API src

Found 313 results.

Related terms

Verhalten von radioaktivem Caesium (freigesetzt durch den Reaktorunfall von Tschernobyl) in typischen Boeden Norddeutschlands

Durch den Reaktorunfall in Tschernobyl wurde unter anderem das langlebige radioaktive Isotop Cs-137 freigesetzt und ueber weite Regionen Europas - einschliesslich der norddeutschen Tiefebene - verteilt. Die Verlagerung des Caesiums wird in charakteristischen Boeden Norddeutschlands - Marsch, Moor, Podsol, Pseudogley - verfolgt und die Verfuegbarkeit dieses Nuklides fuer die Pflanze festgestellt. Die Untersuchungen sollen dazu beitragen, die Kenntnisse ueber das Verhalten des Cs in geringen Konzentrationen zu verbessern. Sie sollen ausserdem klaeren helfen, inwieweit Standorteigenschaften - insbesondere hohe Humusgehalte und Kalkgehalt - zur verstaerkten Mobilitaet beitragen. Ergebnisse unmittelbar praktischer Bedeutung koennten in Bezug auf Verbesserung der Vorhersagbarkeit des Cs-Verhaltens in Boeden, auf die Pflanzenverfuegbarkeit des Cs und auf das problem der stark variierenden Angaben zu Transferfaktoren erzielt werden.

Klärung technischer und rechtlicher Fragestellungen bei der Beseitigung radioaktiv kontaminierter Abfälle landwirtschaftlicher Produkte nach Ereignissen mit nicht unerheblich radiologischen Konsequenzen

Schwere Unfälle in Kernkraftwerken können zu einer großflächigen Kontamination der Umgebung mit radioaktiven Stoffen und dazu führen, dass große Mengen an kontaminierten landwirtschaftlichen Produkten für den Markt unbrauchbar werden. Es ist dann die Behandlung und Entsorgung großer Mengen kontaminierter landwirtschaftlicher Produkte erforderlich. Mögliche Entsorgungswege sind: - Verbrennung von pflanzlichen und tierischen Produkten, - Deponierung, - Ausbringung von kontaminierten organischen Materialien, - Beseitigung in Tierkörperbeseitigungsanstalten, - Verklappen von kontaminierten Flüssigkeiten, - Kompostierung, - Unterpflügen, - Vergraben von Tierkörpern und - Biologische Behandlung. Die technischen und rechtlichen Fragen für eine Beseitigung der möglichen Mengen bei Eintreten eines solchen Falles sind derzeit nicht vollständig geklärt. Im Rahmen des Vorhabens sollen technische Fragen geklärt und darauf aufbauend ein erster Entwurf für eine Notverordnung formuliert werden. Eine solche Notverordnung würde dann im Ereignisfall in Kraft gesetzt, um eine rechtliche Grundlage für die notwendigen Entsorgungsmaßnahmen zu haben. In die Bearbeitung ist vor allem der Bereich UR&G mit einbezogen, außerdem für Fragestellungen aus der Landwirtschaft die HGN Hydrogeologie GmbH als Unterauftragnehmer.

Messungen der 129I-Emissionen der Aufbereitungsanlagen in Tomsk, Krasnojarsk und Tscheljabinsk für 131I-Dosisrekonstruktionen

Im weiträumigsten Gebiet um die militärischen 239Pu-Produktionsanlagen in Tscheljabinsk, Tomsk und Krasnojarsk und um das Testgebiet von Semipalatinsk wird mit Hilfe von Messungen des langlebigen 129I eine retrospektive Dosimetrie des kurzlebigen 131I durchgeführt. Unter Miteinbeziehung der 129I-Einträge durch die Kernwaffentests, die zivilen Aufbereitungsanlagen La Hague und Sellafield und den Reaktorunfall von Tschernobyl wird eine Datenbasis für die Verwendung von 129I als Tracer in der Umwelt erstellt. Wasserproben von Seen mit langen Abflusszeiten wie Khuvsugul Nuur, Uvs Nuur, Orog, Achit (alle Mongolei), Baikal, Balachasch, Issyk Kul und von kleineren Seen und Bodenproben aus dem Gebiet werden genommen. Mit Beschleunigungsmassenspektrometrie werden 129I /127I-Verhältnisse gemessen und 129I-Fluenzen abgeleitet. 129I-Immissionen und -Verteilungen werden mit atmosphärischen Transportrechnungen erhalten. In Abhängigkeit der Bestrahlungszeit der Brennelemente und der Wartezeit zwischen Bestrahlung und Aufbereitung werden mit atmosphärischen Transportmodellen 131I-Aktivitäten im Bereich der Anlagen und im Altai-Gebiet berechnet.

Edelstahlfilter fuer extreme Anforderungen

Edelstahlfilter werden, je nach Verwendungszweck, mit Fasern von 2 -30 Mym Durchmesser hergestellt und als Schwebstoffilter eingesetzt. Sie sind temperaturfest bis 500 Grad C, widerstandsfaehig gegen Dampf, Dampfnaesse und Strahlung, sowie korrosionsbestaendig. Ihre Entwicklung erfolgte urspruenglich fuer die Druckentlastung von Sicherheitsbehaeltern bei Reaktorunfaellen. Ende 1987 waren fuenf deutsche Kernkraftwerke mit Tiefbett-Edelstahlfiltern ausgeruestet. Anwendungen im nichtnuklearen Bereich werden untersucht.

Erstellung eines mechanistischen Transportmodells fuer Spaltprodukte

Zur Vervollstaendigung von integralen Stoerfallanalysecodes, mit deren Hilfe die thermodynamischen, aerosolphysikalischen, radiologischen und chemischen Prozesse in einem Reaktor-Containment nach einem schweren Stoerfall simuliert werden, wird ein mechanistisches Transportmodell fuer Spaltprodukte erstellt. Zu Beginn des Projekts lag der Hauptschwerpunkt der Arbeiten in der qualitativen und quantitativen Beschreibung des Austrags von leichtfluechtigen Schadstoffen durch diffusive und konvektive Gasphasentransportprozesse. Darueber hinaus wurde der Austrag von suspendierten Feststoffpartikeln durch Tropfenabriss von Fluessigkeitsoberflaechen durch eine Gasstroemung analysiert. In den laufenden Arbeiten wird nunmehr die mechanische Freisetzung von Kuehlmittel und schwer fluechtigen Radionukliden insbesondere auch durch Zerplatzen von Blasen an Fluessigkeitsoberflaechen unter Beruecksichtigung physikalischer und chemischer Prozesse waehrend des Stoerfallablaufs untersucht.

Quantitative Erfassung molekulargenetischer Alterationen in Schilddruesentumoren bei Kindern nach Tschernobyl

ELE/RET-Rearrangements finden sich als moeglicherweise typische molekulare Veraenderung mit hoher Praevalenz in Schilddruesencarcinomen von Kindern nach Fall-Out-Exposition infolge des Reaktorunfalls nach Tschernobyl.

Deutscher Beitrag zum OECD/NEA Projekt Fukushima Daiichi Nuclear Power Station Accident Information Collection and Evaluation (FACE)

Unterstützung bei der Integration und Anwendung von ContainmentFOAM im nationalen CFD-Referenzpaket für das Forschungsfeld Sicherheitseinschluss, Unterstützung bei der Integration und Anwendung von ContainmentFOAM im nationalen CFD-Referenzpaket für das Forschungsfeld 'Sicherheitseinschluss'

Weiterentwicklung der GRAMOVIS-Werkzeuge zur interaktiven Anwendung von AC²-Simulationscodes

Entwicklung des Notfallschutzes in Deutschland

Entwicklung des Notfallschutzes in Deutschland Nach dem Unfall von Tschornobyl wurde 1986 das Bundesumweltministerium gegründet, drei Jahre später das Bundesamt für Strahlenschutz . Als direkte Folge von Tschornobyl entstand in Deutschland das "Integrierte Mess- und Informationssystem" (kurz IMIS ). Darin werden alle Messdaten offizieller Stellen zur Umweltradioaktivität gesammelt und ausgewertet. Mit 1.700 rund um die Uhr aktiven Überwachungssonden löst das flächendeckende ODL -Messnetz bei erhöhter Radioaktivität in der Luft Deutschlands automatisch Alarm aus. Nach dem Unfall in Fukushima 2011 sind Untersuchungsergebnisse des BfS in eine Empfehlung der Strahlenschutzkommission ( SSK ) zur Ausweitung der bisherigen Planungszonen für den Notfallschutz in der Umgebung von Kernkraftwerken eingeflossen. 1986: der Kalte Krieg ist noch nicht vorbei, Deutschland ist getrennt in DDR und BRD, und auch die (weltweite) Kommunikation geschieht ganz anders als heutzutage: Internet und Smartphones sind noch nicht erfunden. Als im April 1986 erste Meldungen und Bilder über einen Störfall im sowjetischen Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) bekannt wurden, herrschte zunächst Unsicherheit über das, was passiert war. Erst nach und nach gaben staatliche Stellen Bewertungen über das Ereignis ab. Die durch politische Rahmenbedingungen ohnehin dünne Informationslage wurde für die Bevölkerung in Deutschland zusätzlich diffus, da verschiedene staatliche Stellen unterschiedliche Verhaltensempfehlungen abgaben. Es gab keine bundesweit einheitlichen Richtwerte, keine gesetzliche Grundlagen und nur wenige Stellen, die die Radioaktivität in der Luft messen konnten. Internationale Abkommen über den schnellen gegenseitigen Informationsaustausch zu nuklearen Unfällen fehlten. 1989: Gründung des BfS In der Folge des Unfalls von Tschornobyl ( russ. : Tschernobyl) wurde noch im Jahr 1986 das Ministerium für Umwelt-, Naturschutz und Reaktorsicherheit ( BMU ) gegründet. Drei Jahre später folgte 1989 die Gründung des Bundesamtes für Strahlenschutz ( BfS ), welches unter anderem dafür zuständig ist, die Kontamination der Umwelt nach einem radiologischen Unfall schnell zu ermitteln und die Lage zu bewerten. Verschiedene wissenschaftliche Einrichtungen wurden im BfS integriert, so zum Beispiel das Institut für Strahlenhygiene des Bundesgesundheitsamtes in Neuherberg bei München, das Institut für Atmosphärische Radioaktivität des Bundesamtes für Zivilschutz in Freiburg, Teile der Physikalisch-Technischen Bundesanstalt in Braunschweig und (nach dem Mauerfall 1989) das Staatliche Amt für Atomsicherheit und Strahlenschutz der DDR in Berlin. Als Hauptsitz des BfS wurde Salzgitter gewählt. Gesetzliche Grundlagen Das Fehlen gesetzlicher Vorgaben führte nach dem Reaktorunfall von Tschornobyl ( russ. : Tschernobyl) dazu, dass teilweise unterschiedliche Grenzwerte und Maßnahmen im Bund und in den Bundesländern empfohlen wurden. Um die rechtliche Voraussetzung für ein bundesweit koordiniertes Handeln in vergleichbaren Situationen zu schaffen, wurde bereits am 19. Dezember 1986 das "Gesetz zum vorsorgenden Schutz der Bevölkerung gegen Strahlenbelastung" (Strahlenschutzvorsorgegesetz) erlassen. Zweck dieses Gesetzes war es, die routinemäßige Überwachung der Radioaktivität in der Umwelt neu zu regeln. Außerdem galt es, "die Strahlenexposition der Menschen und die radioaktive Kontamination der Umwelt im Falle von Ereignissen mit möglichen, nicht unerheblichen radiologischen Auswirkungen unter Beachtung des Standes der Wissenschaft und unter Berücksichtigung aller Umstände durch angemessene Maßnahmen so gering wie möglich zu halten". Inzwischen regelt das 2017 verabschiedete Strahlenschutzgesetz ( StrlSchG ) die Maßnahmen zum Schutz der Bevölkerung vor radioaktiven Stoffen . Es vereinheitlicht die bisherigen gesetzlichen Regelwerke im Strahlenschutz und sieht unter anderem den Aufbau des Radiologischen Lagezentrums des Bundes ( RLZ ) unter Leitung des Bundesumweltministeriums vor. Meilensteine in der Entwicklung 2022: Angriffskrieg gegen die Ukraine Seit Beginn des russischen Angriffskrieges gegen die Ukraine im Februar 2022 finden erstmals in Europa militärische Auseinandersetzungen in einem Land mit Kernkraftwerken statt. Der Krieg in der Ukraine hat auch den radiologischen Notfallschutz in Deutschland beeinflusst: Die bis dahin etablierten und regelmäßig geübten Notfallschutz-Strukturen werden nun konkret auf dieses Ereignis angewandt und weiterentwickelt. Die Rufbereitschaften im BfS haben ihre Arbeit intensiviert . Unsere Kolleg*innen erstellen u.a. zweimal täglich eine mögliche Ausbreitungsberechnung anhand von Wetterdaten und zweimal wöchentlich eine Situationsdarstellung der Lage in der Ukraine. Welche Auswirkungen eine Freisetzung von Radioaktivität in ukrainischen, aber auch in anderen europäischen Kraftwerken auf Deutschland haben könnten, hat das BfS bereits vor Ausbruch des Krieges in der Ukraine regelmäßig untersucht. Wie bei internationalen Übungen und in unterschiedlichen Notfallszenarien in der Vergangenheit erprobt, überprüft das BfS auch im konkreten Fall des Ukraine-Krieges täglich etwa 500 bis 600 Messwerte aus der gesamten Ukraine und benachbarten Ländern. Die Daten stammen aus verschiedenen Messeinrichtungen sowohl vonseiten der Behörden vor Ort als auch der Zivilgesellschaft. Unsere Kolleg*innen werten routinemäßig unterschiedliche Quellen aus, um einen bestmöglichen Überblick zu erhalten und mögliche Falschmeldungen zu identifizieren. Zudem stehen sie, wie auch in Friedenszeiten, in einem engen Austausch mit internationalen Partnern, darunter mit der IAEA und der Europäischen Union ( EU ). Die radiologische Bedrohungslage hat sich durch das Kriegsgeschehen verändert: In dem Angriffskrieg auf die Ukraine werden immer wieder Kernkraftwerke in Kriegshandlungen hineingezogen. Außerdem gibt es neue oder aktueller gewordene Szenarien im Umfeld hybrider Bedrohungslagen, darunter Cyberangriffe und Straftaten im Zusammenhang mit radioaktiven Stoffen . Selbst der Einsatz von Kernwaffen in Europa scheint nicht mehr ausgeschlossen zu sein. Deutschland braucht in der neuen Sicherheitslage einen noch stärkeren radiologischen Notfallschutz und gute Vorbereitung. Dazu gehört auch, die Abläufe in unterschiedlichen Krisenszenarien immer wieder zu üben. Unsere Expert*innen beobachten nicht nur die Lage in der Ukraine genau, sondern üben auch andere Szenarien, um den radiologischen Notfallschutz weiter zu stärken. Medien zum Thema Mehr aus der Mediathek Strahlenschutz im Notfall Auch nach dem Ausstieg Deutschlands aus der Kernkraft brauchen wir einen starken Notfallschutz. Wie das funktioniert, erklärt das BfS in der Mediathek. Stand: 30.06.2025

1 2 3 4 530 31 32