Die Redox-Flow-Batterietechnologie erfüllt alle Voraussetzungen für effiziente stationäre Energiespeichersysteme. Im Projekt EPRox4 werden Redox-Flow Stacks durch neues Design und innovative Produktionsverfahren in Kosten und Zuverlässigkeit verbessert, eine flexible Fertigungslinie in Deutschland wird aufgebaut. In der zweiten Innovationslinie des Projekts wird ein modulares Redox-Flow-Anlagenkonzept auf der Basis von 'smarten' Stacks entwickelt und umgesetzt. Diese Module haben die Netzankopplung, Steuerungs- und Überwachungsintelligenz bereits integriert und können zu Batteriesystemen aller Größenordnungen konfiguriert werden. Am ICT werden hierfür neuartige Technologien untersucht, RFB Stacks zu fertigen. Zu den Stacks im Batteriemodul werden Performancedaten für das BMS gemessen und die Firma Schmalz beim Aufbau der Module unterstützt. Das IISB unterstützt drei Teilziele: Entwicklung eines intelligenten, dezentralen und modular einsetzbaren DC-DC Wandlers, Entwicklung einer Elektronik für die Überwachungs- und Regelfunktionen des Plattformmoduls und Verifikation der Komponenten in einem Demonstrator und Entwicklung von Optimierungspotentialen. Der Stackbau erfolgt in drei Entwicklungspfaden. Im ersten Pfad werden konventionelle Fertigungsverfahren untersucht. Im Zweiten werden neuartige Materialien entwickelt, welche ein Fügen der Rahmen durch schweißen oder kleben ermöglicht. In einem dritten Entwicklungspfad wird der Einsatz von Gusmassen für die Fertigung untersucht. Das IISB entwickelt einen modulintegrierbaren, bidirektionalen DC/DC- Wandler zur DC-Ankopplung von Stacks. Schaltungstopologie und das Verhältnis von Kosten zu erzielbarem Wirkungsgrad werden optimiert. Es werden die Überwachungselektronik, die Steuerungselektronik, das Batteriemanagementsystem und das Kommunikationsmodul entwickelt. Anhand eines Demonstrators wird die Einsatzfähigkeit des modularen Redox-Flow Batteriekonzepts im Einspeise- und Ladebetrieb des Batteriesystems untersucht.
Es soll ein geeignetes Fügeverfahren zur kostengünstigen stoffschlüssigen Verbindung elektrisch leitfähiger Bipolarplatten-Filz-Komponenten für den Einsatz in Redox-Flow-Batterien entwickelt werden. Mit Hilfe wissenschaftlicher Methoden, ingenieurstechnischen Erfahrungswerten und der Expertise der beiden Komponentenhersteller werden geeignete Verfahren ausgewählt, analysiert und das vielversprechendste Verfahren zu einem industrietauglichen Herstellungsprozess weiterentwickelt und evaluiert. Zur Realisierung eines gezielten und fokussierten Auswahlprozess werden in einem ersten Schritt die erforderlichen Spezifikationen und Anforderungen in einem Lastenheft definiert. Mindestens zwei verschiedene stoffschlüssige Fügeverfahren sollen untersucht werden: Das Verkleben mit leitfähigem Klebstoff sowie das Fügen durch thermisches Verschmelzen. Die für die Umsetzung möglichen Prozessschritte und Methoden müssen in Hinblick auf ihre technische Machbarkeit und verfahrenstechnische Eignung hin getestet werden. Anschließend findet eine Auswahl jeweils einer Klebemethode sowie einer thermischen Fügemethode statt, welche bzgl. ihrer Prozessparameter untersucht und optimiert werden. Parallel dazu werden wichtige Parameter (Leitfähigkeit, Stabilität, Haftkraft etc.) charakterisiert. Die vielversprechendsten Verbundkomponenten werden in Stacks hinsichtlich ihrer Leistungsfähigkeit und Stabilität im realen Redox-Flow-Batterie-Betrieb untersucht. Zudem werden parallel Konzepte entwickelt, wie die untersuchten Fügeverfahren in einem industriellen Fertigungsprozess umgesetzt werden könnten. Dazu werden neben verfahrenstechnischen Fragestellungen auch ökonomische Aspekte untersucht. Die Eignung der hergestellten Komponente für den Einsatz in Redox-Flow-Batterien soll in einem Short-Stack über mindestens 500 Vollzyklen demonstriert werden. Zielmarke ist hierbei mindestens die Erreichung gleicher Performance- und Leistungsdaten klassisch verpresster Aufbauten.
Es soll ein geeignetes Fügeverfahren zur kostengünstigen stoffschlüssigen Verbindung elektrisch leitfähiger Bipolarplatten-Filz-Komponenten für den Einsatz in Redox-Flow-Batterien entwickelt werden. Mit Hilfe wissenschaftlicher Methoden, ingenieurstechnischen Erfahrungswerten und der Expertise der beiden Komponentenhersteller werden geeignete Verfahren ausgewählt, analysiert und das vielversprechendste Verfahren zu einem industrietauglichen Herstellungsprozess weiterentwickelt und evaluiert. Zur Realisierung eines gezielten und fokussierten Auswahlprozess werden in einem ersten Schritt die erforderlichen Spezifikationen und Anforderungen in einem Lastenheft definiert. Mindestens zwei verschiedene stoffschlüssige Fügeverfahren sollen untersucht werden: Das Verkleben mit leitfähigem Klebstoff sowie das Fügen durch thermisches Verschmelzen. Die für die Umsetzung möglichen Prozessschritte und Methoden müssen in Hinblick auf ihre technische Machbarkeit und verfahrenstechnische Eignung hin getestet werden. Anschließend findet eine Auswahl jeweils einer Klebemethode sowie einer thermischen Fügemethode statt, welche bzgl. ihrer Prozessparameter untersucht und optimiert werden. Parallel dazu werden wichtige Parameter (Leitfähigkeit, Stabilität, Haftkraft etc.) charakterisiert. Die vielversprechendsten Verbundkomponenten werden in Stacks hinsichtlich ihrer Leistungsfähigkeit und Stabilität im realen Redox-Flow-Batterie-Betrieb untersucht. Zudem werden parallel Konzepte entwickelt, wie die untersuchten Fügeverfahren in einem industriellen Fertigungsprozess umgesetzt werden könnten. Dazu werden neben verfahrenstechnischen Fragestellungen auch ökonomische Aspekte untersucht. Die Eignung der hergestellten Komponente für den Einsatz in Redox-Flow-Batterien soll in einem Short-Stack über mindestens 500 Vollzyklen demonstriert werden. Zielmarke ist hierbei mindestens die Erreichung gleicher Performance- und Leistungsdaten klassisch verpresster Aufbauten.
1. Ziel ist die Entwicklung von dauerhaftem und formstabilem Vollholz für hohe biologische und mechanische Beanspruchung durch Kombination mehrerer Vergütungsprozesse, insbesondere der Verdichtung und der thermischen Modifizierung. Es soll ein Vollholzmaterial für den Innen und Außenbereich entwickelt werden mit dem Ziel bisher notwendige Querschnittsabmessungen zu verringern, neue Einsatzmöglichkeiten im Außenbereich zu erschließen und die Verwendbarkeit bislang ungenutzter Holzarten und Sortimente, insbesondere der Rotbuche zu steigern. 2. Die Arbeitsplanung des Projektpartner terHürne ergibt sich im Besonderen aus den Arbeitspaketen zu den anwendungsbezogenen Eigenschaften. terHürne verfügt über langjährige Erfahrungen im Parkettbereich und bei Bodenbelägen im Outdoorbereich. Neben den Wirtschaftlichkeits- und Marktpotentialanalysen sollen in der Planung unterschiedlichste Untersuchungen zur Beschichtung, Lichtechtheit, Witterungsbeständigkeit und den Möglichkeiten einer Verleimung durchgeführt werden.
In SOLGEL-PV werden nanoskalige Sol-Gel Schichten für den Einsatz auf Solarzellenebene erzeugt, aufgebracht und strukturiert. Diese sollen auf innovative Weise als Antireflexstruktur, die Mie-Resonanzen zur besseren Lichteinkopplung ausnutzt, als Rückseitenkontakt mit verbesserter Optik und Haftung und als leitende und klebende Verbindungsschicht in Tandemsolarzellen zur Anwendung gebracht werden. Die Schichten werden mittels durchlauffähigen Prozessen aufgebracht. Die Nanostrukturierung erfolgt mit einer Walztechnologie. Die angestrebten Arbeiten umfassen Entwicklungen, die sowohl materialwissenschaftlicher wie auch prozesstechnischer Natur sind. Dabei sollen Präkursor maßgeschneidert für verschiedene Musteranwendungen synthetisiert werden. Darüber hinaus sollen Abscheide- und Prägeprozesse auch für eine großtechnische Anwendung realisiert werden. Die entwickelten, innovativen kostengünstigen Technologien sowie der damit erzielte höhere Energieertrag werden die Kosteneffizienz der Photovoltaik weiter verbessern und den beteiligten Firmen ein Alleinstellungsmerkmal und somit einen Wettbewerbsvorteil sichern.
Im Projekt SOLGEL-PV soll der Einsatz von Sol-Gel-Materialien auf Solarzellenebene in der Silizium-Photovoltaik anhand dreier Anwendungsbeispiele evaluiert werden. Dabei handelt es sich um drei komplementäre Musteranwendungen: Eine in eine Sol-Gel-Schicht eingeprägte Struktur zur Optimierung der Lichteinkopplung in die Solarzelle; eine leitfähige Sol-Gel-Schicht zur Erhöhung der Spiegelgüte und Metallhaftung bei rückseitigen passivierten Kontakten und eine transparente, leitfähige Verklebung von Einzelsolarzellen zur Realisierung Silizium basierter Tandemsolarzellen. Der Aufbau von Anlagen- und Prozesstechnik mit der Zielstellung, starre Substrate mit widerstandsfähigen Oberflächen in einem industrietauglichen Prozess auszustatten, wird im Rahmen dieses Forschungsvorhabens realisiert. Dabei ist es entscheidend, dass die Härtungsprozesse der eingesetzten Sol-Gele so angepasst werden, dass sie zu einer industriellen Prozessführung passen. Ziel des Projektes ist es, eine effiziente, rollenbasierte kontinuierliche Fertigungstechnik aufzubauen, mit der Wafer parallel prozessiert werden können.
Origin | Count |
---|---|
Bund | 85 |
Type | Count |
---|---|
Förderprogramm | 85 |
License | Count |
---|---|
offen | 85 |
Language | Count |
---|---|
Deutsch | 81 |
Englisch | 7 |
Resource type | Count |
---|---|
Keine | 27 |
Webseite | 58 |
Topic | Count |
---|---|
Boden | 56 |
Lebewesen und Lebensräume | 43 |
Luft | 56 |
Mensch und Umwelt | 85 |
Wasser | 34 |
Weitere | 85 |