DFWind Phase 1 dient zur Vorbereitung der forschungstechnischen Ertüchtigung der vom Nds. MWK geförderten Basisinfrastruktur. Durch die angestrebte Ausstattung sowie die multidisziplinäre Erfahrung der beteiligten Partner soll eine in dieser Kombination bislang weltweit einzigartige Basis zur ganzheitlichen Erforschung und Weiterentwicklung der Windenergiegewinnung und -nutzung geschaffen werden. Ausarbeitung der forschungstechnischen Basisinstrumentierung der Windenergieanlagen und Spezifikation der experimentellen Anlagenregelung. Entwicklung einer Datenerfassung für das Verbundprojekt. Aufbau von Messgeräten zur Erfassung von Wind, Turbulenz, Temperatur und Feuchte (niederfrequente Profil- und Windfeldmessungen, hochfrequente Punktmessungen). Aufbau von akustischer Messtechnik. Vorbereitung eines Systems zur Überwachung der Herstellung der Rotorblätter. Aufbau eines Structural Health Monitoring Systems zur Schadenserkennung an Rotorblättern und Vorbereitung zu deren aerodynamischer Vermessung. Aufbau eines Subkomponentenprüfstands zum Vorbereiten der Gesamtstrukturtests und der strukturellen Bewertung der Klebschichten in Rotorblättern.
Es soll ein geeignetes Fügeverfahren zur kostengünstigen stoffschlüssigen Verbindung elektrisch leitfähiger Bipolarplatten-Filz-Komponenten für den Einsatz in Redox-Flow-Batterien entwickelt werden. Mit Hilfe wissenschaftlicher Methoden, ingenieurstechnischen Erfahrungswerten und der Expertise der beiden Komponentenhersteller werden geeignete Verfahren ausgewählt, analysiert und das vielversprechendste Verfahren zu einem industrietauglichen Herstellungsprozess weiterentwickelt und evaluiert. Zur Realisierung eines gezielten und fokussierten Auswahlprozess werden in einem ersten Schritt die erforderlichen Spezifikationen und Anforderungen in einem Lastenheft definiert. Mindestens zwei verschiedene stoffschlüssige Fügeverfahren sollen untersucht werden: Das Verkleben mit leitfähigem Klebstoff sowie das Fügen durch thermisches Verschmelzen. Die für die Umsetzung möglichen Prozessschritte und Methoden müssen in Hinblick auf ihre technische Machbarkeit und verfahrenstechnische Eignung hin getestet werden. Anschließend findet eine Auswahl jeweils einer Klebemethode sowie einer thermischen Fügemethode statt, welche bzgl. ihrer Prozessparameter untersucht und optimiert werden. Parallel dazu werden wichtige Parameter (Leitfähigkeit, Stabilität, Haftkraft etc.) charakterisiert. Die vielversprechendsten Verbundkomponenten werden in Stacks hinsichtlich ihrer Leistungsfähigkeit und Stabilität im realen Redox-Flow-Batterie-Betrieb untersucht. Zudem werden parallel Konzepte entwickelt, wie die untersuchten Fügeverfahren in einem industriellen Fertigungsprozess umgesetzt werden könnten. Dazu werden neben verfahrenstechnischen Fragestellungen auch ökonomische Aspekte untersucht. Die Eignung der hergestellten Komponente für den Einsatz in Redox-Flow-Batterien soll in einem Short-Stack über mindestens 500 Vollzyklen demonstriert werden. Zielmarke ist hierbei mindestens die Erreichung gleicher Performance- und Leistungsdaten klassisch verpresster Aufbauten.
Es soll ein geeignetes Fügeverfahren zur kostengünstigen stoffschlüssigen Verbindung elektrisch leitfähiger Bipolarplatten-Filz-Komponenten für den Einsatz in Redox-Flow-Batterien entwickelt werden. Mit Hilfe wissenschaftlicher Methoden, ingenieurstechnischen Erfahrungswerten und der Expertise der beiden Komponentenhersteller werden geeignete Verfahren ausgewählt, analysiert und das vielversprechendste Verfahren zu einem industrietauglichen Herstellungsprozess weiterentwickelt und evaluiert. Zur Realisierung eines gezielten und fokussierten Auswahlprozess werden in einem ersten Schritt die erforderlichen Spezifikationen und Anforderungen in einem Lastenheft definiert. Mindestens zwei verschiedene stoffschlüssige Fügeverfahren sollen untersucht werden: Das Verkleben mit leitfähigem Klebstoff sowie das Fügen durch thermisches Verschmelzen. Die für die Umsetzung möglichen Prozessschritte und Methoden müssen in Hinblick auf ihre technische Machbarkeit und verfahrenstechnische Eignung hin getestet werden. Anschließend findet eine Auswahl jeweils einer Klebemethode sowie einer thermischen Fügemethode statt, welche bzgl. ihrer Prozessparameter untersucht und optimiert werden. Parallel dazu werden wichtige Parameter (Leitfähigkeit, Stabilität, Haftkraft etc.) charakterisiert. Die vielversprechendsten Verbundkomponenten werden in Stacks hinsichtlich ihrer Leistungsfähigkeit und Stabilität im realen Redox-Flow-Batterie-Betrieb untersucht. Zudem werden parallel Konzepte entwickelt, wie die untersuchten Fügeverfahren in einem industriellen Fertigungsprozess umgesetzt werden könnten. Dazu werden neben verfahrenstechnischen Fragestellungen auch ökonomische Aspekte untersucht. Die Eignung der hergestellten Komponente für den Einsatz in Redox-Flow-Batterien soll in einem Short-Stack über mindestens 500 Vollzyklen demonstriert werden. Zielmarke ist hierbei mindestens die Erreichung gleicher Performance- und Leistungsdaten klassisch verpresster Aufbauten.
In SOLGEL-PV werden nanoskalige Sol-Gel Schichten für den Einsatz auf Solarzellenebene erzeugt, aufgebracht und strukturiert. Diese sollen auf innovative Weise als Antireflexstruktur, die Mie-Resonanzen zur besseren Lichteinkopplung ausnutzt, als Rückseitenkontakt mit verbesserter Optik und Haftung und als leitende und klebende Verbindungsschicht in Tandemsolarzellen zur Anwendung gebracht werden. Die Schichten werden mittels durchlauffähigen Prozessen aufgebracht. Die Nanostrukturierung erfolgt mit einer Walztechnologie. Die angestrebten Arbeiten umfassen Entwicklungen, die sowohl materialwissenschaftlicher wie auch prozesstechnischer Natur sind. Dabei sollen Präkursor maßgeschneidert für verschiedene Musteranwendungen synthetisiert werden. Darüber hinaus sollen Abscheide- und Prägeprozesse auch für eine großtechnische Anwendung realisiert werden. Die entwickelten, innovativen kostengünstigen Technologien sowie der damit erzielte höhere Energieertrag werden die Kosteneffizienz der Photovoltaik weiter verbessern und den beteiligten Firmen ein Alleinstellungsmerkmal und somit einen Wettbewerbsvorteil sichern.
Im Projekt SOLGEL-PV soll der Einsatz von Sol-Gel-Materialien auf Solarzellenebene in der Silizium-Photovoltaik anhand dreier Anwendungsbeispiele evaluiert werden. Dabei handelt es sich um drei komplementäre Musteranwendungen: Eine in eine Sol-Gel-Schicht eingeprägte Struktur zur Optimierung der Lichteinkopplung in die Solarzelle; eine leitfähige Sol-Gel-Schicht zur Erhöhung der Spiegelgüte und Metallhaftung bei rückseitigen passivierten Kontakten und eine transparente, leitfähige Verklebung von Einzelsolarzellen zur Realisierung Silizium basierter Tandemsolarzellen. Der Aufbau von Anlagen- und Prozesstechnik mit der Zielstellung, starre Substrate mit widerstandsfähigen Oberflächen in einem industrietauglichen Prozess auszustatten, wird im Rahmen dieses Forschungsvorhabens realisiert. Dabei ist es entscheidend, dass die Härtungsprozesse der eingesetzten Sol-Gele so angepasst werden, dass sie zu einer industriellen Prozessführung passen. Ziel des Projektes ist es, eine effiziente, rollenbasierte kontinuierliche Fertigungstechnik aufzubauen, mit der Wafer parallel prozessiert werden können.
Die Firma Jowat beteiligt sich im Verbundvorhaben NewBeam im Bereich der Klebstoffentwicklung. Herausforderung bei der Anwendung der Klebtechnik als flexible Montagehilfe für die Beamfixierung im Sägeprozess der Waferfertigung ist die Kombination einer ausreichend hohen Klebfestigkeit einhergehend mit der Lösbarkeit der Klebverbindung auf Befehl, sowie der Vorapplizierbarkeit und Aktivierung.
Die Firma IWE GmbH & Co. KG entwickelt und fertigt die tragenden, in der Regel großformatigen Einheiten für die BIPV's (Prototypenfertigung). Besondere Aufmerksamkeit erhalten die Ausreißfestigkeit und die Integrität der Module im Brandfall, welche im Fall der Verwendung von Leichtbauelementen Problemfelder darstellen. Es wird die Kombination unterschiedlicher Fügeverfahren untersucht, die für Sandwichstrukturen modifiziert werden müssen. Zu diesen Fügeverfahren zählen: Biegen, Kleben, Schweißen, Clinchen. Im Projekt Standard BIPV wird die IWE nachfolgend aufgeführte Teilaufgaben bearbeiten: 1. Entwicklung eines standardisierten Fassadensystems - Untersuchung der Anwendung der Falttechnik an den Blechen zur Gewährleistung eines Formschlusses zwischen Deckblechen und Kern - Auswahl und Erprobung geeigneter Einlagen für die Befestigungskonstruktion - Gemeinsame Erprobung der Falt-, Einlage- und Klebetechnik und Überprüfung der Klebe- und Ausreißfestigkeit - Erprobung zusätzlicher Fügeverfahren (Rührreibschweißen für Aluminium-, Zink- bzw. Kupferdeckbleche; Widerstandsschweißen bzw. Clinchen für Stahlbleche) und Untersuchung ihres Einflusses auf die Klebefestigkeit - Untersuchung des Einflusses der zusätzlichen Fügeverfahren auf die Ausreißfestigkeit und das Brandschutzverhalten - Untersuchung der Möglichkeit der Einbindung von Wärmedämmmaterialien 2. Entwicklung standortkonkreter BIPV-Fassadensystemlösung bezüglich konstruktiver und Nutzer- relevanter Aspekte 3. Monitoring und Auswertung der Pilotinstallation - Auswertung/Anpassung Montagetechnologie - Erste Schlussfolgerungen zum Zeitstandverhalten - Diskussion und Abstimmung mit den Projektpartnern 4. Ergebnisdokumentation
Origin | Count |
---|---|
Bund | 85 |
Type | Count |
---|---|
Förderprogramm | 85 |
License | Count |
---|---|
offen | 85 |
Language | Count |
---|---|
Deutsch | 81 |
Englisch | 7 |
Resource type | Count |
---|---|
Keine | 27 |
Webseite | 58 |
Topic | Count |
---|---|
Boden | 54 |
Lebewesen & Lebensräume | 43 |
Luft | 56 |
Mensch & Umwelt | 85 |
Wasser | 34 |
Weitere | 85 |