API src

Found 431 results.

Related terms

Klimaanalysekarten 2022 (Umweltatlas)

Die Klimaanalysekarten sind Ergebnis einer durchgeführten gesamtstätischen Klimamodellierung im Land Berlin. Sie bilden den stadtklimatischen Ist-Zustand an einem durchschnittlichen autochthonen Sommertag ab. Die Klimaanalysekarten umfassen neben verschiedenen klimatischen Parametern, bestehend aus (1) dem bodennahen Windfeld und Kaltluftvolumenstromdichte, (2) die Luft- und (3) Oberflächentemperatur, (4) die nächtliche Abkühlung, sondern auch zwei thermische Bewertungsindizes, bestehend aus (5) dem PET und (6) dem UTCI. Die Zusammenfassung der Erkenntnisse aus der Klimaanalyse erfolgt in der (7) Klimaanalysekarte. Die Klimaanalysekarte ermöglicht es, die einzelnen Bereiche der Stadt nach ihren unterschiedlichen klimatischen Funktionen, d.h. ihrer Wirkung auf andere Räume, abzugrenzen. Die Karten der Klimaanalyse werden teilweise in einer Rasterdarstellung mit einer hohen räumlichen Auflösung von 10 m x 10 m sowie aggregiert auf etwa 25.000 Block- und Blockteilflächen angeboten.

Klima

Lufttemperatur, Feuchtigkeit, die Lage, Bebauung, Grünflächen und noch ein paar Dinge mehr sind entscheidend für das Stadtklima. Wie sich das Klima und seine entscheidenden Faktoren in Berlin verhalten und wie ihre Wirkung auf den Menschen positiv beeinflusst werden kann, erfahren Sie hier. Bild: Umweltatlas Berlin Klimaanalyse Immer mehr Menschen leben in Berlin und dadurch wird mehr gebaut – das hat Auswirkungen auf unser Stadtklima. Wie frisch ist unsere Luft? Wie stark heizt sich die Stadt im Sommer auf? Hier finden Sie analytische Karten zum Zustand des Stadtklimas. Weitere Informationen Bild: Umweltatlas Berlin Klimabewertung Wie sollte sich Berlin zukünftig entwickeln, um ein für den Menschen gesundes Klima in der Stadt zu sichern? Ein Baustein dafür ist die sogenannte Planungshinweiskarte Stadtklima, die als Grundlage für bauliche und planerische Entscheidungen dient. Weitere Informationen Bild: Umweltatlas Berlin Entwicklung von Klimaparametern Die langfristige Entwicklung von Klimaparametern wie etwa der Lufttemperatur zeigt, wie sich das Klima zurzeit darstellt und wie es sich zukünftig verändern könnte. Hier finden Sie Analysen zu Klimaparametern der vergangenen Jahrzehnte sowie einen Ausblick zum Klima in Berlin bis 2100. Weitere Informationen Bild: Umweltatlas Berlin Bioklima Vor allem heiße Sommernächte können unseren Kreislauf belasten und Schlaflosigkeit nach sich ziehen. Zur Wärmebelastung in Berlin finden Sie hier ausführliche Informationen, Karten und Daten. Weitere Informationen Bild: Umweltatlas Berlin Klimawandel Im Jahr 2100 haben wir in Berlin südfranzösische Verhältnisse – zumindest was das Klima betrifft. Warum wird die Hauptstadt immer wärmer? Und wieso können wir so weit in die Zukunft blicken? Hier finden Sie die Ergebnisse umfangreicher Modellberechnungen und Karten. Weitere Informationen Bild: Umweltatlas Berlin Oberflächentemperatur Wie warm und kalt ist es eigentlich in Berlin? Eine Möglichkeit, das herauszufinden, ist die Infrarot-Temperaturmessung von einzelnen Oberflächen wie Dächern, Straßen und Baumkronen. Wie das funktioniert und welche Erkenntnisse sich daraus gewinnen lassen, lesen Sie hier. Weitere Informationen Bild: Umweltatlas Berlin Niederschlagsverteilung Wie oft regnet es in Berlin? Und wie viele Tropfen kommen dann herunter? Hier finden Sie umfangreiche Messergebnisse und Karten zur langjährigen Niederschlagsverteilung und erhalten Informationen darüber, wie gut das Regenwasser in Berlin abfließen kann. Weitere Informationen Bild: Umweltatlas Berlin Stadtklimatische Zonen Was macht der asiatische Götterbaum in Berlin? Und was verrät er uns über das Klima in der Stadt? Hier finden Sie Antworten – und dazu einen detaillierten Überblick über die verschiedenen stadtklimatischen Zonen in Berlin. Weitere Informationen

Entwicklung der Anzahl ausgewählter klimatologischer Kenntage 2022

Die Ergebnisse zeigen die räumliche Ausprägung von Hitzeereignissen in Berlin und wie sich die Häufigkeit des Auftretens von Hitzeereignissen über die Zeit verändert. Die kleinräumige Ausprägung der Auftrittshäufigkeiten der Kenntage ist dabei vornehmlich von der konkreten Flächennutzung abhängig. Eine genau Aufschlüsselung der Anzahl der Kenntage nach Nutzungstypen bzw. Siedlungsstrukturen findet sich in der Dokumentation. Entsprechend spiegeln die mittleren Auftrittshäufigkeiten der Stadtbezirke die vornehmliche Stadtstruktur und den Anteil an Grün- und Wasserflächen wider. Insbesondere mit Hinblick auf gesundheitliche Auswirkungen von langanhaltenden Hitzeereignissen können die Ergebnisse der Berechnung zur Priorisierung und Verortung von Anpassungsmaßnahmen hinzugezogen werden und ergänzen somit die Ergebnisse der Klimaanalyse. Darüber hinaus verdeutlichen die Ergebnisse die Auswirkungen von stadtklimatischen Effekten. Sommertage und Hitzetage Die Anzahl der Sommertage (Abb. 2) und der Hitzetage (Abb. 3) ist in denjenigen Gebieten erhöht, die tagsüber ein erhöhtes Lufttemperaturniveau aufweisen. Insbesondere sind dies dicht bebaute und unverschattete Gebiete mit einem hohen Versiegelungsgrad, u.a. dicht bebaute Gewerbe- und Industriegebiete, Kerngebiete und Flächen mit einer geschlossenen Blockbebauung und unverschatteten Innenhöfen. In diesen Bereichen treten im Referenzzeitraum durchschnittlich 49 bis 50 Sommertage bzw. ca. 11 Hitzetage pro Jahr auf. Damit liegt die Auftrittshäufigkeit deutlich über dem gesamtdeutschen Flächendurchschnitt für den Referenzzeitraum 1971-2000 (30,4 Sommertage bzw. 5,2 Hitzetage pro Jahr). Offene Grün- und Ackerflächen weisen durchschnittlich 40 Sommertage bzw. 8 Hitzetage im Jahr auf. Die Anzahl der Sommer- und Hitzetage ist demgegenüber deutlich verringert in Wäldern, wo durch den Baumbestand die Flächen überwiegend verschattet sind und das Temperaturniveau darüber hinaus durch Verdunstung abgemildert ist. Im Referenzzeitraum ergeben sich deswegen durchschnittlich 20 Sommertage bzw. 2 Hitzetage im Jahr in Wäldern, was unter der Auftrittshäufigkeit des gesamtdeutschen Flächendurchschnitts für Wälder im Referenzzeitraum liegt. Teilflächen, die unmittelbar an den Ufern von Gewässern liegen, weisen tendenziell eine geringere Anzahl an Sommer- und Hitzetagen auf, da Gewässer sich tagsüber durch die hohe Wärmekapazität von Wasser sich nur verzögert erwärmen und damit lokal kühlend auf die Luft wirken. Bedingt durch den Klimawandel ist ein Anstieg der Anzahl der Sommer- und Hitzetage zu erwarten, der in den Gebieten, in denen Sommer- und Hitzetage bereits im Referenzzeitraum häufig auftreten, stärker ausfallen wird als in den Gebieten, in denen Sommer- und Hitzetage seltener auftreten. Bis zum Zeitraum 2031-2060 erhöht sich die Anzahl der Sommertage im Siedlungsraum um durchschnittlich 20 im Jahr und die Anzahl der Hitzetage um durchschnittlich 10 im Jahr, während sich in den Grünflächen die Anzahl der Sommertage um durchschnittlich 16 im Jahr erhöht und die Anzahl der Hitzetage um 7. Durch den Anstieg ergiben sich in den thermisch stark belasteten Siedlungsgebieten durchschnittlich etwa 71 Sommertage bzw. 22 Hitzetage pro Jahr. Dies entspricht Auftrittshäufigkeiten, die bezogen auf den gesamtdeutschen Durchschnitt in der Vergangenheit nur in Jahren mit stark ausgeprägten Hitzewellen aufgetreten sind (z.B. 2018 mit 74,7 Sommer- und 20,3 Hitzetagen). Im gleichen Zeitraum ergibt sich ein Anstieg der Anzahl der Sommertage in Wäldern auf durchschnittlich 34 im Jahr und ein Anstieg der Anzahl der Hitzetage auf durchschnittlich 7 im Jahr. Bis zum Ende des Jahrhunderts ist ein weiterer Anstieg der Auftrittshäufigkeit von Sommer- und Hitzetagen zu erwarten. Für die thermisch am stärksten belasteten Siedlungsgebiete werden im Zeitraum 2071-2100 durchschnittlich etwa 84 bis 85 Sommertage im Jahr und etwa 34 bis 35 Hitzetage im Jahr erwartet. In Wäldern wird auf Basis dieser Berechnungen die durchschnittliche jährliche Anzahl bei 46 Sommer- und 13 Hitzetagen im Jahr liegen. Tropennächte Während die Anzahl der Sommer- und Hitzetage durch das lokale Temperaturniveau am Tag bedingt ist, wird die Anzahl der Tropennächte (Abb. 4) durch das Temperaturniveau in der Nacht beeinflusst. Insbesondere dicht bebaute Flächen mit einem hohen Versiegelungsgrad tendieren zu einer hohen Auftrittshäufigkeit von Tropennächten. Dies ist insbesondere der Fall für enge Straßenschluchten und Teilflächen mit vollständig umbauten und großflächig versiegelten Innenhöfen. Im Referenzzeitraum 1971-2000 ergeben sich in Kerngebieten, in dicht bebauten Gewerbe- und Industriegebieten und in Gebieten mit einer dichten Blockbebauung durchschnittlich 2 bis 3 Tropennächte im Jahr. In diesen Gebieten ist die Auftrittshäufigkeit höher als der bisherige gesamtdeutsche Flächendurchschnitt selbst in Jahren mit extremen Hitzeperioden (z.B. 1994 mit 1,7 Tropennächten) bedingt durch das grundsätzlich seltene Auftreten von Tropennächten in der Vergangenheit (gesamtdeutscher Durchschnitt im Referenzzeitraum 1971-2000: 0,2 Tropennächte pro Jahr). Offene Grünflächen und Ackerflächen kühlen nachts besonders stark ab, sodass im Durchschnitt im Referenzzeitraum auf diesen Flächen keine Tropennächte auftreten. Wälder hingegen kühlen nachts weniger stark ab, da durch das Kronendach die Abkühlung der Erdoberfläche abgemildert wird. Im Durchschnitt ergibt sich deshalb in Wäldern ca. eine Tropennacht im Jahr. An Wasserflächen erhöht sich die Auftrittshäufigkeit von Tropennächten bedingt durch die hohe Wärmekapazität von Wasser. Hierdurch kühlen sich Wasserkörper nachts nur langsam ab, wodurch auch die Lufttemperatur lokal beeinflusst wird. Wie bei den Sommer- und Hitzetagen ist der Anstieg der Häufigkeit von Tropennächten stärker in den Gebieten, die bereits im Referenzzeitraum eine erhöhte Auftrittshäufigkeit besitzen. In dicht bebauten Gebieten ergeben sich im Zeitraum 2031-2060 durchschnittlich etwa 9 zusätzliche jährliche Tropennächte (entspricht 11 bis 12 Tropennächte insgesamt im Jahr im Zeitraum 2031-2060), während sich über offenen Grün- und Ackerflächen durchschnittlich insgesamt 2 bis 3 Tropennächte im Jahr ergeben. In Wäldern erhöht sich die Anzahl der Tropennächte auf durchschnittlich 6 pro Jahr. Bis zum Ende des Jahrhunderts wird ein weiterer Anstieg der Anzahl der Tropennächte erwartet. Für dicht bebaute Gebiete werden im Zeitraum 2071-2100 durchschnittlich etwa 28 bis 29 Tropennächte im Jahr erwartet, in Wäldern durchschnittlich 19 und über offenen Grünflächen und Ackerflächen etwa 9 Tropennächte pro Jahr. Tabelle 1 zeigt die mittlere Anzahl der klimatologischen Kenntage pro Jahr aufgeteilt nach Siedlungsraum, Grünflächen und Straßenraum. Insgesamt zeigt sich, dass im Siedlungs- und im Straßenraum die analysierten Kenntage sowohl im Referenzzeitraum, als auch in den zukünftigen Perioden häufiger auftreten als in Grünflächen. Darüber hinaus ist ebenso davon auszugehen, dass der zukünftige Anstieg der Auftrittshäufigkeit im Siedlungs- und Straßenraum stärker ausgeprägt sein wird als in den Grünflächen. Eine Aufschlüsselung nach Nutzungstypen und Siedlungsstrukturen finden sich in der Dokumentation. Tabelle 2 und Abbildung 5 zeigen die Mittelwerte der jährlichen Auftrittshäufigkeiten der einzelnen Kenntage in den einzelnen Bezirken. Die Auftrittshäufigkeiten der einzelnen Kenntage in den Bezirken ist dabei vor allem abhängig von der vorherrschenden Stadtstruktur und dem Anteil an Grün- und Wasserflächen.

Klimaanalysekarte der fernen Zukunft mit hohen Emissionen (RCP 8.5 - Nacht) - Bremen

Die Klimaanalysekarte synthetisiert die wesentlichen Aussagen der Analyseergebnisse für die Nachtsituation in einer Karte und präzisiert bzw. pointiert das Kaltluftprozessgeschehen zu den Themenfeldern Überwärmung, Kaltluftentstehung und Kaltluftfluss. Dargestellt werden für die Siedlungs- und Verkehrsflächen die Lufttemperatur in °C und für die Grünflächen und landwirtschaftlichen Flächen wird die Kaltluftvolumenstromdichte in m³/m*s. Außerdem werden die Kaltluftprozesse wie linienhaften Kaltluftbahnen, flächenhafter Kaltluftabfluss, Kaltluftentstehungsgebiete, sowie das Windfeld visualisiert. Das Strömungsfeld bzw. die Fließrichtung der Kaltluft wurde für eine bessere Lesbarkeit der Karte auf eine Auflösung von 200 m aggregiert und ab einer als klimaökologisch wirksam angesehenen Windgeschwindigkeit von 0,2 m/s mit einer Pfeilsignatur visualisiert. Kleinräumigere und/oder schwächere Windsysteme (z. B. Kanalisierungseffekte in größeren Zufahrtsstraßen im Übergang zwischen Grün- und Siedlungsflächen) werden aus der Karte nicht ersichtlich. Für die Grünflächen und landwirtschaftlichen Flächen erfolgt die Darstellung der Kaltluftentstehungsgebiete. Diese, mit einer überdurchschnittlichen Kaltluftproduktion, gekennzeichneten Flächen weisen eine mittlere Kaltluftproduktionsrate von >25,5 m³/m²*h auf. Kaltluftleitbahnen verbinden kaltluftproduzierende sogenannte Ausgleichsräume (Grünflächen und landwirtschaftliche Flächen) und sogenannte Wirkräume (Siedlungs- und Verkehrsflächen) miteinander und sind mit ihren meist hohen Kaltluftvolumenströmen elementarer Bestandteil des Kaltluftprozessgeschehens. Gleichzeitig sind diese aber auch hochgradig anfällig gegenüber Flächenentwicklungen in ihren Kern- und Randbereichen, die zu einer Verengung des Durchflussquerschnittes und einer erhöhten Rauigkeit und damit zu einer Funktionseinschränkung bzw. zu einem Funktionsverlust führen können. Flächenhafte Kaltluftabflussbereiche kennzeichnen großräumigere Kaltluftbewegungen. Sie sind nur dann von einer vergleichbaren Verletzlichkeit geprägt, wenn sie ausschließlich auf wenig dynamischen Flurwinden basieren. Hangfolgende Kaltluftabflüsse reagieren aufgrund der zumeist gegebenen Ausweichmöglichkeiten der Luft deutlich robuster auf ein moderates Maß an baulichen Entwicklungen. Eine Einschränkung der klimaökologischen Funktionen ist aber bei besonders intensiven Flächenentwicklungen oder unter besonderen Nutzungsbedingungen auch hier durchaus möglich und zu vermeiden bzw. auf ein verträgliches Maß zu reduzieren. Als weiteres Element wurde der Parkwind eingesetzt. Hierbei handelt es sich um kleinräumige Kaltluftströmungen aus innerstädtischen Grünflächen, die radial in die umgebenden Siedlungsflächen einströmen. Trotz ihrer geringen räumlichen Ausprägungen können sie einen wichtigen Ausgleichseffekt innehaben. Hier wird die Klimaanalysekarte für die ferne Zukunft mit hohen Emissionen (RCP 8.5) dargestellt. -------------------------------------------------------------------- Generelle Modellierungsinformationen: Für die Modellierung wurde das Modell FITNAH-3D in einer Auflösung von 5 m genutzt. Als meteorologische Rahmenbedingung wird ein autochthoner Sommertag (wolkenloser Himmel, nur sehr schwach überlagernder Wind) angenommen. Bei dem Szenario der nahen Zukunft mit hohen Emissionen (RCP 8.5) wird als Starttemperatur eine Lufttemperatur von 25,8 °C und eine Wassertemperatur von 23 °C angenommen unter Berücksichtigung der Stadtentwicklung mit Stadtentwicklungsflächen. Weiterführende Informationen und eine detaillierte Beschreibung der Methodik finden Sie in folgenden Berichten: 1. Stadtklimaanalyse Bremen - Teil A - Ergebnisse und Planungshinweise 2. Stadtklimaanalyse Bremen - Teil B - Fachliche Grundlagen und Analysemethodik

Planungshinweiskarte - Bremen

Die Planungshinweiskarte ist die klimaökologische Bewertung von Flächen im Hinblick auf die menschliche Gesundheit bzw. auf gesunde Wohn- und Arbeitsverhältnisse. Dabei ist zwischen Flächen im Ausgleichsraum (Grünflächen, landwirtschaftliche Flächen und Waldflächen mit ggf. schützenswerten Klimafunktionen) und Flächen im Wirkraum (mit potenziellen Handlungserfordernissen aufgrund von Belastungen) zu unterscheiden. Abschließend werden Handlungsansätze für diese Flächen bereitgestellt. Die Planungshinweiskarte fasst die Informationen sowohl der Tag- und der Nachtsituation als auch von Referenz- und Zukunftssituation in einer Karte zusammen. -------------------------------------------------------------------- Wirkraum (Siedlungsflächen, Plätze und Straßenraum): Für den Wirkraum werden aus der Gesamtbewertung der bioklimatischen Situation verschiedene Handlungsbedarfe abgeleitet. Dazu wurde die Tag- und die Nachtsituation aus den Bewertungskarten der Ist-Situation und des Szenarios für die nahe Zukunft mit moderatem Klimaschutz jeweils miteinander kombiniert. Dabei entstehen folgende vier Klassifikationen: 1 - Klimatischer Sanierungsbereich Diese Flächen erfahren bereits aktuell oder im betrachteten Zukunftsszenario eine sehr starke Wärmebelastung. Es besteht bereits jetzt ein sehr hoher Bedarf an Anpassungsmaßnahmen zur Verbesserung der bioklimatischen Situation. Im Rahmen baulicher Entwicklungen / Überplanung sollte eine Verbesserung der klimatischen Situation erzielt werden. Weitere städtebauliche Entwicklungen dürfen nicht zu einer zu einer Verschlechterung der klimatischen Situation im direkten Umfeld führen. Vulnerable Einrichtungen wie bspw. Kitas, Schulen, Pflege- und Gesundheitseinrichtungen sollten nach Möglichkeit nicht in diesen Flächen geplant werden oder bedürfen bei notwendigen Planungen weitreichender Hitzeschutzmaßnahmen. 1.1 Die Fläche ist bereits aktuell sehr stark wärmebelastet. 1.2 Die Fläche ist aktuell noch nicht nicht sehr stark wärmebelastet, wird jedoch in der Zukunft (2050) sehr stark wärmebelastet sein. 2 - Klimatischer Optimierungsbereich Auf diesen Flächen ist bereits aktuell oder im betrachteten Zukunftsszenario eine starke Wärmebelastung vorhanden. Maßnahmen zur Verbesserung der bioklimatischen Situation sind hier notwendig und es besteht ein hoher Bedarf an Anpassungsmaßnahmen. Bauliche Entwicklungen sollten zu einer Verbesserung der klimatischen Situation auf der Fläche führen. Eine Verschlechterung der klimatischen Situation auf der Fläche und im direkten Umfeld sollte vermieden werden. 2.1 Die Fläche ist bereits aktuell und auch in der Zukunft (2050) stark wärmebelastet. 2.2 Die Fläche ist aktuell noch nicht stark wärmebelastet, wird jedoch in der Zukunft (2050) stark wärmebelastet sein. 3 - Klimatischer Erhaltungsbereich Auf diesen Flächen ist bereits aktuell oder im betrachteten Zukunftsszenario eine mäßige Wärmebelastung vorhanden. Maßnahmen zur Verbesserung der bioklimatischen Situation werden empfohlen. Für bauliche Entwicklungen sind klimaökologische Aspekte zu beachten wie bspw. Baukörperstellung bei Kaltluftströmungen, geringe Versieglung, Bäume mit ausreichend Wurzelraum, Fassadenbegrünung oder helle Dachflächen. Die bioklimatische Situation soll erhalten bleiben und nach Möglichkeit verbessert werden. 3.1 Die Fläche ist bereits aktuell und auch in der Zukunft (2050) mäßig wärmebelastet. 3.2 Die Fläche ist aktuell noch nicht mäßig wärmebelastet, wird jedoch in der Zukunft (2050) mäßig wärmebelastet sein. 4 - Klimatisch unbelasteter Bereich Auf diesen Flächen ist aktuell und auch im betrachteten Zukunftsszenario nur eine schwache Wärmebelastung vorhanden. Maßnahmen zur Verbesserung der bioklimatischen Situation haben hier keine Priorität, sollten jedoch immer geprüft werden. Bei größeren baulichen Entwicklungen sind mögliche Auswirkungen auf die bioklimatische Situation zu beachten. -------------------------------------------------------------------- Ausgleichsraum (Grünflächen, Landwirtschaftliche Flächen und Wald): Für die Grün- und Waldflächen und landwirtschaftlichen Flächen erfolgt mit der Planungshinweiskarte die Bewertung der Bedeutung für die bioklimatische Situation anhand ihrer Funktion für den Kaltlufthaushalt und als Rückzugsorte an heißen Tagen. Dazu werden – vergleichbar zum Wirkraum – die Tag- und die Nachtbewertungen miteinander verschnitten. Dies erfolgte jeweils für die Tag- und Nachtbewertungen der Ist-Situation und des Szenarios für die nahe Zukunft mit moderatem Klimaschutz. Dabei entstehen folgende vier Klassifikationen: 1 - Sehr hohe Bedeutung In diese Klasse fallen Flächen, die eine sehr hohe Bedeutung für die nächtliche Abkühlung haben, da sie im Einzugsgebiet einer bedeutenden Kaltluftströmung mit Siedlungsbezug liegen. Dazu zählen linienhafte Kalt-luftleitbahnen, flächenhafte Kaltluftabflüsse und Parkwinde. Bauliche Entwicklungen sind äußerst maßvoll zu gestalten und sollten unter Erhalt der thermischen Ausgleichsfunktion erfolgen. Negative Auswirkungen auf angrenzende Siedlungsflächen sollten vermieden werden. 2 - Hohe Bedeutung In diese Klasse fallen Flächen, die eine mäßige bis hohe Bedeutung für die nächtliche Abkühlung von angrenzenden Siedlungsflächen haben sowie als Rückzugsorte mit mäßiger bis geringer Wärmebelastung am Tage dienen. Dazu zählen Flächen, die Kaltluftleitbahnen und Kaltluftabflüsse speisen, Kaltluftentstehungsgebiete sowie Grünflächen, die unmittelbar an Siedlungsbereiche angrenzen, aber auch siedlungsferne Grünflächen, die einen relativ hohen Verschattungsanteil aufweisen. Bauliche Entwicklungen sind maßvoll zu gestalten und sollten nur unter Erhalt der thermischen Ausgleichsfunktion erfolgen. Negative Auswirkungen auf an-grenzende Siedlungsflächen sollten vermieden werden. 3 - Mittlere Bedeutung In diese Klasse fallen Flächen, die entweder eine mäßige bis hohe Bedeutung für die nächtliche Abkühlung von angrenzenden Siedlungsflächen haben oder als Rückzugsort mit mäßiger bis schwacher Wärmebelastung am Tage dienen. Dazu zählen Flächen, die dem Kaltlufttransport in angrenzende Siedlungsbereiche dienen und einen relativ geringen Verschattungsanteil aufweisen sowie Bereiche (siedlungsnah und -fern) mit dichter Vegetation und viel Verschattung. Bauliche Entwicklungen sollten unter Berücksichtigung der thermischen Ausgleichsfunktion erfolgen. Negative Auswirkungen auf angrenzende Siedlungsflächen sollten vermieden oder minimiert werden. 4 - Geringe Bedeutung In diese Klasse fallen Flächen, die eine mäßige bis sehr geringe Bedeutung für die nächtliche Abkühlung von angrenzenden Siedlungsflächen haben und nicht als Rückzugsort am Tage dienen, da sie eine erhöhte bis extreme Wärmebelastung aufweisen. Diese Flächen befördern während der Nacht nur geringe Mengen an Kaltluft zum Siedlungsraum und/oder besitzen keinen räumlichen Bezug dazu. Weiterhin weisen sie einen relativ geringen Verschattungsanteil auf. Bauliche Entwicklungen sollten unter Berücksichtigung der grundsätzlichen Klimafunktionen erfolgen. Insbesondere innerstädtische Grünstrukturen sollten erhalten und qualitativ verbessert werden. Zusätzlich: Ergänzend zur Einordnung der Bedeutung des Ausgleichsraums, werden durch eine Umrandung Flächen hervorgehoben, deren Bedeutung für die bioklimatische Situation sich im Zuge des Klimawandels erhöht. Grund dafür, dass Grünflächen in ihrer Bedeutung zunehmen, können beispielsweise angrenzende Wohnbereiche sein, deren thermische Situation sich im Zuge des Klimawandels verschlechtert und die daher noch stärker auf die kühlende Funktion von Grünflächen angewiesen sind. -------------------------------------------------------------------- Weitere Informationen in der Planungshinweiskarte aus den Klimaanalysekarten: - Kaltluftleitbahnen - Windfeld - Kaltlufteinwirkbereich - Kaltluftentstehungsgebiete -------------------------------------------------------------------- Generelle Modellierungsinformationen: Für die Modellierung wurde das Modell FITNAH-3D in einer Auflösung von 5 m genutzt. Als meteorologische Rahmenbedingung wird ein autochthoner Sommertag (wolkenloser Himmel, nur sehr schwach überlagernder Wind) angenommen. Bei der Ist-Situation wird als Starttemperatur eine Lufttemperatur von 21,2 °C und eine Wassertemperatur von 20,7 °C angenommen mit der heutigen Stadtstruktur. Bei dem Szenario der nahen Zukunft mit moderatem Klimaschutz (RCP 4.5) wird als Starttemperatur eine Lufttemperatur von 22,8 °C und eine Wassertemperatur von 21,5 °C angenommen unter Berücksichtigung der Stadtentwicklung mit Stadtentwicklungsflächen. Weiterführende Informationen und eine detaillierte Beschreibung der Methodik finden Sie in folgenden Berichten: 1. Stadtklimaanalyse Bremen - Teil A - Ergebnisse und Planungshinweise 2. Stadtklimaanalyse Bremen - Teil B - Fachliche Grundlagen und Analysemethodik

Klimaanalysekarten 2014 (Umweltatlas)

Die gesamtstätische Klimamodellierung dient als Grundlage, um die den Ist-Zustand des Stadtklimas im Land Berlin in die Planung einbeziehen zu können. Es werden hierfür notwendige stadtklimatische Klimaanalysen (siehe Klimaanalyse) und -bewertungen (siehe Planungshinweise Stadtklima) bereitgestellt. Für die gesamte Stadtfläche werden im Bereich der Klimaanalyse acht Klimaparameter jeweils in einer Rasterdarstellung mit einer hohen räumlichen Auflösung von 10 m x 10 m sowie aggregiert auf ca. 25.000 Block- und Blockteilflächen angeboten. Durch die hohe räumliche Auflösung sind die Klimaanalyseergebnisse dazu geeignet Planungsprojekte bis zur Ebene der Bauleitplanung zu unterstützen. Die dargestellten Parameter umfassen darüber hinaus nicht nur die wichtigsten klimatischen Größen wie (1) bodennahes Windfeld und Kaltluftvolumenstrom, (2) Luft- und (3) Strahlungstemperatur, (4) nächtliche Abkühlung sondern auch den thermischen Bewertungsindex (5) PET sowie die (6) Anzahl meteorologischer Kennwerte im Mittel der Jahre 2001-2010. Die Zusammenfassung der Erkenntnisse aus der Klimaanalyse erfolgt in der (7) Klimaanalysekarte. Die Klimaanalysekarte ermöglicht es, die einzelnen Bereiche der Stadt nach ihren unterschiedlichen klimatischen Funktionen, d.h. ihrer Wirkung auf andere Räume, abzugrenzen.

Fließrichtung der Kaltluft (Klimaanalyse)

Fließrichtung der Kaltluft. Das Produkt ist Teil der landesweiten Planungshinweiskarte und zeigt als Raster das Windfeld, das sich zur betrachteten Uhrzeit im Klimamodell eingestellt hat. Mehr dazu: https://www.lubw.baden-wuerttemberg.de/klimawandel-und-anpassung

Stadtklimaanalyse Hamburg 2023

Die Stadtklimaanalyse Hamburg 2023 basiert auf einer modellgestützten Analyse zu den klimaökologischen Funktionen für das Hamburger Stadtgebiet. Die Berechnung mit FITNAH 3D erfolgte in einer hohen räumlichen Auflösung (10 m x 10 m Raster) und liefert Daten und Aussagen zur Temperatur und Kaltluftentstehung in Hamburg. Die Untersuchung wurde auf der Annahme einer besonders belastenden Sommerwetterlage für Mensch und Umwelt mit geringer Luftbewegung und hoher Temperaturbelastung erstellt. Als Grundlage für die flächenbezogenen Bewertungen und deren räumliche Abgrenzungen diente der ALKIS-Datensatz „Bodennutzung“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Weitere Informationen zur Stadtklimaanalyse Hamburg 2023 sind unter folgendem Link abrufbar: https://www.hamburg.de/politik-und-verwaltung/behoerden/bukea/themen/hamburgs-gruen/landschaftsprogramm/stadtklimaanalyse-hamburg-896054 Dort stehen der Erläuterungsbericht, die Analyse- und Bewertungskarten sowie eine Erläuterungstabelle für den Datensatz, der als Grundlage für die Ebenen 11 bis 14 dient, zum Download zur Verfügung. Die Ebenen des Geodatensatzes „Stadtklimaanalyse Hamburg 2023“ werden wie folgt präzisiert: 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung) Die bodennahe Temperaturverteilung bedingt horizontale Luftdruckunterschiede, die wiederum Auslöser für lokale thermische Windsysteme sind. Ausgangspunkt dieses Prozesses sind die nächtlichen Temperaturunterschiede, die sich zwischen Siedlungsräumen und vegetationsgeprägten Freiflächen einstellen. An den geneigten Flächen setzt sich abgekühlte und damit schwerere Luft in Richtung zur tiefsten Stelle des Geländes als Kaltluftabfluss in Bewegung. Das sich zum nächtlichen Analysezeitpunkt 4 Uhr ausgeprägte Kaltluftströmungsfeld wird über Vektoren abgebildet, die für eine übersichtlichere Darstellung auf 100 m x 100 m Kantenlänge aggregiert werden. 02 Flurwinde und Kaltluftabflüsse Bei den nächtlichen Windsystemen werden Flurwinde von Kaltluftabflüssen unterschieden. Flurwinde werden durch den horizontalen Temperaturunterschied zwischen kühlen Grünflächen und warmer Bebauung ausgelöst. Kaltluftabflüsse bilden sich über Oberflächen mit Hangneigungen von mehr als 1 ° aus. 03 Bereiche mit besonderer Funktion für den Luftaustausch Diese Durchlüftungszonen verbinden Kaltluftentstehungsgebiete (Ausgleichsräume) und Belastungsbereiche (Wirkungsräume) miteinander und sind aufgrund ihrer Klimafunktion elementarer Bestandteil des Luftaustausches. Es handelt sich i.d.R. um gering überbaute und grüngeprägte Strukturen, die linear auf die jeweiligen Wirkungsräume ausgerichtet sind und insbesondere am Stadtrand das Einwirken von Kaltluft aus den Kaltluftentstehungsgebieten des Umlandes begünstigen. 04 Kaltlufteinwirkbereich innerhalb von Bebauung und Verkehrsflächen Hierzu zählen Siedlungs- und Verkehrsflächen, die sich im „Einwirkbereich“ eines klimaökologisch wirksamen Kaltluftstroms mit einem Wert von mehr als 5 m³/(s*m) befinden. Hier ist sowohl im bodennahen Bereich als auch darüber hinaus eine entsprechende Durchlüftung vorhanden. Die Eindringtiefe der Kaltluft beträgt, abhängig von der Bebauungsstruktur, zwischen ca. 100 m und bis zu 700 m. Darüber hinaus spielt auch die Hinderniswirkung des angrenzenden Bebauungstyps eine wesentliche Rolle. 05 Gebäude (Bestand und Planung) Mithilfe der Gebäudegrenzen werden Effekte auf das Mikroklima sowie insbesondere das Strömungsfeld berücksichtigt. Als Grundlage dient der ALKIS-Datensatz „Gebäude“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Dieser Datensatz wurde anhand ausgewählter, zum Zeitpunkt der Bearbeitung im Verfahren sowie in Planung befindlicher Bebauungspläne und Großprojekte modifiziert. 06 Windgeschwindigkeit um 4 Uhr Siehe Hinweise zur Ebene 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung). Die Rasterzellen stellen ergänzend zu den Windvektoren die Windgeschwindigkeit flächenhaft in 10 m x 10 m Auflösung dar. 07 Kaltluftvolumenstromdichte um 4 Uhr Der Kaltluftvolumenstrom beschreibt diejenige Menge an Kaltluft in der Einheit m³, die in jeder Sekunde durch den Querschnitt beispielsweise eines Hanges oder einer Kaltluftleitbahn fließt. Der Volumenstrom ist ein Maß für den Zustrom von Kaltluft und bestimmt neben der Strömungsgeschwindigkeit die Größenordnung des Durchlüftungspotenzials. Zum Zeitpunkt 4 Uhr morgens ist die Intensität der Kaltluftströme voll ausgeprägt. 07a Kaltluftvolumenstromdichte um 4 Uhr in den Grün- und Freiflächen Reduzierung der Ebene 07 Kaltluftvolumenstromdichte um 4 Uhr auf die Grün- und Freiflächen. 08 Lufttemperatur um 4 Uhr Der Tagesgang der Lufttemperatur ist direkt an die Strahlungsbilanz eines Standortes gekoppelt und zeigt daher i.d.R. einen ausgeprägten Abfall während der Abend- und Nachtstunden. Dieser erreicht kurz vor Sonnenaufgang des nächsten Tages ein Maximum. Das Ausmaß der Abkühlung kann je nach meteorologischen Verhältnissen, Lage des Standorts und landnutzungsabhängigen physikalischen Boden- bzw. Oberflächeneigenschaften große Unterschiede aufweisen. Besonders auffällig ist das thermische Sonderklima der Siedlungsräume mit seinen gegenüber dem Umland modifizierten klimatischen Verhältnissen. 08a Lufttemperatur um 4 Uhr im Siedlungsraum Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Siedlungsflächen. 08b Lufttemperatur um 4 Uhr in den Verkehrsflächen Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Verkehrsflächen. 09 Lufttemperatur um 14 Uhr Die Lufttemperatur am Tage ist im Wesentlichen durch die großräumige Temperatur der Luftmasse in einer Region geprägt und wird weniger stark durch Verschattung beeinflusst, wie es bei der PET der Fall ist (Erläuterung „PET“ siehe Ebene 10 und 13). Daher weist die für die Tagsituation modellierte Lufttemperatur eine homogenere Ausprägung auf. 10 Physiologisch Äquivalente Temperatur (PET) um 14 Uhr Meteorologische Parameter wirken nicht unabhängig voneinander, sondern in biometeorologischen Wirkungskomplexen auf das Wohlbefinden des Menschen ein. Zur Bewertung werden Indizes verwendet (Kenngrößen), die Aussagen zur Lufttemperatur und Luftfeuchte, zur Windgeschwindigkeit sowie zu kurz- und langwelligen Strahlungsflüssen kombinieren. Wärmehaushaltsmodelle berechnen den Wärmeaustausch einer „Norm-Person“ mit seiner Umgebung und können so die Wärmebelastung eines Menschen abschätzen. Die hier genutzte Kenngröße PET (Physiologisch Äquivalente Temperatur, VDI 3787, Blatt 9) bezieht sich auf außenklimatische Bedingungen und zeigt eine starke Abhängigkeit von der Strahlungstemperatur. Mit Blick auf die Wärmebelastung ist sie damit vor allem für die Bewertung des Aufenthalts im Freien am Tage sinnvoll einsetzbar. 11 Bewertung nachts Siedlungs- und Verkehrsflächen: mittlere Lufttemperatur um 4 Uhr Zur Bewertung der bioklimatischen Situation wird die nächtliche Überwärmung in den Nachtstunden (4 Uhr morgens) herangezogen und räumlich differenziert betrachtet. Der nächtliche Wärmeinseleffekt wird anhand der Differenz zwischen der durchschnittlichen Lufttemperatur einer Siedlungs- oder Verkehrsfläche und der gesamtstädtischen Durchschnittstemperatur von etwa 17,1 °C bewertet. Die mittlere Überwärmung pro Blockfläche wird in fünf Bewertungsstufen untergliedert und reicht von sehr günstig (≥ 15,8 °C) bis sehr ungünstig (>= 20 °C). 12 Bewertung nachts Grün- und Freiflächen: bioklimatische Bedeutung Bei der Bewertung der bioklimatischen Bedeutung von grünbestimmten Flächen ist insbesondere die Lage der Grün- und Freiflächen zu Leitbahnen sowie zu bioklimatisch ungünstig oder weniger günstig bewerteten Siedlungsflächen entscheidend. Es handelt sich um eine anthropozentrisch ausgerichtete Wertung, die die Ausgleichsfunktionen der Flächen für den derzeitigen Siedlungsraum berücksichtigt. Die klimaökologischen Charakteristika der Grün- und Freiflächen werden anhand einer vierstufigen Skala (sehr hohe bioklimatische Bedeutung bis geringe bioklimatische Bedeutung) bewertet. 13 Bewertung tags Siedlungs- und Verkehrsflächen: bioklimatische Bedeutung (PET 14 Uhr) Zur Bewertung der Tagsituation wird der humanbioklimatische Index PET um 14:00 Uhr herangezogen. Für die PET existiert in der VDI-Richtlinie 3787, Blatt 9 eine absolute Bewertungsskala, die das thermische Empfinden und die physiologischen Belastungsstufen quantifiziert. Die Bewertung der thermischen Belastung im Stadtgebiet Hamburg orientiert sich daran und reicht auf einer fünfstufigen Skala von extrem belastet (> 41 °C) bis schwach belastet ( 41 °C) zu einer sehr geringen Aufenthaltsqualität führt. 14 Bewertung tags Grün- und Freiflächen: Aufenthaltsqualität (PET 14 Uhr) Die Zuweisung der Aufenthaltsqualität von Grün- und Freiflächen in der Bewertungskarte beruht auf der jeweiligen physiologischen Belastungsstufe. Es werden vier Bewertungsstufen unterschieden. Eine hohe Aufenthaltsqualität ergibt sich aus einer schwachen oder nicht vorhandenen Wärmebelastung (PET 41 °C) zu einer sehr geringen Aufenthaltsqualität führt.

Natuerliche Waldentwicklung im Alpenvorland Bayerns

Die nacheiszeitliche Waldentwicklung im sueddeutschen Alpenvorland ist bisher nur innerhalb des an Seen und Mooren reichen Gebietes der letzten Vereisung untersucht worden. In dem genannten Vorhaben wird versucht, diese Untersuchungen auch auf das ehemals nicht vergletscherte Gebiet auszudehnen. Hierbei kommt es sowohl auf die Ermittlung der generellen Zuege in der nacheiszeitlichen Vegetationsentwicklung dieses Raumes an, als auch auf die Untersuchung der Vegetationsgeschichte einzelner Spezialstandorte.

Historische Klimatologie - Klimarekonstruktionen in Mitteleuropa

Regional differenzierte Klimarekonstruktion fuer Mitteleuropa anhand direkter und indirekter Klimadaten. Angestrebt werden quantitative Zeitreihen mit einer Aufloesung von Jahreszeitenwerten oder darunter. Das Arbeitsgebiet erstreckt sich vom Ostseeraum bis zum Alpenrand und schliesst raeumlich wie auch inhaltlich an benachbarte Forschungsgebiete an, mit denen im Rahmen der ESF staendig Kontakt gehalten wird. Das Vorhaben ist methodisch sehr breit angelegt. Die Daten werden derzeit in einer Datenbank abgelegt.

1 2 3 4 542 43 44