Das Schwerpunktprogramm ist multidisziplinär aufgebaut mit den interdisziplinär verwobenen Schwerpunkten:-- Physik und Chemie von Ozean, Eis und Atmosphäre -- Geowissenschaften -- Biowissenschaften. Die Polarregionen sind von großer Bedeutung für moderne Umweltforschung sowie für die Beurteilung von zukünftigen Klimaänderungen und ihren Folgen. Da die Reaktionen in den Polargebieten schneller erfolgen als in temperierten oder tropischen Zonen, gelten sie als Schlüsselgebiete der Erde. Dies gilt auch für die Lithosphärenforschung sowie für die Erforschung von globalen Klimaereignissen, Ozeanen und der Ökologie. Zudem beeinflussen sie das globale Wettergeschehen und den Wärmehaushalt. Während der letzten 45 Millionen Jahre ist Antarktika durch die Plattentektonik klimatisch und ozeanografisch isoliert worden. Der daraus resultierende Klimaeinfluss schuf den antarktischen Zirkumpolarstrom und die Vereisung beider Pole. Dieser Zirkumpolarstrom bildet das größte Zirkulationssystem der Erde. Er beeinflusst die Bildung von antarktischem Tiefenwasser und ist die Heimat für produktive Meereslebensgemeinschaften, die sich an die Extrembedingungen angepasst haben. Im Weddell- und Rossmeer schieben sich die Schelfeise hunderte Kilometer in das Meer hinaus, wobei die physikalischen und biologischen Prozesse unter ihnen unerforscht sind. Das Wasser unter dem Schelfeis besitzt hohe Dichten und fließt den Hang hinunter, um sich in die Tiefsee zu ergießen, wo es wiederum alle Weltmeere durchströmt. Die natürlichen Schwankungen des Erdklimas sind in marinen Sedimenten und in Eiskernen Grönlands und Antarktikas gespeichert. Überraschende Ergebnisse deutscher Forscher zeigten, dass Klimaumschwünge in Zeitskalen von nur Jahren oder Dekaden erfolgten. Ein anderer Aspekt der Klimaforschung betrachtet die Abnahme des polaren Ozons. Kontinuierliche Messungen belegen, dass die Ozonabnahme einhergeht mit einer Zunahme des schädlichen UV-B. Bedingt durch ihre Geschichte und Lage haben sich gerade an den Polen spezielle Habitate ausgebildet, die besonders empfindlich auf solche Störungen reagieren. Deshalb können Klimaänderungen und ihre Auswirkungen hier eher erkannt werden als in anderen Ökosystemen. Zusätzlich stellt die Antarktis mit ihren Organismen einen wichtigen Anteil der Biodiversität. Polarforschung muss deshalb eine Sonderrolle zukommen bei Themen wie z.B. Kontinententstehung und -zerfall, Klimaarchiv und Sensitivität gegenüber Umweltveränderungen.
Das aktuelle Klima der Erde verändert sich schneller, als von den meisten wissenschaftlichen Prognosen vorhergesagt wurde. Dabei erwärmen sich die Polargebiete schnellsten von allen Regionen der Erde. Die Polargebiete haben auch starke globale Auswirkungen auf das Erdklima und beeinflussen daher das Leben und die Lebensgrundlagen auf der ganzen Welt. Trotz der großen Fortschritte der Polarforschung der letzten Jahre gibt es nach wie vor schlecht verstandene Prozesse; einer davon ist die Aerosol-Wolke-Klima-Wechselwirkung, die daher auch nicht zufriedenstellend modelliert werden können. Wolken und deren Wechselwirkungen im Klimasystem sind eine der schwierigsten Komponenten bei der Modellierung, insbesondere in den Polarregionen, da es dort besonders schwierig ist, qualitativ hochwertige Messungen zu erhalten. Die Verfügbarkeit hochwertiger Messungen ist daher von entscheidender Bedeutung, um die zugrunde liegenden Prozesse zu verstehen und in Modelle integrieren zu können. Im ersten Teil des hier vorgeschlagenen Projekts schlagen wir, d.h. TROPOS, vor, die bestehenden Aerosolmessungen an der Neumayer III-Station um in-situ Wolkenkondensationskern- (CCN) und Eiskeim- (INP) Messungen zu erweitern für einen Zeitraum von fast zwei Jahren. Die erfassten Daten wie Anzahl der Konzentrationen, Hygroskopizität, INP-Gefrierspektren usw. werden mit meteorologischen Informationen (z.B. Rückwärtstrajektorien) und Informationen über die chemische Zusammensetzung der vorherrschenden Aerosolpartikel verknüpft, um Quellen für INP und CCN über den gesamten Jahreszyklus zu identifizieren. In einem optionalen dritten Jahr wollen wir die Ergebnisse der südlichen Hemisphäre mit den TROPOS-Langzeitmessungen des CCN und INP aus der Arktis (Villum Research Station) vergleichen, welche uns im Rahmen dieses Projekts von DFG-finanzierten TR 172, AC3, Projekt B04 zur Verfügung stehen werden. Ein Ergebnis des beantragten Projekts wird ein tieferes Verständnis dafür sein, welche Prozesse die CCN- und INP-Population in hohen Breiten dominieren. Die im Rahmen des vorliegenden Projekts gesammelten quantitativen Informationen über CCN und INP in hohen Breiten werden öffentlich zugänglich veröffentlicht, z.B. für die Evaluierung globaler Modelle und Satellitenretrievals.
Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.
Modellmaessige Untersuchungen der Grundlagen von Grundwasserdatierungen sowie der Migration von Tracern und Schadstoffen im Sicker- und Grundwasser. Beitraege zur Klimaforschung.
Der Anteil des atmosphärischen Wasserdampfs beträgt lediglich bis zu vier Volumenprozent der Erdatmosphäre. Aufgrund seiner besonderen Bedeutung für atmosphärische Prozesse - insbesondere für Klimawandel und Naturgefahren (z.B. Hochwasser, Dürreperioden, Flutkatastrophen, Gletscherschmelze) - ist die zuverlässige und genaue Kenntnis über die räumliche und zeitliche Verteilung des Treibhausgases Wasserdampf von eminenter Bedeutung. Wasserdampf ist zudem wichtiger Bestandteil des Wasserkreislaufs; er bestimmt Wolkenbildung und -verteilung sowie Niederschlag maßgeblich. Trotz seiner großen Bedeutung ist die Modellierung seines räumlichen und zeitlichen Verhaltens nicht zufriedenstellend gelöst. Obgleich regionale Atmosphärenmodelle prinzipiell hydro-meteorologische Zustandsgrößen mit hoher räumlicher und zeitlicher Auflösung simulieren können, ist die Reproduzierbarkeit von hochvariablen Prozessen beschränkt. Zudem existieren wenige hochauflösende Validierungsdatensätze. Während Wasserdampf für Meteorologie und Klimaforschung eine zentrale Zustandsgröße darstellt, liegt im Rahmen von geodätischen Anwendungen der Fokus auf der Reduktion seines Einflusses. Im Gegensatz zu den Effekten anderer Atmosphärenbereiche kann sein Einfluss auf Mikrowellenmessungen nicht durch Mehrfrequenzbeobachtungen eliminiert werden. Somit ist das Signal des atmosphärischen Wasserdampfs im Rahmen der Verarbeitung der Daten dieser Sensoren geeignet zu modellieren. Hierbei können GNSS und InSAR wertvolle Beiträge (GNSS: hohe zeitliche Auflösung; InSAR: hohe räumliche Auflösung) zur Rekonstruktion des Einflusses der Erdatmosphäre - und im Speziellen des atmosphärischen Wasserdampfs - längs des Signalwegs leisten. Unter Verwendung von komplexen tomographischen Ansätzen sind aus den GNSS- bzw. InSAR-basierten, integrierten Wasserdampfkenngrößen zeitabhängige 3D-Felder des Wasserdampfs ableitbar. Unter Verwendung von innovativen GNSS- und InSAR-Datenanalysetechniken zielt das beantragte Projekt darauf ab, für regionale Anwendungen neue Kombinationsansätze für die verbesserte Bestimmung der raum-zeitlichen Verteilung des atmosphärischen Wasserdampfs zu entwickeln und zu validieren. Die zentrale Fragestellung beschäftigt sich mit der wissenschaftlich fundierten, Geostatistik-basierten Zusammenführung von geodätischen Ergebnissen und meteorologischen Wettermodellen. Hierbei kommt tomographischen Fusionsansätzen - sowohl im Kontext der Zusammenführung der beiden geodätischen Sensoren als auch bei der Kombination von geodätischen und meteorologischen Produkten - eine wichtige Rolle zu; diese sind z.B. hinsichtlich horizontaler und vertikaler Auflösung weiterzuentwickeln. Darüber hinaus ist die Tomographie-basierte Fusion gegenüber meteorologischen Assimilationsansätzen zu vergleichen, um eine optimale regionale Strategie für die Zusammenführung aller beitragenden Sensoren und Modelle zur Ableitung von räumlich und zeitlich hochaufgelösten Wasserdampfverteilungen herauszuarbeiten.
These studies are continuing the work, which was carried out within a project of the German National Climate Research Programme of the German Ministry of Research and Technology (BMFT) - part Landsurface Climatology (1986-1990). In two research areas in a subpolar environment of Northern Sweden satellite data and meteorological models are used to study the energetic processes at the soil-vegetation-atmosphere-interface and to simulate with different scenarios the effect of a change of vegetation types (possible due to a global warming) on the energy budget. Another aspect is to use high-resolution satellite data for environmental monitoring of the subpolar birch forest. One location is near the Abisko Research Station of the Swedish Academy of Natural Sciences, the other is around the Tarfala Glaciological Research Station of the University of Stockholm.
Zielsetzung: Wasser ist das physiologisch wichtigste Lebensmittel. Die globale Klimaerwärmung erfordert eine Anpassung unserer Trinkgewohnheiten. Kinder sind besonders betroffen, je jünger umso mehr. In dem Präventionskonzept der Optimierten Mischkost für Kinder und Jugendliche ist Wasser das Regelgetränk von Anfang an. In der Ernährungswirklichkeit werden aber konkurrierende Angebote (gesüßte Erfrischungsgetränke, Mineralwasser) präferiert, vor allem bei Kindern und Jugendlichen mit niedrigem Sozialstatus. Die Umstellung von abgepackten Getränken auf Trinkwasser fördert nicht nur die individuelle Gesundheit, sondern leistet auch einen regelhaften Beitrag zur Umweltentlastung (CO2-Fußabdruck). Die Gewöhnung an einen gesunden Lebensstil fällt umso leichter und ist umso wirkungsvoller, je früher sie beginnt. Anders als in der schulischen Lehre hat in der Frühpädagogik der Grundsatz des aktiven, selbstgesteuerten Lernens Vorrang. Für die altersgerechte Vermittlung der Zusammenhänge von Ernährung/Trinken und Klima/Umwelt gibt es in Schulen erste Ansätze, in der Frühpädagogik ist sie eine neue Herausforderung. Kernidee des WATCH-Projektes ist die Erarbeitung klimasensitiver, physiologisch bedarfsgerechter, umweltfreundlicher und praxisnaher Trinkempfehlungen und deren multimedialer Transfer an Multiplikatoren als primäre Zielgruppen mit Schwerpunkt auf der frühkindlichen Bildung in Kindertageseinrichtungen (Kitas). Das multiprofessionelle Konsortium umfasst die pädiatrische Ernährungsmedizin & Ernährungswissenschaft, Klimaforschung & Umwelt(didaktik), Frühpädagogik & digitalen Transfer. Das-Projekt hat zwei Schwerpunkte, die inhaltlich und methodisch ineinandergreifen und sich ergänzen: Schwerpunkt 1: Ganzheitliche Trinkempfehlungen Zunächst werden am Modellstandort Bochum mikroklimatische Messdaten gewonnen und in physiologische Konzepte des Flüssigkeitshaushaltes bei klimatischen Stressbedingungen eingebracht. Anschließend werden die Trinkempfehlungen der Optimierten Mischkost klimasensitiv flexibilisiert und Algorithmen für Trinkbedarfe bei verschiedenen Klimabedingungen und Altersgruppen erstellt. Aus dem Vergleich mit Daten der Trinkpraxis in Deutschland werden realitätsnahe Szenarien für die Umweltentlastung (Ökobilanz) bei Umstellung auf Trinkwasser erarbeitet. Schwerpunkt 2: Multimediater Transfer der Ergebnisse Neue Konzepte für die Vermittlung von Trink-Klimazusammenhängen in der Frühpädagogik werden modellhaft und partizipativ in Kitas in Bochum entwickelt und erprobt, mit direktem Bezug zu den Messungen des dortigen Stadtklimas (kleine ‚Trinkforscher‘). Parallel wird mit fortschreitendem Projekt die Website flissu-fke.de Schritt für Schritt zu einer multimedialen Plattform ausgebaut. Diese enthält neben den im Projekt entstehenden Bildungsmaterialien auch die neuen Trinkempfehlungen und deren Entstehungsprozess, einschließlich einer zielgruppenspezifischen Aufbereitung für den schulischen Einsatz. Perspektive: Nach Projektende wird die flissu-Plattform vom FKE weiter betreut, sodass die Projektresultate niederschwellig und effektiv für Interessierte zugänglich bleiben.
The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Origin | Count |
---|---|
Bund | 399 |
Global | 1 |
Land | 32 |
Wissenschaft | 25 |
Type | Count |
---|---|
Ereignis | 16 |
Förderprogramm | 333 |
Messwerte | 8 |
Strukturierter Datensatz | 13 |
Text | 62 |
unbekannt | 23 |
License | Count |
---|---|
geschlossen | 71 |
offen | 368 |
unbekannt | 8 |
Language | Count |
---|---|
Deutsch | 295 |
Englisch | 191 |
Resource type | Count |
---|---|
Archiv | 5 |
Bild | 8 |
Datei | 24 |
Dokument | 26 |
Keine | 282 |
Multimedia | 2 |
Webseite | 139 |
Topic | Count |
---|---|
Boden | 361 |
Lebewesen & Lebensräume | 359 |
Luft | 395 |
Mensch & Umwelt | 447 |
Wasser | 360 |
Weitere | 434 |