden sowohl bei Leichtwasserreaktoren als auch bei alternativen Reaktorkonzepten Fortschritte erzielt. Letztere werden parallel zum Ausbau der Leichtwasserreaktoren entwickelt. Dabei hat China ein breites Spektrum von Technologielinien aufgebaut, insbesondere Schnelle Reaktoren und Hochtemperaturreaktoren. Derzeit befinden sich die Projekte noch im Bereich der Forschung und Entwicklung bzw. im Bau und Betrieb von Prototypen. Ende 2023 ist Hochtemperatur-Reaktor (Shidao Bay-1) in den kommerziellen Betrieb übergegangen. Eine breite, kommerzielle Nutzung ist noch nicht abzusehen. Südkorea Südkorea ist eines der führenden Industrieländer und hat sich, ursprünglich mit Unterstützung der USA , zu einem der wenigen Anbieter für Reaktortechnik entwickelt. Südkorea verfügt über ein umfangreiches eigenes kommerzielles Atomkraftprogramm, welches in den 2000er Jahren auch Exporte verzeichnen konnte. Das Land unterhält bezüglich Forschung und Entwicklung besonders intensive Beziehungen mit den USA . Im Bereich alternativer Reaktorkonzepte intensiviert Südkorea die Beteiligung an ausländischen, insbesondere amerikanischen Entwicklungen. Darüber hinaus werden eigene Entwicklungen weitergeführt, z. B. von Wiederaufarbeitungstechnologien in Verbindung mit Schnellen Reaktoren. Eine kommerzielle Nutzung dieser Reaktorkonzepte ist derzeit nicht absehbar. Belgien Nachdem Belgien historisch bedingt in den 1950er Jahren zu den ersten Ländern mit kommerzieller Atomkraftwerksnutzung wurde, hat es seit dieser Anfangsphase ein kleines nationales Innovationssystem entwickelt. Belgiens Aktivitäten für die Entwicklung von alternativen Reaktorkonzepten fokussieren sich auf die Entwicklung und Internationalisierung des Forschungsprojektes MYRRHA, einer Kombination von einem beschleunigergetriebenen unterkritischen Reaktor (ADS) und einem Blei-Bismutgekühlten Schnellen Reaktor (eine Variante des LFR). Initiale Zeitpläne und Kostenschätzungen wurden überschritten und es bestehen Schwierigkeiten bei der Finanzierung des Projektes. Polen In Polen wird seit mehreren Jahrzehnten der Einstieg in die kommerzielle Kernenergie diskutiert. Dieser ist jedoch bis heute noch nicht umgesetzt. Seit den 1950er Jahren wird in geringem Maßstab an Reaktortechnik geforscht, vor allem am Forschungsreaktor MARIA (seit 1974 in Betrieb). Bezogen auf alternative Reaktorkonzepte ist zu beobachten, dass Polen Wissen aufbaut, indem sich polnische Wissenschaftler:innen an europäischen Forschungsprojekten beteiligen. Insbesondere wird ein Fokus auf die Entwicklung von Hochtemperaturreaktoren gesetzt, u. a. mit Erwägungen zum Bau eines gasgekühlten Hochtemperatur-Forschungsreaktors (TeResa). Nationaler und internationaler Stand der Regelwerke Im Forschungsvorhaben untersuchten die Autoren der Studie, inwieweit sich die Regelwerke der USA , von Kanada und dem Vereinigten Königreich auf alternative Reaktorkonzepte anwenden lassen. Auch Regelwerke folgender internationaler Organisationen werden in der Studie betrachtet: die Internationale Atomenergie Organisation ( IAEO ), die Nuklearenergieagentur der Organisation für wirtschaftliche Zusammenarbeit und Entwicklung ( OECD/NEA ) und der Verband Westeuropäischer Nuklearregulierungsbehörden (WENRA) Zusammenfassend lässt sich darstellen, dass es in den untersuchten Ländern noch kein Regelwerk gibt, das geeignet ist, um einen Sicherheitsnachweis für alternative Reaktorkonzepte zu erbringen. Die untersuchten Länder und Organisationen überarbeiten daher ihre Regelwerke. Bei den neuen Regelwerken soll verstärkt auf zielorientierte, technologieoffene Vorgaben gesetzt werden. Dieses Vorgehen könnte aber dazu führen, dass der Aufwand für Antragsteller und Genehmigungsbehörde zur Erstellung und Prüfung des Sicherheitsnachweises steigt. Ein Grund hierfür ist das Fehlen von Erfahrungen aus dem Betrieb der Anlagen. Dies kann zur Folge haben, dass entsprechende Genehmigungsverfahren einen längeren Zeitraum in Anspruch nehmen werden. Regelwerke ausgewählter Länder Die Auswertung der Regelwerke der USA , von Kanada und dem Vereinigtem Königreich ergab folgende Ergebnisse: USA: In den USA gibt es aktuell zwei Verfahren zur Genehmigung von Kernkraftwerken. Beide enthalten präskriptive Anforderungen, die sich nicht einfach auf alternative Reaktorkonzepte übertragen lassen. Daher entwickelt die US-amerikanische Genehmigungsbehörde (Nuclear Regulatory Commission - NRC ) ein neues Regelwerk, das stärker zielorientiert und technologieoffen sein soll. Das Regelwerk soll 2027 fertiggestellt sein. Kanada: Das kanadische kerntechnische Regelwerk ist eher zielorientiert als präskriptiv aufgebaut, was die Nutzung für alternative Reaktorkonzepte erleichtern sollte. Dennoch sieht die zuständige Genehmigungsbehörde (Canadian Nuclear Safety Commission - CNSC ) die Notwendigkeit einer Überarbeitung. Ziel ist die Entwicklung eines technologieneutralen Regelwerks, ein Zieldatum steht noch nicht fest. Vereinigtes Königreich: Die Aufsichtsbehörde im Vereinigten Königreich (Office for Nuclear Regulation - ONR) verfolgt ein Arbeits- und Forschungsprogramm, um ihre Kompetenzen im Bereich alternativer Reaktorkonzepte zu verstärken und Anforderungen für die Genehmigung von neuen Reaktoren zu überarbeiten. In einem ersten Schritt wurde das Verfahren zur Durchführung eines Generic Design Assessments erneuert. Hierbei handelt es sich um eine unverbindliche Vorprüfung des Konzepts durch das ONR mit dem Ziel, dem Entwickler frühzeitig mögliche Probleme aufzuzeigen. Eine Überprüfung grundlegender Richtlinien durch das ONR hinsichtlich ihrer Anwendbarkeit auf alternative Reaktorkonzepte ist vorgesehen. Erste Forschungsberichte hierzu liegen vor, das ONR sieht allerdings noch erheblichen zukünftigen Forschungsbedarf. Wissenschaftliche Studie zu alternativen Reaktorkonzepten zum Download Fachlicher Abschlussbericht Label: Fachinformation Herunterladen (PDF, 8MB, barrierefrei⁄barrierearm) Wissenschaftliche Studie zu alternativen Reaktorkonzepten zum Download - Kurzfassung Fachlicher Abschlussbericht - Kurzfassung Label: Fachinformation Herunterladen (PDF, 279KB, barrierefrei⁄barrierearm) Weitere Informationen zum Thema Alternative Reaktorkonzepte Antwort des BMUV auf Kleine Anfrage im Deutschen Bundestag zur Erstellung der Studie Antwortschreiben auf Kleine Anfrage zur BASE-Studie "Analyse und Bewertung des Entwicklungsstands, der Sicherheit und des regulatorischen Rahmens für sogenannte neuartige Reaktorkonzepte" Herunterladen (PDF, 154KB, nicht barrierefrei)

Gutachten zu Partitionierung und Transmutation

Gutachten zu Partitionierung und Transmutation Konzepte zu Partitionierung und Transmutation werden international diskutiert und erforscht. Mithilfe von Transmutation soll hochradioaktiver Atommüll so aufbereitet werden, dass die Strahlung schneller abnimmt. Doch bislang ist das nur Theorie. Das BASE hat ein Gutachten in Auftrag gegeben, um zu prüfen, ob diese Konzepte in der Praxis umsetzbar sind. Mithilfe von Transmutation soll hochradioaktiver Atommüll so aufbereitet werden, dass die Strahlung schneller abnimmt. Doch bislang ist das nur Theorie. Bei intensiver Forschung würden mehrere Jahrzehnte vergehen, bis die Technologie einsatzbereit wäre. Ein Endlager für hochradioaktive Abfälle wäre trotzdem erforderlich, da nur ein Teil des hochradioaktiven Atommülls umwandelbar ist. Die tiefengeologische Entsorgung ist absehbar die bessere Alternative: Zu diesem Schluss kommt ein aktuelles Gutachten , dass das BASE in Auftrag gegeben hat. Das BASE hat ein Gutachten in Auftrag gegeben, um zu prüfen, ob Konzepte der Transmutation in der Praxis umsetzbar sind. Dies sind die zusammengefassten Ergebnisse: Konzepte zu Partitionierung und Transmutation werden international diskutiert und teilweise erforscht. In der Theorie sind einige dieser Technologien in der Lage, bestimmte Radionuklide umzuwandeln und die Strahlungsintensität von Atommüll zu verringern. Für die Umwandlung von langlebigen in kurzlebige Atomkerne ist die Entwicklung neuer Reaktoren und Wiederaufarbeitungsanlagen notwendig. Bislang gibt es hierfür nur Konzeptideen. Es würden voraussichtlich mehrere Jahrzehnte Entwicklungsarbeit notwendig sein, bis die erforderlichen Technologien zur Verfügung stehen. Für den Fall einer erfolgreichen Entwicklung, würden weitere Jahrzehnte zur Umsetzung des Programms folgen. Partitionierung und Transmutation erfordern viele kerntechnische Anlagen, die langfristig betrieben werden. Der Wiedereinstieg in ein großangelegtes kerntechnisches Programm wäre nötig. Transmutation kann ein Endlager für hochradioaktive Abfälle nicht ersetzen. Nicht alle hochradioktiven Abfallstoffe werden voraussichtlich umwandelbar sein, außerdem entstehen während des P&T-Verfahrens wieder neue Abfälle. Der Zeitpunkt, an dem ein Endlager fertig beladen ist, würde damit erheblich in die Zukunft verschoben. Die heutigen Probleme würden somit zukünftigen Generationen aufgebürdet. Aus abgetrennten Stoffe wie Plutonium können Atomwaffen hergestellt werden. Es besteht das Risiko, dass diese entwendet und für nicht-friedliche Zwecke benutzt werden. Bezogen auf die in Deutschland vorhandenen hochradioaktiven Abfälle, hat eine Modellrechnung im Gutachten folgendes ergeben: Es wird in jedem Fall ein Endlager für hochradioaktive Abfälle benötigt. Nicht transmutierbar sind: Verglaste Abfälle, Abfälle aus Forschungsreaktoren sowie Uran und Spaltprodukte, die sich in den verbleibenden Brennelementen befinden. Selbst im besten Fall würden von den verbleibenden 150 Tonnen Transuranen nach 300 Jahren noch etwa 30 Tonnen Transurane übrig bleiben. Bei der Kernspaltung der Transurane werden neue Spaltprodukte erzeugt. Einige dieser entstehenden Spaltprodukte haben extrem hohe Halbwertszeiten (Jod-129: 15,7 Millionen Jahre und Cäsium-135: 2,3 Millionen Jahre) und sind für die Langzeitsicherheit des Endlagers von großer Bedeutung. Durch den Betrieb, die Stilllegung und den Rückbau der erforderlichen Kern-Reaktoren, Wiederaufarbeitungsanlagen und ggf. Brennelementefabriken würden erhebliche Mengen an zusätzlichen schwach- und mittelradioaktiven Abfällen entstehen. Diese können durchaus in der gleichen Größenordnung wie die für das Endlager Schacht Konrad vorgesehenen Mengen zur Einlagerung (303.000 Kubikmeter) liegen. Das Gutachten kam zu dem Ergebnis, dass durch Partitionierung und Transmutation für die beiden im Standortauswahlgesetz genannten Ziele – Gewährleistung eines bestmöglichen Schutz von Mensch und Umwelt vor der Wirkung ionisierender Strahlung sowie das Vermeiden von unzumutbaren Lasten für zukünftige Generationen – negativ zu bewerten sind. Fragen und Antworten zum Verfahren "Partitionierung und Transmutation" Kann durch Partitionierung und Transmutation die erforderliche Endlagergröße reduziert werden? Partitionierung und Transmutation sind im hier angesprochenen Maße bislang nicht einsatzfähig. Es ist unklar, ob dies in Zukunft der Fall sein wird. Die nachfolgenden Darstellungen konzentrieren sich daher auf die grundsätzlich denkbaren Auswirkungen auf die Endlagerung , die theoretisch mit der Partitionierung und Transmutation verbunden sein können. Die erforderliche Größe des Endlagers wird in erster Linie nicht durch das Gesamtvolumen der Abfallstoffe bestimmt, sondern durch das Endlagerkonzept und die Wärmeentwicklung der Abfälle zum Zeitpunkt der Einlagerung. Vor diesem Hintergrund führt die Anwendung von Partitionierung und Transmutation nicht automatisch zu einer Verringerung der Endlagergröße. Partitionierung und Transmutation könnte zu größerem Endlager führen Unter Umständen könnte die Anwendung von Partitionierung und Transmutation sogar dazu führen, dass das Endlager noch vergrößert werden müsste. Der Grund ist, dass das theoretische Verfahren zumeist darauf abzielt, langlebige Atomkerne in schnell zerfallende Spaltprodukte zu überführen. Ein schnellerer Zerfall geht allerdings mit einer höheren Wärmefreisetzung einher. Da die Wirtsgesteine und die Verfüll- und Versiegelungsmaterialien jeweils nur über eine begrenzte Wärmeverträglichkeit verfügen, könnte das dazu führen, dass das Endlager vergrößert werden müsste, um eine Schädigung des Wirtsgesteins zu verhindern. Neue schwach- und mittelradioaktive Abfälle würden entstehen Weiterhin würden bei der Durchführung von Partitionierung und Transmutation zusätzliche schwach- und mittelradioaktive Abfälle aufgrund von Kontaminationen und Aktivierungen erzeugt. Diese müssten zusätzlich in einem entsprechenden Endlager entsorgt werden, dessen Abfallmengen dadurch erhöht würden. Alternativ dazu könnten die durch Transmutation erzeugten Spaltprodukte zwischengelagert werden, voraussichtlich mehrere hundert Jahre, bis sie in das Endlager verbracht werden oder gar aus der atomrechtlichen Aufsicht entlassen werden können. In diesem Szenario könnten Partitionierung und Transmutation zu einer Reduktion der erforderlichen Endlagergröße beitragen, zum Preis zusätzlicher langfristiger Zwischenlagerung , die über Generationen hinweg gesichert werden müsste. Zwischenlager sind keine Dauerlösung Allerdings können solche Lager nur eine Zwischenlösung sein, denn Mauern, Sicherheitskräfte und Stacheldraht gewährleisten auf lange Sicht nicht den Schutz, den ein Endlager in stabilen Gesteinsschichten tief unter der Erde bietet. Zudem kann niemand voraussagen, ob künftige Generationen in ähnlich stabilen gesellschaftlichen Verhältnissen leben werden, um eine sicher langfristige Zwischenlagerung der Abfälle gewährleisten zu können bzw. über die finanziellen Mittel verfügen, die Abfälle sicher zu entsorgen. Warum wird Partitionierung und Transmutation in Deutschland nicht aktiv gefördert? Die Frage, ob ein großtechnischer Einsatz von Partitionierung und Transmutation zukünftig möglich wäre, ist derzeit offen. Die Beantwortung der Frage würde jahrzehntelange Forschungs- und Entwicklungsarbeit voraussetzen und wäre mit hohen Kosten verbunden. Gleichbedeutend mit einem Wiedereinstieg in die Nuklearindustrie Die aktive Förderung und Technologieentwicklung in diesem Bereich mit dem Ziel der Anwendung von Partitionierung und Transmutation auf die radioaktiven Abfälle in Deutschland würde vor diesem Hintergrund eine Verschiebung der Verantwortlichkeit bedeuten: Ein jahrzehntelanger aktiver Umgang mit hochradioaktiven Stoffen steht dem im Standortauswahlgesetz formuliertem Anspruch entgegen, die Lasten und Verpflichtungen für zukünftige Generationen so gering wie möglich zu halten. Der spätere hypothetische Einsatz von Partitionierung und Transmutation würde zudem den Betrieb großer kerntechnischer Anlagen und Reaktoren nötig machen und wäre mit einem Wiedereinstieg in die Nuklearindustrie verbunden – mit den damit verbundenen radioaktiven Emissionen, Strahlenbelastungen und Störfallrisiken. Ein Betrieb solcher Anlagen wäre mit dem gesetzlichen Ausstiegbeschluss nicht vereinbar. BASE beobachtet die internationale Forschung Dennoch beobachtet das BASE entsprechend seinem gesetzlichen Auftrag die Entwicklung potentieller alternativer Entsorgungsmöglichkeiten sowie die internationale Forschung zu derartigen Konzepten. Hierzu gehört auch die Partitionierung und Transmutation . Falls sich hieraus neue Erkenntnisse für eine sichere Entsorgung radioaktiver Abfälle ergeben, die signifikante Vorteile gegenüber der tiefengeologischen Endlagerung aufzeigen, wären die vorgesehenen Entsorgungspfade neu zu bewerten. . Kann Partitionierung und Transmutation ein Endlager für hochradioaktive Abfälle überflüssig machen? Um ein Endlager für hochradioaktive Abfälle überflüssig zu machen, wäre es notwendig, alle in den Rückständen befindlichen langlebigen Atomkerne (dies sind z.B. Plutonium -239 und Neptunium-237) in kurzlebige oder stabile Atomkerne umzuwandeln bzw. zu transmutieren. Ein solches Verfahren gibt es derzeit nicht. Selbst wenn ein solches Verfahren entwickelt werden würde, ist gegenwärtig nicht absehbar, bis zu welchem Grad die Transmutation mit einem vertretbaren Aufwand durchgeführt werden könnte. Der Grund ist, dass sich nicht alle langlebigen Atomkerne auf einmal umwandeln lassen: Aus den hochradioaktiven Abfällen müssten zunächst frische Brennelemente gefertigt werden. Die frischen Brennelemente würden in sogenannten Transmutationsreaktoren eingesetzt und dort bestrahlt. Transmutation würde rund 150 Jahre dauern Bei diesem Vorgang würde allerdings nur ein Teil der langlebigen Atomkerne umgewandelt. Das bedeutet, aus den anfallenden Abfallstoffen müssten anschließend wieder langlebige Atomkerne herausgetrennt (Partitionierung), zu frischen Brennelementen verarbeitet und in Transmutationsreaktoren erneut bestrahlt werden. Dieser Vorgang müsste viele Male wiederholt werden und schließt jeweils auch eine Zwischenlagerung der Abfälle ein. Bei der Analyse der Entsorgungsoption Transmutation hatte die „Kommission zur Lagerung der hochradioaktiven Abfälle“ geschätzt, dass eine Reihe von Transmutationsreaktoren über einen Zeitraum von rund 150 Jahren betrieben werden müssten. Große Mengen schwach- und mittelradioaktive Abfälle entstehen Doch auch dieser Prozess führt voraussichtlich nicht zu einer vollständigen Umwandlung der langlebigen Atomkerne. Es müssten weiterhin eine verbleibende Menge hochradioaktiver Abfälle sowie große Mengen von durch Partitionierung und Transmutation zusätzlich erzeugten schwach- und mittelradioaktive Abfälle entsorgt werden. Zudem beinhalten die hochradioaktiven Abfälle sogenannte Spaltprodukte . Diese sind teilweise hochradioaktiv und zum Teil sehr langlebig ( z.B. Selen-79, Zirconium-93, Technetium-99, Palladium-107, Iod-129 und Cäsium-135). Bislang existiert auch für diese Spaltprodukte kein industriereifes Verfahren, um die Atomkerne umzuwandeln, d.h. diese Rückstände müssten ebenfalls in einem Endlager entsorgt werden. Keine Behandlung von verglasten Abfällen möglich Hinzu kommt, dass ein Teil der in Deutschland produzierten atomaren Abfälle nicht mehr in Form der ursprünglich verwendeten Brennelemente vorliegt, sondern im Zuge der Brennstoff-Wiederaufbereitung mit Glas verschmolzen werde ( sog. Verglasung). Die Verglasung dieser Abfälle würde ein erhebliches Hindernis für die Aufbereitung und Brennstoffherstellung bedeuten, die für eine Transmutation Voraussetzung ist. Nach der heutigen Kenntnislage ist die Transmutation für eine weitere Behandlung dieser Abfälle kein geeignetes Verfahren. Der für Partitionierung und Transmutation notwendige Transport von nuklearen Abfällen und die kontinuierliche Verarbeitung der Abfälle, gehen zudem mit zusätzlichen Risiken für Mensch und Umwelt einher. Es ist derzeit nicht erkennbar, dass in absehbarer Zeit ein Verfahren zur Partitionierung und Transmutation zur Verfügung stehen wird, das ein Endlager überflüssig macht. Einzige Lösung: tiefengeologische Lagerung Nach der Abwägung von Chancen und Risiken haben Endlagerkommission und Gesetzgeber die Entscheidung getroffen, dass die Strategie zur Partitionierung und Transmutation in Deutschland nicht aktiv verfolgt wird. Stattdessen werden alle radioaktiven Abfälle tiefengeologisch gelagert. Das gegenwärtige Endlagerkonzept sieht vor, dass die hochradioaktiven Abfälle bis zum Verschluss des Endlagers zurückgeholt werden können. Darüber hinaus sollen die Rückstände noch 500 Jahre nach Verschluss des Endlagers lang geborgen werden können. Dies gibt den folgenden Generationen die Möglichkeit, auf künftige technische Entwicklungen reagieren zu können. Fragen und Antworten zum Verfahren "Partitionierung und Transmutation" Kann durch Partitionierung und Transmutation die erforderliche Endlagergröße reduziert werden? Partitionierung und Transmutation sind im hier angesprochenen Maße bislang nicht einsatzfähig. Es ist unklar, ob dies in Zukunft der Fall sein wird. Die nachfolgenden Darstellungen konzentrieren sich daher auf die grundsätzlich denkbaren Auswirkungen auf die Endlagerung , die theoretisch mit der Partitionierung und Transmutation verbunden sein können. Die erforderliche Größe des Endlagers wird in erster Linie nicht durch das Gesamtvolumen der Abfallstoffe bestimmt, sondern durch das Endlagerkonzept und die Wärmeentwicklung der Abfälle zum Zeitpunkt der Einlagerung. Vor diesem Hintergrund führt die Anwendung von Partitionierung und Transmutation nicht automatisch zu einer Verringerung der Endlagergröße. Partitionierung und Transmutation könnte zu größerem Endlager führen Unter Umständen könnte die Anwendung von Partitionierung und Transmutation sogar dazu führen, dass das Endlager noch vergrößert werden müsste. Der Grund ist, dass das theoretische Verfahren zumeist darauf abzielt, langlebige Atomkerne in schnell zerfallende Spaltprodukte zu überführen. Ein schnellerer Zerfall geht allerdings mit einer höheren Wärmefreisetzung einher. Da die Wirtsgesteine und die Verfüll- und Versiegelungsmaterialien jeweils nur über eine begrenzte Wärmeverträglichkeit verfügen, könnte das dazu führen, dass das Endlager vergrößert werden müsste, um eine Schädigung des Wirtsgesteins zu verhindern. Neue schwach- und mittelradioaktive Abfälle würden entstehen Weiterhin würden bei der Durchführung von Partitionierung und Transmutation zusätzliche schwach- und mittelradioaktive Abfälle aufgrund von Kontaminationen und Aktivierungen erzeugt. Diese müssten zusätzlich in einem entsprechenden Endlager entsorgt werden, dessen Abfallmengen dadurch erhöht würden. Alternativ dazu könnten die durch Transmutation erzeugten Spaltprodukte zwischengelagert werden, voraussichtlich mehrere hundert Jahre, bis sie in das Endlager verbracht werden oder gar aus der atomrechtlichen Aufsicht entlassen werden können. In diesem Szenario könnten Partitionierung und Transmutation zu einer Reduktion der erforderlichen Endlagergröße beitragen, zum Preis zusätzlicher langfristiger Zwischenlagerung , die über Generationen hinweg gesichert werden müsste. Zwischenlager sind keine Dauerlösung Allerdings können solche Lager nur eine Zwischenlösung sein, denn Mauern, Sicherheitskräfte und Stacheldraht gewährleisten auf lange Sicht nicht den Schutz, den ein Endlager in stabilen Gesteinsschichten tief unter der Erde bietet. Zudem kann niemand voraussagen, ob künftige Generationen in ähnlich stabilen gesellschaftlichen Verhältnissen leben werden, um eine sicher langfristige Zwischenlagerung der Abfälle gewährleisten zu können bzw. über die finanziellen Mittel verfügen, die Abfälle sicher zu entsorgen. Warum wird Partitionierung und Transmutation in Deutschland nicht aktiv gefördert? Die Frage, ob ein großtechnischer Einsatz von Partitionierung und Transmutation zukünftig möglich wäre, ist derzeit offen. Die Beantwortung der Frage würde jahrzehntelange Forschungs- und Entwicklungsarbeit voraussetzen und wäre mit hohen Kosten verbunden. Gleichbedeutend mit einem Wiedereinstieg in die Nuklearindustrie Die aktive Förderung und Technologieentwicklung in diesem Bereich mit dem Ziel der Anwendung von Partitionierung und Transmutation auf die radioaktiven Abfälle in Deutschland würde vor diesem Hintergrund eine Verschiebung der Verantwortlichkeit bedeuten: Ein jahrzehntelanger aktiver Umgang mit hochradioaktiven Stoffen steht dem im Standortauswahlgesetz formuliertem Anspruch entgegen, die Lasten und Verpflichtungen für zukünftige Generationen so gering wie möglich zu halten. Der spätere hypothetische Einsatz von Partitionierung und Transmutation würde zudem den Betrieb großer kerntechnischer Anlagen und Reaktoren nötig machen und wäre mit einem Wiedereinstieg in die Nuklearindustrie verbunden – mit den damit verbundenen radioaktiven Emissionen, Strahlenbelastungen und Störfallrisiken. Ein Betrieb solcher Anlagen wäre mit dem gesetzlichen Ausstiegbeschluss nicht vereinbar. BASE beobachtet die internationale Forschung Dennoch beobachtet das BASE entsprechend seinem gesetzlichen Auftrag die Entwicklung potentieller alternativer Entsorgungsmöglichkeiten sowie die internationale Forschung zu derartigen Konzepten. Hierzu gehört auch die Partitionierung und Transmutation . Falls sich hieraus neue Erkenntnisse für eine sichere Entsorgung radioaktiver Abfälle ergeben, die signifikante Vorteile gegenüber der tiefengeologischen Endlagerung aufzeigen, wären die vorgesehenen Entsorgungspfade neu zu bewerten. . Kann Partitionierung und Transmutation ein Endlager für hochradioaktive Abfälle überflüssig machen? Um ein Endlager für hochradioaktive Abfälle überflüssig zu machen, wäre es notwendig, alle in den Rückständen befindlichen langlebigen Atomkerne (dies sind z.B. Plutonium -239 und Neptunium-237) in kurzlebige oder stabile Atomkerne umzuwandeln bzw. zu transmutieren. Ein solches Verfahren gibt es derzeit nicht. Selbst wenn ein solches Verfahren entwickelt werden würde, ist gegenwärtig nicht absehbar, bis zu welchem Grad die Transmutation mit einem vertretbaren Aufwand durchgeführt werden könnte. Der Grund ist, dass sich nicht alle langlebigen Atomkerne auf einmal umwandeln lassen: Aus den hochradioaktiven Abfällen müssten zunächst frische Brennelemente gefertigt werden. Die frischen Brennelemente würden in sogenannten Transmutationsreaktoren eingesetzt und dort bestrahlt. Transmutation würde rund 150 Jahre dauern Bei diesem Vorgang würde allerdings nur ein Teil der langlebigen Atomkerne umgewandelt. Das bedeutet, aus den anfallenden Abfallstoffen müssten anschließend wieder langlebige Atomkerne herausgetrennt (Partitionierung), zu frischen Brennelementen verarbeitet und in Transmutationsreaktoren erneut bestrahlt werden. Dieser Vorgang müsste viele Male wiederholt werden und schließt jeweils auch eine Zwischenlagerung der Abfälle ein. Bei der Analyse der Entsorgungsoption Transmutation hatte die „Kommission zur Lagerung der hochradioaktiven Abfälle“ geschätzt, dass eine Reihe von Transmutationsreaktoren über einen Zeitraum von rund 150 Jahren betrieben werden müssten. Große Mengen schwach- und mittelradioaktive Abfälle entstehen Doch auch dieser Prozess führt voraussichtlich nicht zu einer vollständigen Umwandlung der langlebigen Atomkerne. Es müssten weiterhin eine verbleibende Menge hochradioaktiver Abfälle sowie große Mengen von durch Partitionierung und Transmutation zusätzlich erzeugten schwach- und mittelradioaktive Abfälle entsorgt werden. Zudem beinhalten die hochradioaktiven Abfälle sogenannte Spaltprodukte . Diese sind teilweise hochradioaktiv und zum Teil sehr langlebig ( z.B. Selen-79, Zirconium-93, Technetium-99, Palladium-107, Iod-129 und Cäsium-135). Bislang existiert auch für diese Spaltprodukte kein industriereifes Verfahren, um die Atomkerne umzuwandeln, d.h. diese Rückstände müssten ebenfalls in einem Endlager entsorgt werden. Keine Behandlung von verglasten Abfällen möglich Hinzu kommt, dass ein Teil der in Deutschland produzierten atomaren Abfälle nicht mehr in Form der ursprünglich verwendeten Brennelemente vorliegt, sondern im Zuge der Brennstoff-Wiederaufbereitung mit Glas verschmolzen werde ( sog. Verglasung). Die Verglasung dieser Abfälle würde ein erhebliches Hindernis für die Aufbereitung und Brennstoffherstellung bedeuten, die für eine Transmutation Voraussetzung ist. Nach der heutigen Kenntnislage ist die Transmutation für eine weitere Behandlung dieser Abfälle kein geeignetes Verfahren. Der für Partitionierung und Transmutation notwendige Transport von nuklearen Abfällen und die kontinuierliche Verarbeitung der Abfälle, gehen zudem mit zusätzlichen Risiken für Mensch und Umwelt einher. Es ist derzeit nicht erkennbar, dass in absehbarer Zeit ein Verfahren zur Partitionierung und Transmutation zur Verfügung stehen wird, das ein Endlager überflüssig macht. Einzige Lösung: tiefengeologische Lagerung Nach der Abwägung von Chancen und Risiken haben Endlagerkommission und Gesetzgeber die Entscheidung getroffen, dass die Strategie zur Partitionierung und Transmutation in Deutschland nicht aktiv verfolgt wird. Stattdessen werden alle radioaktiven Abfälle tiefengeologisch gelagert. Das gegenwärtige Endlagerkonzept sieht vor, dass die hochradioaktiven Abfälle bis zum Verschluss des Endlagers zurückgeholt werden können. Darüber hinaus sollen die Rückstände noch 500 Jahre nach Verschluss des Endlagers lang geborgen werden können. Dies gibt den folgenden Generationen die Möglichkeit, auf künftige technische Entwicklungen reagieren zu können. Gutachten zum Download Sicherheitstechnische Analyse und Risikobewertung von Konzepten zu Partitionierungs- und Transmutationsanlagen für hochradioaktive Abfälle Herunterladen (PDF, 3MB, barrierefrei⁄barrierearm) Mehr zum Thema Transmutation hochradioaktiver Abfälle

Sicherheitstechnische Analyse und Risikobewertung von Konzepten zu Partitionierungs- und Transmutationsanlagen für hochradioaktive Abfälle ( P&T )

Sicherheitstechnische Analyse und Risikobewertung von Konzepten zu Partitionierungs- und Transmutationsanlagen für hochradioaktive Abfälle ( P&T ) BASE-Forschungsprojekt Themenfeld: Nukleare Sicherheit Status: abgeschlossen Finanzierung: BASE-Forschungsbudget Projektbeschreibung Projektdaten Förderkennzeichen 4720F50501 Ausführende Stelle Universität für Bodenkultur, Wien Department für Wasser-Atmosphäre-Umwelt Institut für Sicherheits- und Risikowissenschaften Projektzeitraum 06.2020 - 01.2021 Bewilligte Summe 100.000 € Art der Finanzierung BASE-Forschungsbudget Hochradioaktiver Abfall besteht aus verschiedenen Bestandteilen, von denen einige sehr lange Halbwertszeiten haben. Deshalb muss der hochradioaktive Abfall für einen Zeitraum von einer Million Jahre im Endlager sicher verschlossen werden. Mit Hilfe von Partitionierung & Transmutation ( P&T ) soll der hochradioaktive Abfall vor der Endlagerung aufbereitet werden. Dies soll dazu führen, dass die Abfallmenge reduziert wird und der dabei resultierende Abfall nur noch für einen kürzeren Zeitraum sicher eingelagert werden müsste. Das Konzept von P&T sieht dabei vor, radioaktive Abfallstoffe mittels verfahrenstechnischer Prozesse erst aufzutrennen (Partitionierung) und einzelne Teile des Abfalls mittels Kernreaktoren gezielt umzuwandeln (Transmutation). Das Gutachten stellt die verschiedenen Technologien vor, die international im Zusammenhang mit P&T diskutiert werden, beispielsweise Brennstoffe oder Reaktorkonzepte. Es bewertet den Entwicklungsstand dieser Technologien. Ebenfalls stellt das Gutachten dar, welche sicherheitstechnischen Fragestellungen sich mit der Nutzung dieser Technologien ergeben. Weiterhin wurden drei Modellrechnungen durchgeführt, um abzuschätzen, welchen Einfluss P&T auf die Abfallmengen haben könnte und welche Umsetzungszeiträume erforderlich wären. Das Gutachten ergab, dass nur ein geringer Teil des radioaktiven Abfalls überhaupt praktikabel transmutierbar wäre. Nicht praktikabel transmutierbar wären beispielsweise Spaltprodukte (Stoffe, die bei der Kernspaltung entstehen), verglaste Abfälle (hierbei handelt es sich hauptsächlich um Spaltprodukte, die in der Vergangenheit bei der Wiederaufbereitung von Brennelementen abgetrennt wurden) oder Abfälle aus Forschungsreaktoren (da sich diese Abfälle in der Zusammensetzung deutlich von Abfällen aus Atomkraftwerken unterscheiden). Ein Endlager für hochradioaktive Abfälle bliebe also erforderlich. Ebenfalls würden bei der P&T große Mengen schwach- und mittelradioaktive Abfälle anfallen. Die Schätzungen belaufen sich dabei auf bis zu 316.500 Kubikmetern. Dies entspricht in etwa dem zulässigen Gesamtinventar des Endlagers Konrad. Informationen des BASE zum Thema Transmutation © BASE Weltweit forschen Wissenschaftler:innen seit Jahrzehnten an verschiedenen Möglichkeiten, hochradioaktive Abfälle zu entsorgen. Eine Variante, die es bisher nur in der Theorie gibt, ist die Transmutation. Mit diesem Verfahren sollen Menge und Halbwertszeit der Abfälle deutlich verringert werden. Wie funktioniert diese Technologie? Und stellt sie eine Alternative zur Endlagerung in tiefen geologischen Gesteinsschichten dar? Kontakt E-Mail ingo.kock@base.bund.de Abschlussbericht PundT Sicherheitstechnische Analyse und Risikobewertung von Konzepten zu Partitionierungs- und Transmutationsanlagen für hochradioaktive Abfälle Herunterladen (PDF, 3MB, barrierefrei⁄barrierearm) Weiterführende Informationen Transmutation hochradioaktiver Abfälle

1 2 3 4 5 6 7