API src

Found 13921 results.

Related terms

Klimaanalyse 2022

Deutscher Wetterdienst DWD 1996: Klimakarten für das Land Berlin, Teil 1: Bioklima Berlin, Gutachten im Auftrag der Senatsverwaltung für Stadtentwicklung, Umweltschutz und Technologie, unveröffentlicht. GEO-NET 2013: Klimaökologische Untersuchung „Tempelhofer Freiheit“ in Berlin – Entwurf Rev. 02, im Auftrag der Tempelhof Projekt GmbH, Berlin unveröffentlicht. GEO-NET 2022: Regionale Kaltluftströmungen in Deutschland. Eigene Untersuchung. Unveröffentlicht. Groß, G. 1989: Numerical simulation of the nocturnal flow systems in the Freiburg area for different topographies, in: Beitr. Phys. Atmosph.,H 62, S. 57-72. Groß, G. 2002: The exploration of boundary layer phenomena using a nonhydrostatic mesoscale model, in: Meteor.Z.schr. Vol. 11 Nr.5, S.701-710. Höppe, P. 1984: Die Energiebilanz des Menschen. Münchener Universitätsschriften, Meteorol. Inst., Wiss. Mitt. 49. Höppe, P., Mayer, H. 1987: Planungsrelevante Bewertung der thermischen Komponente des Stadtklimas. Landschaft und Stadt 19 (1), S. 22–29. Kiese, O. et al. 1992: Stadtklima Münster. Entwicklung und Begründung eines klimarelevanten Planungskonzeptes für das Stadtgebiet von Münster. Stadt Münster – Werkstattberichte zum Umweltschutz 1/1992. Landesamt für Gesundheit und Soziales (LAGeSo) (Hrsg.) 2014: Verzeichnis der Krankenhäuser und Privatentbindungsanstalten, Stand 06/2014, Berlin. Internet: https://www.berlin.de/lageso/service/downloadcenter/ (Zugriff: 01.08.2024) Landesvermessung und Geobasisinformation Brandenburg (LGB) 2022: Amtliches Liegenschaftskatasterinformationssystem (ALKIS), Potsdam Internet: https://geobasis-bb.de/lgb/de/geodaten/liegenschaftskataster/alkis/ (Zugriff: 01.08.2024) Landesvermessung und Geobasisinformation Brandenburg (LGB) 2013: Digitales Geländemodell (DGM), Potsdam Internet: https://geobasis-bb.de/lgb/de/geodaten/3d-produkte/gelaendemodell/ (Zugriff 28.07.2020) Matzarakis, A., Mayer, H., 1996: Another Kind of Environmental Stress: Thermal Stress. NEWSLETTERS No. 18, 7-10. WHO Colloborating Centre for Air Quality Management and Air Pollution Control. Matzarakis, A., Rutz, F., Mayer, H., 2000: Modellierung der mittleren Strahlungstemperatur in urbanen Strukturen, Fachtagung METTOOLS, Stuttgart 2000. Internet: https://www.urbanclimate.net/matzarakis/papers/Tmrt_mettoolsiv.PDF (Zugriff: 04.02.2019) Mosimann, Frey, Trute, Wickenkamp 1999: Karten der klima- und immissionsökologischen Funktionen – Instrumente zur prozessorientierten Betrachtung von Klima und Luft in der Umweltplanung, in: Naturschutz und Landschaftsplanung 31,(4),S. 101-108, Stuttgart. Moriske & Turowski 2002: Handbuch für Bioklima und Lufthygiene, 8. Ergänzungslieferung, Ecomed-Verlag, Landsberg. Richter & Röckle (iMA Immissionen, Meteorologie Akustik) o.J.: Das numerische Simulationsmodell FITNAH, digitale PDF-Datei, Freiburg. Internet: https://www.ima-umwelt.de/fileadmin/Dokumente/Klima/fitnah_kurzuebersicht.pdf (Zugriff am 27.01.2016) SenStadt (Senatsverwaltung für Stadtentwicklung, Baue und Wohnen Berlin) (Hrsg.) 2020: Flächennutzung und Stadtstruktur – Dokumentation der Kartiereinheiten und Aktualisierung des Datenbestandes, Berlin. Internet: https://www.berlin.de/umweltatlas/_assets/literatur/nutzungen_stadtstruktur_2020.pdf (Zugriff 23.05.2025) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015: GEO-NET Umweltconsulting GmbH, Hannover: GIS-gestützte Modellierung von stadtklimatisch relevanten Kenngrößen auf der Basis hochaufgelöster Gebäude- und Vegetationsdaten; EFRE Projekt 027 Stadtklima Berlin, Abschlussbericht. Internet: https://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/download/Projektbericht_StadtklimaBerlin_SenStadtUm_IIID_2015.pdf (Zugriff 25.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015c: PRISMA – Planungsraumbezogenes Informationssystem für Monitoring und Analyse, Berlin. Internet: https://www.stadtentwicklung.berlin.de/soziale_stadt/sozialraumorientierung/de/prisma.shtml (Zugriff 26.11.2015) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) 2025a: Stadtklimaanalyse Berlin 2020/2022: Dokumentation der Datengrundlagen, Modellsimulation und Klimaanalyse. Internet: https://www.berlin.de/umweltatlas/_assets/literatur/doku_klimaanalyse_2022.pdf (Zugriff 22.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) 2025b: Klimamodellierung 2022: Auswertung von Messdaten ausgewählter Klimastationen in Berlin und Potsdam. Internet: https://www.berlin.de/umweltatlas/_assets/literatur/doku_klimastationen_2022.pdf (Zugriff 22.04.2025) VDI (Verein Deutscher Ingenieure) 2008: Richtlinie VDI 3785, Blatt1, Methodik und Ergebnisdarstellung von Untersuchungen zum planungsrelevanten Stadtklima, Düsseldorf. Internet: https://www.vdi.de/ (Zugriff am 11.05.2009) VDI (Verband Deutscher Ingenieure) 2015: Richtlinie VDI 3787 Blatt 2 Umweltmeteorologie: Methoden zur human-biometeorologischen Bewertung der thermischen Komponente des Klimas. Verein Deutscher Ingenieure, Düsseldorf. Internet: https://www.vdi.de/ (Zugriff 02.04.2024) VDI (Verein Deutscher Ingenieure) 2022: Richtlinie VDI 3787, Blatt2, Methoden zur human-biometeorologischen Bewertung der thermischen Komponente des Klimas, Düsseldorf. Internet: https://www.vdi.de/ (Zugriff am 02.04.2025) Vogt, J. 2002: Bericht über orientierende Untersuchungen zur lokalklimatischen Funktion der Flächen des Gleisdreieckes in Berlin, Textteil, Voruntersuchung im Auftrag der Vivico Management GmbH, unveröffentlicht, Berlin. Vogt, J. 2002: Bericht über orientierende Untersuchungen zur lokalklimatischen Funktion der Flächen des Gleisdreieckes in Berlin, Abbildungsteil, Voruntersuchung im Auftrag der Vivico Management GmbH, unveröffentlicht, Berlin. SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2001: Umweltatlas Berlin, Karte 04.07 Klimafunktionen, 1:50 000, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2000/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2003: Umweltatlas Berlin, Karte 04.10 Klimamodell Berlin – Analysekarten, 1:50 000, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2001/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2004: Umweltatlas Berlin, Karte 04.11 Klimamodell Berlin – Bewertungskarten, 1:50 000, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimabewertung/2001/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2009: Umweltatlas Berlin, Karte 04.10 Klimamodell Berlin – Analysekarten, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2005/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2022: Umweltatlas Berlin, Karte 04.10 Klimamodellierung Berlin – Klimaanalysekarten 2022, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2022/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2009: Umweltatlas Berlin, Karte 04.11 Klimamodell Berlin – Bewertungskarten, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimabewertung/2005/zusammenfassung/ (Zugriff 16.04.2025) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2018: Umweltatlas Berlin, Karte 03.11.2 Verkehrsbedingte Luftbelastung im Straßenraum 2020 und 2025, Berlin. Internet: https://www.berlin.de/umweltatlas/luft/strassenverkehr-emissionen-und-immissionen/2018/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2021: Umweltatlas Berlin, Karte 01.02 Versiegelung, Berlin. Internet: https://www.berlin.de/umweltatlas/boden/versiegelung/2021/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2015: Umweltatlas Berlin, Karte 01.11.3 Naturnähe, Berlin. Internet: https://www.berlin.de/umweltatlas/boden/bodenfunktionskriterien/2015/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2022: Umweltatlas Berlin, 2022, Karte 04.12 Entwicklung der Anzahl ausgewählter klimatologischer Kenntage, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimawandel/2022/zusammenfassung/ SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2022: Amtliches Liegenschaftskatasterinformationssystem (ALKIS), Berlin. Internet: https://gdi.berlin.de/geonetwork/srv/ger/catalog.search#/metadata/0a7c53a5-b29d-3f45-9734-1c811045e6c2 (Zugriff 16.04.2025) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2016: Umweltatlas Berlin, Karte 04.11 Klimamodell Berlin – Planungshinweiskarte Stadtklima, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimabewertung/2015/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2020: Umweltatlas Berlin, Reale Nutzung der bebauten Flächen / Grün- und Freiflächenbestand 2020. Internet: https://www.berlin.de/umweltatlas/nutzung/flaechennutzung/2020/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2020: Umweltatlas Berlin, Gebäudehöhen. Internet: https://www.berlin.de/umweltatlas/nutzung/gebaeudehoehen/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2020: Umweltatlas Berlin, Vegetationshöhen. Internet: https://www.berlin.de/umweltatlas/biotope/vegetationshoehen/2020/methode/ (Zugriff 16.04.2025)

Energie - Windkraftanlagen

Der Kartendienst (WMS-Gruppe) stellt die digitalen Geodaten aus dem Bereich Erneuerbare Energien des Saarlandes dar.:Windkraftanlagen des Saarlandes (Anlagen, die die kinetische Energie des Windes in elektrische Energie umwandelt und in das Stromnetz einspeist). Attribute: RW, HW: Koordinaten des Rechtswertes und Hochwertes; NAMEN: Namen des Windparks; SACHSTAND:UVP Vorprüfung (UVP=Umweltverträglichkeitsprüfung), Laufendes Verfahren, Genehmigte WEA; LEISTUNG: Angabe in Megawatt-MW; NABENHOEHE: Höhe der Gondel über dem Turmfuß; GESAMTHOEH:Rotorblattlänge plus Nabenhöhe ergibt die Gesamthöhe.

Aufbau eines neuen Schwerpunkts 'Wasser' im Bereich der Umweltbildungsarbeit mit Jugendlichen

Zielsetzung und Anlass des Vorhabens: Immer wieder erleben Jugendliche Umweltprobleme und reflektieren diese im Blick auf ihre Zukunft. In Gesprächen und Diskussionen sind sie oft aus persönlicher Betroffenheit sehr engagiert, machen auf Probleme aufmerksam und sind zu Verhaltensänderungen bereit. Das Thema Wasser soll als ein neuer Schwerpunkt in Theorie und Praxis jungen Menschen nahe gebracht und die Möglichkeit der Übernahme von Verantwortung in einem Lebensbereich eingeübt werden. Fazit: Durch die verschiedensten Möglichkeiten in dem und durch den neuen Raum ergeben sich für die Jugendlichen und Kinder in der Jugendbildungsstätte Winfriedhaus neue Ansätze zu Überlegungen. Sie denken über Umweltproblematiken gemeinsam mehr nach und setzen sich in ihrem eigenen Lebensumfeld aktiv damit auseinander.

Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen

<p>Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen</p><p>Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch).</p><p>Treibhausgas-Emissionen aus der Landwirtschaft</p><p>Das Umweltbundesamt legt im Rahmen des<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetzes (KSG)</a>eine Schätzung für das Vorjahr 2024 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2023. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 76,0 % der gesamten Methan (CH4)-Emissionen und 77,3 % der Lachgas (N2O)-Emissionen in Deutschland aus der Landwirtschaft.</p><p>Im Jahr 2024 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 53,7 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 8,2 % der gesamten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 62,1 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente bzw. 9,6 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden.</p><p>In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt.</p><p>Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 62,1 % im Schätzjahr 2024 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 33,4 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,5 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO2aus anderen kohlenstoffhaltigen Düngern aus. Die CO2-Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>⁠) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024“).</p><p>Klimagase aus der Viehhaltung</p><p>Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2023 machten die Methan-Emissionen aus der Fermentation anteilig 76,7 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (93 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 18,8&nbsp;% der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Der verbleibende Anteil (4,5 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (45,8 Mio. t CO2-Äquivalente) und 2024 (33,2 Mio. t CO2-Äquivalente) um etwa 27,5&nbsp;% zurückgegangen.</p><p>Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N2O) und seiner Vorläufersubstanzen (Stickoxide, NOxund Stickstoff, N2). Dieser Bereich trägt zu 16,2&nbsp;% an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2024 um rund 34,2 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert.</p><p>Somit lassen sich in 2024 rund 34,9 Mio. t CO2-Äquivalente direkte THG-Emissionen (das sind 64,5 % der Emissionen der Landwirtschaft und 5,4 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ unberücksichtigt.</p><p></p><p>Klimagase aus landwirtschaftlich genutzten Böden</p><p>Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO2)-Freisetzung infolge von<a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland/emissionen-der-landnutzung-aenderung">Landnutzung und Landnutzungsänderungen</a>(Umbruch von Grünland- und Niedermoorstandorten) sowie der CO2-Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt wurden 2024 15,1 Mio. t CO2-Äquivalente Lachgas durch die Bewirtschaftung landwirt­schaftlicher Böden emittiert.</p><p>Es werden direkte und indirekte Emissionen unterschieden:</p><p>Die<strong>direkten Emissionen</strong>stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen mit 46 kt bzw. 12,3 Mio. t CO2-Äquivalenten den Hauptanteil (51,9 %) an den gesamten Lachgasemissionen aus.</p><p>Quellen für<strong>indirekte Lachgas-Emissione</strong>n sind die atmosphärische ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen.</p><p>Im Zeitraum 1990 bis 2024 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 24 % ab.</p><p>Gründe für die Emissionsentwicklung</p><p>Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠ im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten.</p><p>Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen</p><p>Das von der Bundesregierung in 2019 verabschiedete und 2021 und 2024 novellierte<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetz</a>legt für 2024 für den Landwirtschaftssektor eine Höchstmenge von 67 Mio. t CO2-Äquivalente fest, welche mit 62&nbsp;Mio. t CO2-Äquivalente unterschritten wurde.</p><p>Weiterführende Informationen zur Senkung der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen finden Sie auf den Themenseiten<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/ammoniak-geruch-staub">„Ammoniak, Geruch und Staub“</a>,<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/lachgas-methan">„Lachgas und Methan“</a>und<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/stickstoff">„Stickstoff“</a>.</p>

Serious Gaming - Potenziale für Wissensvermittlung und Bewusstseinswandel für mehr Nachhaltigkeit

Das Forschungsvorhaben untersuchte die Möglichkeiten, digitale Spiele zur Förderung nachhaltigen Verhaltens und zur Wissensvermittlung einzusetzen. Hierfür wurden wissenschaftliche Grundlagen und Perspektiven auf „Serious Games“ analysiert. Eine umfassende Literaturrecherche und Experteninterviews identifizierten zahlreiche Anwendungsmöglichkeiten. Aufbauend auf diesen Erkenntnissen wurde das Serious Game „Little Impacts“ entwickelt, veröffentlicht und auf seine Wirksamkeit untersucht. Das Spiel richtet sich an Kinder und Jugendliche. Zusätzlich förderte das Projekt den Austausch innerhalb der Spielentwicklungsszene und vernetzte relevante Akteure. Ergebnisse und Handlungsempfehlungen aus dem Projekt wurden aufbereitet, um eine breite Zielgruppe anzusprechen. Veröffentlicht in Texte | 49/2025.

Pflanzengeographie und Pflanzenoekologie der Nebeloasen Namibias

In tropischen und subtropischen Kuestenwuesten treten wiederholt Nebeloasen auf. Die Nebeloasen Namibias werden vor allem von verschiedenen Flechtenarten besiedelt, zu denen sich nur wenige Spezialisten unter den Hoeheren Pflanzen gesellen. Die Arbeiten zeigen, dass die namibischen Nebeloasen zum Teil durch die feuchte Luft des benachbarten Meeres und zum Teil durch Kaltluftstroeme aus dem Inland verursacht werden. Je nach Intensitaet und Dauer der Nebel-Wetterlagen ergeben sich unterschiedliche Flechten-Gesellschaften, deren mittlere Bio- Produktion ebenso bestimmt wird wie die CO2-Assimilation in Abhaengigkeit von Anfeuchtung und Salzeintrag. Ausserdem werden der Transport und die Erosion der Flechten durch den Wind untersucht. Hieraus ergeben sich Empfehlungen fuer Nutzung und Naturschutz. Die hier lebenden Hoeheren Pflanzen sind auch Gegenstand der Untersuchungen. Von Interesse ist ihre Anatomie, Cuticula-Struktur, Wasseraufnahme und -leitung sowie ihre Bioproduktion in Abhaengigkeit vom zeitlichen Verlauf der Wasseraufnahme.

Model Output Statistics for TABARKA (60710)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Schwermetall-Analytik von Aerosolen mit der Hamburger Protonenmikrosonde

Die Belastung der Luft mit toxischen Stoffen stellt insbesondere in Ballungsraeumen wie Hamburg eine Beeintraechtigung der Lebensqualtitaet und eine potentielle Gefaehrdung der Bevoelkerung dar. Insbesondere in der Umgebung hier angesiedelter Industrie kann die Belastung der Luft mit Schwermetallen mitunter erhebliche Werte erreichen. Die Schwermetallanalytik wird mit der durch Protonen induzierten Emission charakteristischer Roentgenstrahlung (PIXE) an der Hamburger Protonenmikrosonde durchgefuehrt. Die hohe Empfindlichkeit der verwendeten Analysemethode erlaubt auch die Durchfuehrung kurzzeitiger (stuendlicher) Probennahmen und damit die Erfassung kurzzeitiger Veraenderungen. Fuer einen 1-Jahres-Zeitraum (1991) wurde am Standort Kaltehove ein Luftprobennehmer aufgestellt und bei taeglichem Probenwechsel die Staubbelastung, zusammen mit dem Luftdruck, der Luftfeuchtigkeit, der Wind-Staerke und -Richtung gemessen. Die gemessenen Gesamtschwebstaubbelastungen lagen bei etwa 30 Prozent der Immisionsgrenzwerte fuer Langzeitmessungen (IW1) und fuer Kurzzeitemissionen (IW2) der TA Luft. Die Bleikonzentration zeigt eine starke Korrelation zur Windrichtung, hohe Werte bei suedwestlichem Wind weisen den Fahrzeugverkehr auf den Elbbruecken als Verursacher aus. Hohe Chrom-Nickel Konzentrationen bei suedlicher Windrichtung lassen auf den dort angesiedelten Industriebetrieb als Quelle schliessen. Wie zu erwarten, wird nach Niederschlaegen ein deutlicher Rueckgang der Schwebstaubkonzentration ermittelt. Der tageszeitliche Gang der Bleikonzentration weist in 1989 einen deutlichen Zusammenhang mit der Verkehrsdichte auf. Dagegen zeigen Untersuchungen, die im Jahr 1996 im Hamburger Elbtunnel durchgefuehrt wurden, keinen signifikanten Zusammenhang mit der Verkehrsbelastung. Dies wird auf die extensive Belueftung im Elbtunnel zurueckgefuehrt. Der Rueckgang der Bleikonzentration in der Luft spiegelt die Verringerung im Einsatz bleihaltiger Additive zu Kraftstoffen wider.

Three-dimensional hydrochemical data of Lake Runstedt (Germany) for three campaigns in 2023

Lake Runstedt, around 30 km west of Leipzig, is a post-mining lake created by the flooding of the former Großkayna open-cast mine. After the end of the lignite mining, the pit was partially filled with industrial waste and fly ash for several decades. With high concentrations of ammonium in the sediment, oxygen consumption due to nitrification of ammonium released into the lake is a major challenge to the lake’s water quality. To ensure the oxygen supply in the hypolimnion (i.e. the bottom lake layer that is not affected by wind mixing) in summer, three aerators are operated in the lake by the Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft (LMBV). In 2023, the Freiberg University of Mining and Technology was commissioned by the BGR to carry out three measurement campaigns (end of July/beginning of August, mid-September, mid-October) on the lake using an autonomous surface vehicle (here: a catamaran-shaped robotic device) to assess the spatial effects of the aeration on lake water quality. The data set provided contains the collected three-dimensional data of water temperature, oxygen content, pH, electrical conductivity, turbidity and chlorophyll. In addition, laboratory analyses of water samples obtained with a Ruttner sampler are included. The data reflect the conditions before and after operation of the aerators. Detailed explanations can be found in the publication “Spatial heterogeneity of dissolved oxygen and sediment fluxes revealed by autonomous robotic lakewater profiling” (2025) by Röder et al. in the journal Limnology and Oceanography.

Niedersächsischer Bodenfeuchteinformationsdienst - Tagesaktueller Wassergehalt der Böden in Niedersachsen in % der nutzbaren Feldkapazität (%nFK)

Der Niedersächsische Bodenfeuchteinformationsdienst (NIBOFID) des LBEG zeigt den tagesaktuellen Wassergehalt für alle Böden in Niedersachsen. Darüber hinaus lässt sich der Verlauf des Bodenwassergehalts für die letzten 10 Tage abrufen. Die Bodenfeuchte wird in % der nutzbaren Feldkapazität (%nFK) angegeben. Die nFK beschreibt die Wassermenge, die ein Boden maximal pflanzenverfügbar speichern kann. Die Werte des Bodenfeuchtemonitors sind berechnet und nicht gemessen. Die Berechnung erfolgt mit dem Bodenwasserhaushaltsmodell BOWAB und wird täglich mit Klimakennwerten (Niederschlag, Temperatur, Wind, Globalstrahlung und relative Luftfeuchte) des Vortages durchgeführt. Es werden für die jeweilige Landnutzung (Acker, Grünland, Laubwald, Nadelwald, Sonstiges) und den Boden spezifisch Parametern abgeleitet. BOWAB nutzt die hochaufgelösten Bodendaten der Bodenkarte 1:50.000 (BK50) von Niedersachsen und leitetet bodenwasserhaushaltliche Kennwerte, wie nFK, FK etc. ab. Die Berechnung erfolgt für die Flächen der BK50. Der Einfluss des Grundwassers wird in Form von kapillarem Aufstieg und durch den Grundwasserstand aus der BK50 berücksichtigt. Eine Bodenfeuchte von 100 %nFK zeigt an, dass der Bodenwasserspeicher gefüllt ist. Bei Werten oberhalb von 100 % entsteht Sickerwasser oder es steht Grundwasser innerhalb der betrachteten Bodenschicht. Werte kleiner als 100 %nFK zeigen an, dass die Pflanzen Bodenwasser entnommen haben und der Boden allmählich austrocknet. Ab Bodenfeuchtewerten unterhalb von 40 - 50 %nFK reagieren Pflanzen auf die Trockenheit und verringern ihre Verdunstung. Bei Werten von < 30 % nFK kann von Trockenstress ausgegangen werden. Im Kartenbild ist die Bodenfeuchte für den Boden von 0 – 60 cm Tiefe dargestellt, der dem Hauptwurzelraum bei den meisten Böden und Nutzungsformen entspricht. Standortbezogene Informationen liefert ein Maptip. Durch das Klicken auf einen Standort wird der aktuelle Bodenwassergehalt für den Hauptwurzelraum in %nFK angezeigt. Zusätzlich können auf der Detailseite weiterführende Informationen abgerufen werden. Als Grafik wird der Verlauf der mittleren Bodenfeuchte für die vergangenen 10 Tage für die Tiefenbereiche 0 - 30 cm (Oberboden), 0 - 60 cm (Hauptwurzelraum) und, sofern der Boden mächtiger ist, 0 - 90 cm (gesamte Betrachtungstiefe) dargestellt. Zudem wird die Sickerwassermenge unterhalb von 90 cm Tiefe für den betrachteten Standort angegeben. Falls Sie noch genauere Informationen zum Wassergehalt für Ihren Boden mit einer bestimmten Anbaukultur (Weizen, Mais, Grünland) benötigen, nutzen Sie gerne die Fachanwendung „Bodenwasserhaushalt“ im NIBIS® Kartenserver. Sie bietet die Möglichkeit den Verlauf der Bodenfeuchte für einzelne oder mehrere Flächen über einen längeren Zeitraum mit verschiedenen Fruchtfolgen (z.B. 1 Jahr oder länger) zu ermitteln.

1 2 3 4 51391 1392 1393