Der Datensatz zeigt die Standorteigenschaften für Waldstandorte in NRW im Maßstab 1 : 5.000. Es werden der Gesamtwasserhaushalt und die natürliche Nährstoffversorgung der Standorte dargestellt. Abgeleitet vom Gesamtwasserhaushalt wird die Dürreempfindlichkeit der Waldstandorte dargestellt. In weiteren Layern werden die Standorteigenschaften aggregiert zu Standorttypen nach Waldbaukonzept NRW sowie die Standorteignung von 16 wichtigen Waldbaumarten nach den Kriterien des Waldbaukonzeptes NRW. Die Auskunftsseite des WMS stellt die Eigenschaften für jede Fläche dar und bietet Verknüpfungen zu den Informationen des Waldbaukonzeptes NRW. Es handelt sich um eine Auswertung der Bodenkarte von NRW 1 : 5.000 in Verbindung mit Klimadaten des Klimaatlas von NRW (1981-2010, LANUK NRW, DWD) und Reliefdaten (DGM10, Geobasis NRW). Es werden alle Bodenflächen dargestellt, von denen zum Zeitpunkt der Bereitstellung eine digitale Bodenkarte zur Forstlichen Standorterkundung - BK5 F - vorliegt.
Der Datensatz zeigt die Standorteigenschaften für Waldstandorte in NRW im Maßstab 1 : 50.000. Es werden der Gesamtwasserhaushalt und die natürliche Nährstoffversorgung der Standorte dargestellt. Es handelt sich um eine Auswertung der Bodenkarte von NRW 1 : 50.000 in Verbindung mit Klimadaten des Klimaatlas von NRW (1981-2010, LANUK NRW, DWD) und Reliefdaten (DGM10, Geobasis NRW). Dabei werden alle Bodenflächen unabhängig von ihrer aktuellen Nutzung als Waldstandorte oder potentielle Waldstandorte gleich behandelt.
Der Datensatz zeigt die Standorteigenschaften für landwirtschaftlich genutzte Standorte in NRW im Maßstab 1 : 50.000. Es wird der Gesamtwasserhaushalt der Standorte, differenziert nach Acker- und Grünlandnutzung, dargestellt. Abgeleitet vom Gesamtwasserhaushalt wird die Dürreempfindlichkeit der landwirtschaftlich genutzten Standorte dargestellt. Es handelt sich um eine Auswertung der Bodenkarte von NRW 1 : 50.000 in Verbindung mit Klimadaten des Klimaatlas von NRW (1981-2010, LANUK NRW, DWD), Reliefdaten (DGM10, Geobasis NRW) sowie ATKIS-Nutzungsdaten (Geobasis NRW). Dabei werden alle Bodenflächen unabhängig von ihrer aktuellen landwirtschaftlichen Nutzung als Acker- und Grünlandstandorte gleich behandelt.
Dieses Projekt hat sich zum Ziel gesetzt, eine Klimatologie für den Alpenraum zu erstellen, deren räumliche und zeitliche Auflösung bisherige klimatologische Untersuchungen im Alpenraum übertrifft. Im Vordergrund stand die Erforschung von Phänomenen wie z.B. Hitzetiefs und Kältehochs, starke Druckunterschiede über den Alpen während Föhnwetterlagen, Um- bzw. Überströmung der Alpen, die mittlere Verteilung der Temperatur zu jeder beliebigen Tages- und Jahreszeit, aber auch die mittleren Windverhältnisse im Bereich der Alpen. Die klimatologischen Untersuchungen basieren auf Temperatur-, Druck- und Windanalysen bei einer zeitlichen Auflösung von 3 Stunden, die für einen Zeitraum von 22 Jahren berechnet wurden. Das dabei verwendete Analysesystem wurde in den letzten Jahren am Institut für Meteorologie und Geophysik der Universität Wien entwickelt. Die Eingangsdaten stammen vom Europäischen Zentrum für mittelfristige Wettervorhersagen (EZMW). Im Laufe dieses Projekts konnte die typische Druckverteilung über den Alpen bei ausgeprägten Hitzetiefs bzw. Kältehochs bestimmt werden. Es zeigte sich auch, dass Nordstau-Situationen in den Alpen etwa zwei- bis dreimal häufiger vorkommen als Südstau-Situationen. Die mittlere Verteilung der Temperatur der Niederungen wurde für jeweils 10 Tage im Jahr berechnet und als Temperaturkarte dargestellt. Der so entstandene Kartensatz wurde als Klimaatlas veröffentlicht und eignet sich gut für Vergleiche der aktuellen Temperaturverteilung mit der mittleren Temperaturverteilung der Periode 1980-2001. Im Rahmen der Untersuchung von thermisch ausgelösten Luftströmungen im unmittelbaren Bereich der Alpen ('Alpine Pumping') konnte Intensität und der zeitliche Verlauf dargestellt werden. Es wurde auch für jeden der 2752 Gitterpunkte des untersuchten Gebietes eine klimatologische Untersuchung der Windstärken und Windrichtungen erstellt. Die Ergebnisse dieses Projekts sind nicht nur ein wertvoller Beitrag zur Erforschung des alpinen Klimas, sondern finden auch Anwendungsmöglichkeiten in Tourismus und Wirtschaft.
Umweltgüter und -dienstleistungen bieten wirtschaftliche Chancen in Krisenzeiten Die deutsche GreenTech-Branche wächst deutlich schneller als klassische Industriezweige, ist stark in den globalen Handel integriert und an vielen Stellen Innovationstreiber. In Deutschland werden nach den USA und Japan die meisten GreenTech-Patente angemeldet. Damit ist die GreenTech-Branche nicht nur wichtig für Klima und Umwelt, sondern auch ein essenzieller Teil der deutschen Wirtschaft, der zur Resilienz und Wettbewerbsfähigkeit des Wirtschaftsstandortes Deutschland beiträgt. Das zeigt der GreenTech Atlas 2025, den Bundesumweltministerium und Umweltbundesamt (UBA) heute in Berlin vorstellen. Die GreenTech-Branche hat sich in den vergangenen Jahrzehnten zu einer relevanten Größe der deutschen Wirtschaft entwickelt. Die Querschnittsbranche vereint Unternehmen, die umwelt- und klimafreundliche Technologien und Dienstleistungen anbieten, wie Anlagen zur Produktion von erneuerbaren Energien oder Technologien zur Energieeffizienzsteigerung. Dazu zählen beispielsweise Filter für Luftreinhalteanlagen, aber auch Technologien zum Recycling von Solaranlagen. Rund 7,5 Prozent der in Deutschland Erwerbstätigen, neun Prozent der deutschen Bruttowertschöpfung und 8,4 Prozent der Exporte sind mittlerweile auf die Branche zurückzuführen. Die Bruttowertschöpfung lag im Jahr 2023 bei 314 Milliarden Euro. Sie wuchs seit 2010 um durchschnittlich knapp fünf Prozent pro Jahr und damit deutlich dynamischer als in der Gesamtwirtschaft. Besonders dynamisch ist das Wachstum in den Bereichen erneuerbare Energiesysteme, umweltfreundliche Mobilität und Energieeffizienz. Bundesumweltminister Carsten Schneider: „Klima- und Umweltschutz stärken den Wohlstand in unserem Land und beflügeln die Innovationskraft von Unternehmen. Das belegt der GreenTech Atlas 2025 eindrucksvoll: Die GreenTech-Branche hat sich stark entwickelt, sie ist heute ein Zugpferd für die deutsche Volkswirtschaft. Auf umweltschonende Produkte zu setzen, ist ein wirtschaftliches Erfolgsrezept. Darum ist eine ambitionierte Klima - und Umweltpolitik zugleich eine ökonomische Modernisierungs- und Wachstumsstrategie, die Deutschland so dringend braucht. Die Investitionen aus dem neuen Sondervermögen werden diesen Effekt weiter verstärken.“ UBA -Präsident Dirk Messner sagt: „Der GreenTech Atlas 2025 zeigt, dass die Branche für die gesamte deutsche Industrie ein starkes Standbein in Zeiten von Krisen und Veränderungen ist. Längst ist in vielen Sektoren klar, dass die Zukunft grünen Technologien gehört. Ambitionierte umwelt- und klimapolitische Ziele geben der Branche Sicherheit und können zu zusätzlicher wirtschaftlicher Stabilität beitragen.“ Die Entwicklung der Branche hängt stark davon ab, wie konsequent und nachhaltig politische Ziele wie Klimaneutralität und Kreislaufwirtschaft verfolgt werden. Potenzialabschätzungen zeigen, dass die Bruttowertschöpfung der deutschen GreenTech-Branche bis 2045 auf über 620 Milliarden Euro anwachsen kann. Der globale GreenTech-Markt könnte um zusätzliche 30 Prozent wachsen, sollten sich Klimaneutralität und zirkuläres Wirtschaften durchsetzen. Wird dieses Potenzial gezielt gefördert, entsteht dabei eine Win-Win-Situation mit Vorteilen für die Wirtschaft, Schaffung zukunftsfähiger Arbeitsplätze und dem Schutz von Klima und Umwelt. Die Zahl der Erwerbstätigen in der deutschen GreenTech-Branche wächst seit 2010 stärker als in der Gesamtwirtschaft. Im Jahr 2023 waren 3,4 Millionen Erwerbstätige in der Branche beschäftigt – etwa dreimal so viel wie in der Automobilindustrie. Besonders positiv entwickelten sich die Beschäftigungszahlen im Bereich der umweltfreundlichen Mobilität (plus fünf Prozent pro Jahr) und der Energieeffizienz (plus drei Prozent pro Jahr). Auch in den Krisenjahren der Corona-Pandemie und des russischen Angriffskrieges auf die Ukraine konnte die GreenTech-Branche ihren Wachstumskurs fortsetzen, während klassische Industriezweige einen Rückgang bei den Erwerbstätigenzahlen verzeichneten. Im Jahr 2023 exportierte die deutsche GreenTech-Branche Waren im Wert von 132 Milliarden Euro, das sind mehr als acht Prozent der deutschen Exporte. Seit 2019 wachsen die deutschen GreenTech-Exporte im Vergleich zu den deutschen Gesamtexporten überproportional stark. Mehr als die Hälfte (55 Prozent) der GreenTech-Exporte liefert die Branche in andere EU-Staaten, aber auch die USA (9,9 Prozent) und China (fünf Prozent) sind zentrale Handelspartner. Die weltweite Nachfrage nach GreenTech aus Deutschland ist seit 2010 in allen Bereichen gestiegen und könnte sich bis 2045 vervierfachen. Daher ist es wichtig, neue Absatzmärkte für deutsche GreenTech-Exporte zu erschließen. Weltweit kommen über die Hälfte aller GreenTech-Patentanmeldungen aus den USA, Japan und Deutschland. Die deutschen Patentanmeldungen konzentrieren sich insbesondere auf die Bereiche erneuerbare Energien und umweltfreundliche Mobilität. Noch ist Europa führend im Bereich GreenTech: Die zehn wichtigsten europäischen Länder stellen insgesamt etwa 40 Prozent der weltweiten GreenTech-Patente bereit. Allerdings holt China rasant auf: Seit 2010 hat sich die Zahl der chinesischen Patentanmeldungen versechsfacht. Die vorliegenden Ergebnisse des GreenTech Atlas 2025 wurden auf Basis amtlicher Statistiken und einer umfassenden Abgrenzung relevanter GreenTech-Güter und -Dienstleistungen berechnet. Der GreenTech Atlas wird zum siebten Mal veröffentlicht. Er stellt die Entwicklung der Branche seit 2010 dar und zeigt die Potenziale bis 2045 auf.
Deutscher Wetterdienst (DWD) 2018: Datensätze auf Basis der RCP-Szenarien. Internet: https://www.dwd.de/DE/klimaumwelt/klimaforschung/klimaprojektionen/fuer_deutschland/fuer_dtld_rcp-datensatz_node.html (Zugriff am 26.11.2024) Deutscher Wetterdienst (DWD) 2024: Deutscher Klimaatlas. Internet: https://www.dwd.de/DE/klimaumwelt/klimaatlas/klimaatlas_node.html (Zugriff am 17.01.2025) Huebener, H., Hoffmann, P., Keuler, K., Pfeifer, S., Ramthun, H., Spekat, A., Steger, C., Warrach-Sagi, K. 2017: Deriving user-informed climate information from climate model ensemble results. Adv. Sci. Res. 14, 261–269. IPCC (Intergovernmental Panel on Climate Change) 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge United Kingdom and New York, NY, USA. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf (Zugriff am 19.02.2025) IPCC (Intergovernmental Panel on Climate Change) 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge United Kingdom and New York, NY, USA. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FullReport_small.pdf (Zugriff am 19.02.2025) IPCC (Intergovernmental Panel on Climate Change) 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge United Kingdom and New York, NY, USA. https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf (Zugriff am 19.02.2025) Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O.B., Bouwer, L.M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., Van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., Yiou, P. 2014: EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14, 563–578. Reusswig, F.; Becker, C.; Lass, W.; Haag, L.; Hirschfeld, J.; Knorr, A.; Lüdeke, M. K.B.; Neuhaus, A.; Pankoke, C.; Rupp, J., Walther, C.; Walz, S.; Weyer, G.; Wiesemann, E. 2016: Anpassung an die Folgen des Klimawandels in Berlin (AFOK). Klimaschutz Teilkonzept. Hauptbericht. Gutachten im Auftrag der Senatsverwaltung für Stadtentwicklung und Umwelt, Sonderreferat Klimaschutz und Energie (SR KE). Potsdam, Berlin. Internet: https://www.berlin.de/sen/uvk/klimaschutz/anpassung-an-den-klimawandel/programm-zur-anpassung-an-die-folgen-des-klimawandels/ (Zugriff am 05.12.2024) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2020: Umweltatlas Berlin, Karte 06.08 Stadtstruktur differenziert, Berlin. Internet: https://www.berlin.de/umweltatlas/nutzung/stadtstruktur/2020/zusammenfassung/ (Zugriff am 06.01.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2022a: Umweltatlas Berlin, Karte 04.10 Klimamodellierung Berlin – Analysekarten, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2022/zusammenfassung/ (Zugriff am 06.01.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2022b: Umweltatlas Berlin, Karte 04.11 Klimamodellierung Berlin – Planungshinweise Stadtklima, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimabewertung/2022/zusammenfassung/ (Zugriff am 06.01.2025)
Global setzt 2024 als wärmstes Jahr seit 1850 einen Rekord. Somit traten die zehn wärmsten Jahre seit Beobachtungsbeginn 1880 in direkter Folge auf. Mit einer Mitteltemperatur von 10,9 °C war 2024 in Deutschland das bisher wärmste Jahr seit 1881. Die neun wärmsten Jahre seit 1881 liegen alle im 21. Jahrhundert. Steigende Durchschnittstemperaturen weltweit Obwohl es nicht möglich ist, anhand von einzelnen Jahren Aussagen über den durch den Menschen verursachten Klimawandel abzuleiten, passt die Entwicklung der letzten Jahre sehr gut in das Bild und zur Statistik eines langfristigen globalen Temperaturanstiegs. Mit den Mittelwerten der letzten 20 bis 30 Jahre ist der Klimawandel im Vergleich zu den Vergleichsperioden ab 1850 bzw. 1880 auch statistisch sehr gut belegt. 2024 war weltweit das wärmste Jahr seit Beginn der Wetteraufzeichnungen. Damit stellen die letzten zehn Jahre die weltweit wärmsten dar (siehe Abb. „Abweichung der globalen Lufttemperatur vom Durchschnitt der Jahre 1850 bis 1900“). Die Jahre 2016 und 2015 waren, neben dem Klimawandel, durch ein außergewöhnlich starkes El-Niño-Ereignis geprägt, das hohe globale Temperaturen begünstigt. Die Jahre 2017 - 2022 waren die bisher wärmsten Jahre seit Beginn der ausreichend umfangreichen Aufzeichnungen im Jahr 1850, die nicht in einem El-Niño-Ereignis lagen. Ab Sommer des Jahres 2023 begann ein neues El-Niño-Ereignis. Dieser El Niño allein kann aber nicht die extremen Rekordtemperaturen im Jahr 2023 und 2024 erklären. 2024 - das bisher wärmste Jahr in Deutschland Die deutschlandweite Mitteltemperatur im Jahr 2024 lag bei ca. 10,9 °C und damit um 2,7 ° über dem Mittelwert der Referenzperiode 1961-1990. Damit war 2024 das wärmste Jahr seit 1881 und das vierzehnte Jahr in Folge, das wärmer als der vieljährige Mittelwert von 1961-1990 war (siehe Abb. „Jährliche mittlere Tagesmitteltemperatur in Deutschland“ und Tab „Lineare Trends der Lufttemperatur“). Im Vergleich zu den ersten 30 Jahren der systematischen Auswertungen in Deutschland (also 1881 bis 1910) war die Durchschnittstemperatur 2024 in Deutschland circa 3,1 °C höher. Diese Erhöhung zeigt sich regional jedoch durchaus unterschiedlich (siehe Karten „Durchschnittliche Lufttemperatur in Deutschland im Jahr 2024“ und „Veränderung der durchschnittlichen Lufttemperatur in Deutschland im Jahr 2024“). Jährliche mittlere Tagesmitteltemperatur in Deutschland 1881 bis 2024 Quelle: Deutscher Wetterdienst Diagramm als PDF Tab: Lineare Trends der Lufttemperatur zwischen 1881 und 2024 Quelle: Deutscher Wetterdienst Tabelle als PDF Karte: Durchschnittliche Lufttemperatur in Deutschland im Jahr 2024 (in °C) Quelle: Deutscher Wetterdienst 2025: Deutscher Klimaatlas (Aufruf: Juni 2025) URL: https://www.dwd.de/DE/klimaumwelt/klimaatlas/klimaatlas_node.html Karte: Veränderung der durchschnittlichen Lufttemperatur in Deutschland im Jahr 2024 (in Kelvin) Quelle: Deutscher Wetterdienst 2025: Deutscher Klimaatlas (Aufruf: Juni 2025) URL: https://www.dwd.de/DE/klimaumwelt/klimaatlas/klimaatlas_node.html Heiße Tage in Deutschland Im Jahr 2024 wurden durchschnittlich 12,5 Heiße Tage (Tage mit Tmax ≥ 30 °C) beobachtet. Besonders viele Heiße Tage gab es in 2018 (mit durchschnittlich 20,4 Heißen Tagen) sowie im Jahr 2022 (17,3), aber auch schon in 2015 (17,6) sowie 2003 (19,0). Zwar schwanken die Jahreswerte dieses Indikators stark, insgesamt ist der Trend seit Beginn der Aufzeichnungen aber ebenfalls deutlich steigend. Klimamodellierungen zeigen, dass zukünftig in Deutschland mit einer steigenden Anzahl Heißer Tage im Sommer und länger anhaltenden Hitzeperioden zu rechnen ist. Dies führt zu erhöhten gesundheitlichen Risiken für bestimmte Personengruppen. Die Bearbeitung der interaktiven Karte erfolgt durch das Umweltbundesamt, FG I 1.6 und I 1.7. Frühling und Sommer in Deutschland signifikant wärmer Der langfristige lineare Temperaturanstieg im Sommer entspricht für den Zeitraum 1881-2024 mit 1,8 °C in etwa dem jährlichen linearen Trend. Während der Temperaturanstieg für den deutschen Frühling bei 1,7 °C liegt, erreicht der Temperaturanstieg im Herbst 1,8 °C. Die Temperaturen im Winter sind um 2,1 °C gestiegen. Speziell die Sommer seit 1997 waren besonders warm. Der Sommer 2003 ist weiterhin der wärmste Sommer, dann folgen die Sommer 2018, 2019 und 2022. Der Sommer 1996 war der letzte Sommer, der etwas unterhalb des 30-jährigen Mittelwertes von 1961-1990 lag. Beim Herbst haben wir den 14. wärmeren Herbst in Folge und beim Winter den 13. wärmeren in Folge beobachtet (einschließlich Winter 2023/24). Der Sommer 2024 war mit einer Durchschnittstemperatur von 18,5 °C der 5.-wärmste deutsche Sommer seit 1881 (zusammen mit 2023 und 1947). Am 5. April wurden die ersten Sommertage (Tage mit Tmax ≥ 25 °C) beobachtet. Der letzte Sommertag wurde am 17. Oktober registriert. In diesem Zeitraum wurde mit 52 Tagen die 6.-höchste Anzahl an Sommertagen gemessen (2018: 75 Tage, 2003: 62 Tage, 2022: 59 Tage, 2023 56 Tage, 2019 52 Tage). Verhaltene Temperaturen zum Start in den Juni und auch Juli hinterließen zeitweise den Eindruck eines recht kühlen Sommers 2024. Auch von langanhaltenden intensiven Hitzeperioden wurde Deutschland in diesem Jahr verschont. Dennoch zeigte sich der Sommer immer wieder mit Temperaturen über 30 Grad, Abweichungen zur Referenzperiode 1961-1990 lagen oft über 2 K, im August im Süden sogar teils über 4 K, sodass der Sommer 2024 trotzdem deutlich wärmer ausfiel. Die heißeste Phase des Sommers 2024 begann mit August und dauerte in den September an (siehe Abb. „Mittlere Tagesmitteltemperatur im Frühling in Deutschland“ und Abb. „Mittlere Tagesmitteltemperatur im Sommer in Deutschland“). Mittlere Tagesmitteltemperatur im Frühling in Deutschland 1881 bis 2024 Quelle: Deutscher Wetterdienst Diagramm als PDF Diagramm als Excel mit Daten Mittlere Tagesmitteltemperatur im Sommer in Deutschland 1881 bis 2024 Quelle: Deutscher Wetterdienst Diagramm als PDF Diagramm als Excel mit Daten Mildere Herbste und Winter in Deutschland Alle drei Herbstmonate 2024 (September, Oktober und November) waren wärmer als die jeweiligen vieljährigen Mittelwerte. Der Herbst 2023 endete mit einem Temperaturmittel von 10,5 °C als 5.-wärmster Herbst seit 1881 (siehe Abb. „Mittlere Tagesmitteltemperatur im Herbst in Deutschland“). Der Winter 2023/24 (meteorologischer Winter: Dezember bis Februar) war sehr mild. Jeder der drei Wintermonate war wärmer als die vieljährigen Monatsmittel für den Referenzzeitraum 1961-1990. Der Monat Dezember erreichte eine Mitteltemperatur von 3,3 °C. Im Januar wurde eine Mitteltemperatur von 1,5 °C registriert und im Februar 6,6 °C. Damit ist der Februar 2024 der bisher wärmste Wintermonat und der Monat mit der höchsten Abweichung gegenüber dem vieljährigen Mittelwert (6,2 K gegenüber 1961-1990). Der Winter 2023/2024 war mit einer positiven Abweichung von ungefähr 3,8 °C vom historischen Temperaturmittel der Wintermonate 1961-1990 der bisher 3.-wärmste Winter seit 1881 (siehe Abb. „Mittlere Tagesmitteltemperatur im Winter in Deutschland“). Wir danken dem Deutschen Wetterdienst für die Bereitstellung der Temperaturdaten. Mittlere Tagesmitteltemperatur im Herbst in Deutschland 1881 bis 2024 Quelle: Deutscher Wetterdienst Diagramm als PDF Diagramm als Excel mit Daten Mittlere Tagesmitteltemperatur im Winter in Deutschland 1881 bis 2024 Quelle: Deutscher Wetterdienst Diagramm als PDF Diagramm als Excel mit Daten Auswirkungen auf die Tier- und Pflanzenwelt Die Jahre werden nicht nur wärmer, in der Folge verschiebt sich auch der jahreszeitliche Entwicklungsgang von Pflanzen und Tieren (Phänologie). So blühen beispielsweise Schneeglöckchen, die den Eintritt des Vorfrühlings anzeigen, und Apfelbäume, die den Vollfrühling anzeigen, früher (fast fünf Tage/Jahrzehnt). Waldbäume treiben in vielen Ländern Europas eher aus (ebenfalls ca. fünf Tage/Jahrzehnt). Dies belegt, dass sich durch ein verändertes Temperaturniveau auch die Eintrittszeit und die Dauer der einzelnen Jahreszeiten verändert hat. Durch die sehr milden Monat Februar und März war die Entwicklung der Vegetation im Frühjahr schon weit vorangeschritten. Spätfröste in der zweiten Aprildekade führten zu erheblichen Einbußen im Obst- und Weinbau. Die Auswirkungen der Verschiebungen phänologischer Phasen auf die Bestände von Tieren und Pflanzen sind komplex und bisher erst in Ansätzen geklärt. So reagieren etwa bestimmte Vogelarten mit erhöhtem Bruterfolg infolge kürzerer Winter. Bei Pflanzenarten und ihren Bestäubern oder Fraßfeinden und in Räuber-Beute-Systemen kann sich die Veränderung in der zeitlichen Abstimmung hingegen negativ auf die Bestandsentwicklung von Arten auswirken.
In das Solarkataster NRW, ein zentrales Werkzeug für die Planung und den Ausbau von Photovoltaik-Anlagen in Nordrhein-Westfalen, wurde ein neues Werkzeug integriert: den Ertragsrechner für Neubauten und Fassaden. Der Ertragsrechner ermöglicht bereits bei der Planung eines Neubaus oder der Installation an Fassaden den Ertrag und damit die Wirtschaftlichkeit einer Solaranlage zu berechnen. Die Nutzung der Sonnenenergie ist entscheidend für die Energiewende und die Erreichung der Klimaschutzziele in NRW. Mit Stand Ende 2024 waren in NRW etwa 690.000 Photovoltaik-Anlagen auf und an Gebäuden installiert, ergänzt durch rund 160.000 Steckersolaranlagen („Balkonkraftwerke“) und 1.100 Freiflächenanlagen. „Mit dem Neubaurechner haben wir das Solarkataster um ein innovatives Werkzeug ergänzt, um den Ausbau von Photovoltaik in Nordrhein-Westfalen effizienter zu gestalten“, erklärte Elke Reichert, Präsidentin des Landesamtes für Natur, Umwelt und Verbraucherschutz (LANUV). „Wir ermöglichen damit allen Nutzerinnen und Nutzern, bereits bei der Planung eines Neubaus eine möglichst effiziente Versorgung über Sonnenenergie mitzudenken und in die Kalkulation der Baukosten aufzunehmen.“ Der neue Ertragsrechner ermöglicht es, einen konkreten Standort in Nordrhein-Westfalen auszuwählen und eine Wirtschaftlichkeitsberechnung für eine Photovoltaikanlage durchzuführen. Die Daten zur solaren Energie sind flächendeckend verfügbar, sodass auch für noch nicht erfasste Gebäude eine Analyse möglich ist. Der Rechner bietet die Möglichkeit, zwischen Dach- und Fassadenanlagen zu unterscheiden, die Neigung der Dachfläche individuell einzustellen und die Himmelsausrichtung anzupassen. Nutzer können zudem ihre Angaben zum Verbrauchsprofil, Stromverbrauch, Anlagengröße, Speicheroptionen, Finanzierungsform und Inbetriebnahme individuell anpassen. Das Solarkataster NRW, in dem auch der neue Ertragsrechner zu finden ist, bietet umfassende Daten zu den Potenzialen und dem Bestand der Photovoltaik in NRW. Es ermöglicht eine Solarpotenzialanalyse für alle Gebäude im Land und unterstützt die Planung von Solaranlagen auf Dächern, Fassaden und Freiflächen. Besonders beliebt sind die Daten zu Photovoltaik an Gebäuden, da für rund 11 Millionen Gebäude in NRW ein Solarpotenzial berechnet und die Dachflächen einer Eignungsprüfung unterzogen wurden. Zusätzlich finden sich Daten und Karten zur Freiflächen-Photovoltaik im Solarkataster, einschließlich aktuell geltender Flächen- und Förderkulissen sowie einer Karte der „Suchflächen“ für potenzielle Freiflächenanlagen. In den kommenden Monaten wird das Solarkataster um die Möglichkeit erweitert, Steckersolaranlagen zu berechnen. Diese Anlagen dürfen maximal 800 Watt über die Steckdose ins Stromnetz einspeisen. Das Solarkataster NRW wird vom Landesamt für Natur, Umwelt und Verbraucherschutz NRW (LANUV) im Fachzentrum „Klimaanpassung, Klimawandel, Wärme und Erneuerbare Energien“ gepflegt. Das Fachzentrum erarbeitet Grundlagendaten und Lösungsansätze für die Herausforderungen, die sich aus dem anthropogenen Klimawandel und der Energiewende ergeben. Thematische Schwerpunkte sind die Anpassung an den Klimawandel sowie die Strom- und Wärmewende. Das Fachzentrum betreibt die beiden digitalen Fachinformationssysteme Klimaatlas NRW und Energieatlas NRW, in denen die Arbeitsergebnisse für Bürgerinnen und Bürger, Kommunen, Wirtschaft und Politik zum Teil adressscharf und regionalisiert zur Verfügung gestellt werden. www.energieatlas.nrw.de www.solarkataster.nrw.de zurück
Mit einer durchschnittlichen Lufttemperatur von 11,3 °C ist das Jahr 2024 in Nordrhein-Westfalen zum dritten Mal in Folge ein Rekordjahr. „Der erneute Anstieg der mittleren Jahrestemperatur ist ein weiteres Zeichen des fortschreitenden Klimawandels. Wir beobachten immer deutlichere Anzeichen der Klimaveränderung in Nordrhein-Westfalen. Im Durchschnitt gibt es immer mehr heiße Tage im Sommer, dafür aber weniger Frost- und Eistage im Winter. Die Folgen sind vielfältig“, erläuterte Elke Reichert, Präsidentin den Landesamtes für Natur, Umwelt und Verbraucherschutz. „Neben den Auswirkungen auf die Wirtschaft sind Einflüsse auf die Biodiversität und Folgen für die menschliche Gesundheit an zahlreichen Indikatoren ganz klar zu beobachten.“ Immer mehr und deutlichere Extremwetterlagen sorgen für große Herausforderungen beispielsweise in der Land und Forstwirtschaft. In Dürreperioden wie in den Jahren 2018, 2019 und 2021 trocknen die Böden aus. Wälder nehmen Schaden durch Trockenheit, die die Bäume ebenfalls anfälliger für Schädlinge macht. Seit Beginn der Aufzeichnung ist die mittlere Zahl der Sommertage mit mehr als 25 Grad Celsius von 24 auf 36 Tage angestiegen. Die durchschnittliche Anzahl der heißen Tage, an denen das Thermometer über 30 Grad steigt, hat sich seit dem von vier auf acht Tage verdoppelt. Damit stieg auch die Zahl so genannter Tropennächte. Wenn es nachts nicht mehr abkühlt, wird die Schlafqualität gemindert. Das wirkt sich auf die Gesundheit aus. Konzentrations- und Leistungsfähigkeit sinken. Hitze erhöht zudem das Risiko schwerer bis tödlicher Verläufe im Falle von vorliegenden Atemwegs- und Herzkreislauferkrankungen. Zu den Indikatoren, die die Folgen des Klimawandels in Nordrhein-Westfalen beschreiben, sind im Klimaatlas zahlreiche Daten, Grafiken und Erläuterungen zu finden: https://www.klimaatlas.nrw.de/klima-nrw-monitoring Klimatische Daten zum Jahr 2024 Bereits im Februar 2024 wurde in Nordrhein-Westfalen ein neuer Temperaturrekord verzeichnet. Danach war jeder einzelne Monat des Jahres im Vergleich zur Referenzperiode 1961-1990 überdurchschnittlich warm. Insbesondere in den Frühjahrsmonaten sowie im Spätsommer und Herbst herrschten deutlich überdurchschnittliche Temperaturen. Der Durchschnitt über das gesamte Jahr erreichte mit 11,3 °C den höchsten je gemessenen Wert seit Aufzeichnungsbeginn 1881. Der Niederschlag verfehlte 2024, nach den Rekordmengen im Jahr zuvor, mit einer Jahressumme von 1028 Litern pro Quadratmeter nur knapp die Top 10 der niederschlagsreichsten Jahre. Nach der ausgedehnten Hochwasserlage rund um Weihnachten 2023 setzte sich das Jahr 2024 recht feucht fort. Im Vergleich zur Referenzperiode 1961-1990 lag die Niederschlagssumme in fast allen Monaten über dem langjährigen Mittelwert. Eine Ausnahme bildeten nur die Monate März und Dezember. Die Niederschläge waren somit recht gleichmäßig über das Jahr verteilt. Wegen der deutlich überdurchschnittlichen Niederschläge liegen die Grundwasserstände weiterhin auf einem hohen Niveau. Auch die Defizite der Bodenfeuchte, die sie zuvor über mehrere Jahre hin gebildet hatten, bestehen nun nicht mehr. Die Sonnenscheindauer landete mit 1500 Sonnenstunden im Jahr 2024 im Mittelfeld der Aufzeichnungen. Der Wert lag zwar oberhalb des Mittelwertes der Referenzperiode 1961-1990, im Vergleich zu den beiden Vorjahren blieb das Jahr 2024 aber deutlich trüber in Erinnerung. Weitere Informationen zum klimatischen Jahr 2024 sind im Klimaatlas NRW dargestellt: https://www.klimaatlas.nrw.de Das Fachzentrum Klima NRW beim LANUV erhebt und veröffentlicht Daten und Fakten zum Klimawandel, seinen Folgen und zur Energiewende. Es unterstützt Kommunen, Planende, Wissenschaft, Politik sowie Bürgerinnen und Bürger bei der Bewältigung der Klimakrise und bei der Planung der Strom- und Wärmewende. Informationsangebote bestehen z. B. über den LinkedIn-Kanal des Fachzentrums Klima NRW oder Newsletter zum Energieatlas und zum Klimaatlas. Daten und Informationsangebote des Fachzentrums Klima NRW: https://www.lanuv.nrw.de/themen/klima/fachzentrum-klimaanpassung-klimaschutz-waerme-und-erneuerbare-energie zurück
Origin | Count |
---|---|
Bund | 35 |
Land | 45 |
Wissenschaft | 1 |
Type | Count |
---|---|
Ereignis | 3 |
Förderprogramm | 18 |
Text | 31 |
Umweltprüfung | 2 |
unbekannt | 18 |
License | Count |
---|---|
geschlossen | 38 |
offen | 34 |
Language | Count |
---|---|
Deutsch | 71 |
Englisch | 2 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 3 |
Datei | 4 |
Dokument | 13 |
Keine | 28 |
Unbekannt | 1 |
Webdienst | 6 |
Webseite | 37 |
Topic | Count |
---|---|
Boden | 64 |
Lebewesen & Lebensräume | 70 |
Luft | 65 |
Mensch & Umwelt | 72 |
Wasser | 58 |
Weitere | 72 |