<p>Gesundheitsrisiken durch Hitze</p><p>Sommerlich hohe Lufttemperatur birgt für Mensch und Umwelt ein hohes Schädigungspotenzial. Der Klimawandel führt nachweislich vermehrt zu extremer Hitze am Tag und in der Nacht, wodurch sich die gesundheitlichen Risiken für bestimmte Personengruppen erhöhen können. Für die Gesundheit von besonderer Bedeutung sind Phasen mit mehrtägig anhaltender, extremer Hitze.</p><p>Indikatoren der Lufttemperatur: Heiße Tage und Tropennächte</p><p>Die klimatologischen Kenngrößen „Heiße Tage“ und „Tropennächte“ des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) werden unter anderem zur Beurteilung von gesundheitlichen Belastungen verwendet. So ist ein „Heißer Tag“ definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius (°C) liegt, und eine „Tropennacht“ als Nacht, deren niedrigste Temperatur 20 °C nicht unterschreitet.</p><p>Die raumbezogene Darstellung von „Heißen Tagen“ (HT) und „Tropennächten“ (TN) über die Jahre 2000 bis 2024 zeigt, dass diese zum Beispiel während der extremen „Hitzesommer“ in den Jahren 2003, 2015, 2018 und 2022 in Deutschland verstärkt registriert wurden (siehe interaktive Karte „Heiße Tage/Tropennächte“).</p><p>Zu beachten ist, dass <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> regional unterschiedlich verteilt und ausgeprägt sein können, wie die Sommer der Jahre 2015, 2018, 2019 und 2022 zeigen. So traten Heiße Tage 2015 erheblich häufiger in Süddeutschland (maximal 40 HT) als in Norddeutschland (2015: maximal 18 HT) auf. Auch Tropennächte belasteten die Menschen im Süden und Westen Deutschlands häufiger: 2015 in Südwestdeutschland (maximal 13 TN). Besonders und wiederkehrend betroffen von extremer Hitze Demgegenüber betraf die extreme Hitze der Sommer 2018 und 2019 sind einige Teilregionen Süd- und Südwestdeutschlands (oberes Rheintal und Rhein-Maingebiet) sowie weite Teile Mittel- und Ostdeutschlands, wie Südbrandenburg und Sachsen (bis zu 45 HT und 13 TN). Während 2022 vor allem die Oberrheinische Tiefebene von Basel bis Frankfurt am Main sowie weitere Ballungsräume in Süddeutschland mit weit mehr als 30 Heißen Tage betroffen waren, lag der Hitzeschwerpunkt des Sommers 2024 mit bis zu 30 Heißen Tagen erneut in Brandenburg und Sachsen, bei nur sehr wenigen Tropennächten.</p><p>Informationen zur interaktiven Karte</p><p>Quellen: <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> 2000-2024 – <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>/Climate Data Center, <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2000-2024 – DWD/Climate Data Center; Daten für 2024 – Persönliche Mitteilung des DWD vom 15.05.2025.</p><p>Bearbeitung: Umweltbundesamt, FG I 1.6/FG I 1.7</p><p>Gesundheitsrisiko Hitze</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beeinflusst in vielfältiger Weise unsere Umwelt. Klimamodelle prognostizieren, dass der Anstieg der mittleren jährlichen Lufttemperatur zukünftig zu wärmeren bzw. heißeren Sommern mit einer größeren Anzahl an Heißen Tagen und Tropennächten führen wird. Extreme Hitzeereignisse können dann häufiger, in ihrer Intensität stärker und auch länger anhaltend auftreten. Es gibt bereits belastbare Hinweise darauf, dass sich die maximale Lufttemperatur in Deutschland in Richtung extremer Hitze verschieben wird (vgl. Friedrich et al. 2023). Dieser Trend ist in der Abbildung „Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 Grad Celsius“ bereits deutlich erkennbar.</p><p>Die mit der Klimaerwärmung verbundene zunehmende Hitzebelastung ist zudem von erheblicher gesundheitlicher Bedeutung, da sie den Organismus des Menschen in besonderer Weise beansprucht und zu Problemen des Herz-Kreislaufsystems führen kann. Außerdem fördert eine hohe Lufttemperatur zusammen mit intensiver Sonneneinstrahlung die Entstehung von gesundheitsgefährdendem bodennahem Ozon (siehe<a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-ozon">„Gesundheitsrisiken durch Ozon“</a>). Anhaltend hohe Lufttemperatur während Hitzeperioden stellt ein zusätzliches Gesundheitsrisiko für die Bevölkerung dar. Bei Hitze kann das körpereigene Kühlsystem überlastet werden. Als Folge von Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit chronischen Vorerkrankungen (wie zum Beispiel Herz-Kreislauf-Erkrankungen) sind von diesen Symptomen besonders betroffen. So werden während extremer Hitze einerseits vermehrt Rettungseinsätze registriert, andererseits verstarben in den beiden Hitzesommern 2018 und 2019 in Deutschland insgesamt etwa 15.600 Menschen zusätzlich an den Folgen der Hitzebelastung (vgl. Winklmayr et al. 2022). Modellrechnungen prognostizieren für Deutschland, dass zukünftig mit einem Anstieg hitzebedingter Mortalität von 1 bis 6 Prozent pro einem Grad Celsius Temperaturanstieg zu rechnen ist, dies entspräche über 5.000 zusätzlichen Sterbefällen pro Jahr durch Hitze bereits bis Mitte dieses Jahrhunderts.</p><p>Der Wärmeinseleffekt: Mehr Tropennächte in Innenstädten</p><p>Eine Studie untersuchte die klimatischen Verhältnisse von vier Messstationen in Berlin für den Zeitraum 2001-2015 anhand der beiden Kenngrößen „Heiße Tage“ und „Tropennächte“. Während an den unterschiedlich gelegenen Stationen die Anzahl Heißer Tage vergleichbar hoch war, traten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> an der innerhalb dichter, innerstädtischer Bebauungsstrukturen gelegenen Station wesentlich häufiger (mehr als 3 mal so oft) auf, als auf Freiflächen (vgl.<a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Eine Innenstadt speichert die Wärmestrahlung tagsüber und gibt sie nachts nur reduziert wieder ab. Die innerstädtische Minimaltemperatur kann während der Nacht um bis zu 10 Grad Celsius über der am Stadtrand liegen. Dies ist als städtischer Wärmeinseleffekt bekannt.</p><p>Hitzeperioden</p><p>Von besonderer gesundheitlicher Bedeutung sind zudem Perioden anhaltender Hitzebelastung (umgangssprachlich „Hitzewellen“), in denen <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> in Kombination mit Tropennächten über einen längeren Zeitraum auftreten können. Sie sind gesundheitlich äußerst problematisch, da Menschen nicht nur tagsüber extremer Hitze ausgesetzt sind, sondern der Körper zusätzlich auch in den Nachtstunden durch eine hohe Innenraumtemperatur eines wärmegespeicherten Gebäudes thermophysiologisch belastet ist und sich wegen der fehlenden Nachtabkühlung nicht ausreichend gut erholen kann. Ein Vergleich von Messstellen des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) in Hamburg, Berlin, Frankfurt/Main und München zeigt, dass beispielsweise während der <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a> 2003 und 2015 in Frankfurt/Main 6 mehrtägige Phasen beobachtet wurden, an denen mindestens 3 aufeinanderfolgende Heiße Tage mit sich unmittelbar anschließenden Tropennächten kombiniert waren (vgl.<a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Zu erwarten ist, dass mit einer weiteren Erwärmung des Klimas die Gesundheitsbelastung durch das gemeinsame Auftreten von Heißen Tagen und Tropennächten während länger anhaltender Hitzeperioden – wie sie zum Beispiel in den Sommern der Jahre 2003, 2006, 2015 und vor allem 2018 in Frankfurt am Main beobachtet werden konnten – auch in Zukunft zunehmen wird (siehe Abb. „Heiße Tage und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2001 bis 2020“). Davon werden insbesondere die in den Innenstädten (wie in Frankfurt am Main) lebenden Menschen betroffen sein. Eine Fortschreibung der Abbildung über das Jahr 2020 hinaus ist aktuell aus technischen Gründen leider nicht möglich.</p><p><em>Tipps zum Weiterlesen:</em></p><p><em>Winklmayr, C., Muthers, S., Niemann, H., Mücke, H-G, an der Heiden, M (2022): Hitzebedingte Mortalität in Deutschland zwischen 1992 und 2021. Dtsch Arztebl Int 2022; 119: 451-7; DOI: 10.3238/arztebl.m2022.0202</em></p><p><em>Bunz, M. & Mücke, H.-G. (2017): <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> – physische und psychische Folgen. In: Bundesgesundheitsblatt 60, Heft 6, Juni 2017, S. 632-639.</em></p><p><em>Friedrich, K. Deutschländer, T., Kreienkamp, F., Leps, N., Mächel, H. und A. Walter (2023): Klimawandel und Extremwetterereignisse: Temperatur inklusive Hitzewellen. S. 47-56. In: Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. 2. Auflage, 527 S., über 100 Abb., Berlin Heidelberg. ISBN 978-3-662-6669-8 (eBook): Open Access.</em></p>
Deutscher Wetterdienst DWD 1996: Klimakarten für das Land Berlin, Teil 1: Bioklima Berlin, Gutachten im Auftrag der Senatsverwaltung für Stadtentwicklung, Umweltschutz und Technologie, unveröffentlicht. GEO-NET 2013: Klimaökologische Untersuchung „Tempelhofer Freiheit“ in Berlin – Entwurf Rev. 02, im Auftrag der Tempelhof Projekt GmbH, Berlin unveröffentlicht. GEO-NET 2022: Regionale Kaltluftströmungen in Deutschland. Eigene Untersuchung. Unveröffentlicht. Groß, G. 1989: Numerical simulation of the nocturnal flow systems in the Freiburg area for different topographies, in: Beitr. Phys. Atmosph.,H 62, S. 57-72. Groß, G. 2002: The exploration of boundary layer phenomena using a nonhydrostatic mesoscale model, in: Meteor.Z.schr. Vol. 11 Nr.5, S.701-710. Höppe, P. 1984: Die Energiebilanz des Menschen. Münchener Universitätsschriften, Meteorol. Inst., Wiss. Mitt. 49. Höppe, P., Mayer, H. 1987: Planungsrelevante Bewertung der thermischen Komponente des Stadtklimas. Landschaft und Stadt 19 (1), S. 22–29. Kiese, O. et al. 1992: Stadtklima Münster. Entwicklung und Begründung eines klimarelevanten Planungskonzeptes für das Stadtgebiet von Münster. Stadt Münster – Werkstattberichte zum Umweltschutz 1/1992. Landesamt für Gesundheit und Soziales (LAGeSo) (Hrsg.) 2014: Verzeichnis der Krankenhäuser und Privatentbindungsanstalten, Stand 06/2014, Berlin. Internet: https://www.berlin.de/lageso/service/downloadcenter/ (Zugriff: 01.08.2024) Landesvermessung und Geobasisinformation Brandenburg (LGB) 2022: Amtliches Liegenschaftskatasterinformationssystem (ALKIS), Potsdam Internet: https://geobasis-bb.de/lgb/de/geodaten/liegenschaftskataster/alkis/ (Zugriff: 01.08.2024) Landesvermessung und Geobasisinformation Brandenburg (LGB) 2013: Digitales Geländemodell (DGM), Potsdam Internet: https://geobasis-bb.de/lgb/de/geodaten/3d-produkte/gelaendemodell/ (Zugriff 28.07.2020) Matzarakis, A., Mayer, H., 1996: Another Kind of Environmental Stress: Thermal Stress. NEWSLETTERS No. 18, 7-10. WHO Colloborating Centre for Air Quality Management and Air Pollution Control. Matzarakis, A., Rutz, F., Mayer, H., 2000: Modellierung der mittleren Strahlungstemperatur in urbanen Strukturen, Fachtagung METTOOLS, Stuttgart 2000. Internet: https://www.urbanclimate.net/matzarakis/papers/Tmrt_mettoolsiv.PDF (Zugriff: 04.02.2019) Mosimann, Frey, Trute, Wickenkamp 1999: Karten der klima- und immissionsökologischen Funktionen – Instrumente zur prozessorientierten Betrachtung von Klima und Luft in der Umweltplanung, in: Naturschutz und Landschaftsplanung 31,(4),S. 101-108, Stuttgart. Moriske & Turowski 2002: Handbuch für Bioklima und Lufthygiene, 8. Ergänzungslieferung, Ecomed-Verlag, Landsberg. Richter & Röckle (iMA Immissionen, Meteorologie Akustik) o.J.: Das numerische Simulationsmodell FITNAH, digitale PDF-Datei, Freiburg. Internet: https://www.ima-umwelt.de/fileadmin/Dokumente/Klima/fitnah_kurzuebersicht.pdf (Zugriff am 27.01.2016) SenStadt (Senatsverwaltung für Stadtentwicklung, Baue und Wohnen Berlin) (Hrsg.) 2020: Flächennutzung und Stadtstruktur – Dokumentation der Kartiereinheiten und Aktualisierung des Datenbestandes, Berlin. Internet: https://www.berlin.de/umweltatlas/_assets/literatur/nutzungen_stadtstruktur_2020.pdf (Zugriff 23.05.2025) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015: GEO-NET Umweltconsulting GmbH, Hannover: GIS-gestützte Modellierung von stadtklimatisch relevanten Kenngrößen auf der Basis hochaufgelöster Gebäude- und Vegetationsdaten; EFRE Projekt 027 Stadtklima Berlin, Abschlussbericht. Internet: https://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/download/Projektbericht_StadtklimaBerlin_SenStadtUm_IIID_2015.pdf (Zugriff 25.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015c: PRISMA – Planungsraumbezogenes Informationssystem für Monitoring und Analyse, Berlin. Internet: https://www.stadtentwicklung.berlin.de/soziale_stadt/sozialraumorientierung/de/prisma.shtml (Zugriff 26.11.2015) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) 2025a: Stadtklimaanalyse Berlin 2020/2022: Dokumentation der Datengrundlagen, Modellsimulation und Klimaanalyse. Internet: https://www.berlin.de/umweltatlas/_assets/literatur/doku_klimaanalyse_2022.pdf (Zugriff 22.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) 2025b: Klimamodellierung 2022: Auswertung von Messdaten ausgewählter Klimastationen in Berlin und Potsdam. Internet: https://www.berlin.de/umweltatlas/_assets/literatur/doku_klimastationen_2022.pdf (Zugriff 22.04.2025) VDI (Verein Deutscher Ingenieure) 2008: Richtlinie VDI 3785, Blatt1, Methodik und Ergebnisdarstellung von Untersuchungen zum planungsrelevanten Stadtklima, Düsseldorf. Internet: https://www.vdi.de/ (Zugriff am 11.05.2009) VDI (Verband Deutscher Ingenieure) 2015: Richtlinie VDI 3787 Blatt 2 Umweltmeteorologie: Methoden zur human-biometeorologischen Bewertung der thermischen Komponente des Klimas. Verein Deutscher Ingenieure, Düsseldorf. Internet: https://www.vdi.de/ (Zugriff 02.04.2024) VDI (Verein Deutscher Ingenieure) 2022: Richtlinie VDI 3787, Blatt2, Methoden zur human-biometeorologischen Bewertung der thermischen Komponente des Klimas, Düsseldorf. Internet: https://www.vdi.de/ (Zugriff am 02.04.2025) Vogt, J. 2002: Bericht über orientierende Untersuchungen zur lokalklimatischen Funktion der Flächen des Gleisdreieckes in Berlin, Textteil, Voruntersuchung im Auftrag der Vivico Management GmbH, unveröffentlicht, Berlin. Vogt, J. 2002: Bericht über orientierende Untersuchungen zur lokalklimatischen Funktion der Flächen des Gleisdreieckes in Berlin, Abbildungsteil, Voruntersuchung im Auftrag der Vivico Management GmbH, unveröffentlicht, Berlin. SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2001: Umweltatlas Berlin, Karte 04.07 Klimafunktionen, 1:50 000, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2000/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2003: Umweltatlas Berlin, Karte 04.10 Klimamodell Berlin – Analysekarten, 1:50 000, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2001/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2004: Umweltatlas Berlin, Karte 04.11 Klimamodell Berlin – Bewertungskarten, 1:50 000, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimabewertung/2001/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2009: Umweltatlas Berlin, Karte 04.10 Klimamodell Berlin – Analysekarten, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2005/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2022: Umweltatlas Berlin, Karte 04.10 Klimamodellierung Berlin – Klimaanalysekarten 2022, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimaanalyse/2022/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2009: Umweltatlas Berlin, Karte 04.11 Klimamodell Berlin – Bewertungskarten, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimabewertung/2005/zusammenfassung/ (Zugriff 16.04.2025) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2018: Umweltatlas Berlin, Karte 03.11.2 Verkehrsbedingte Luftbelastung im Straßenraum 2020 und 2025, Berlin. Internet: https://www.berlin.de/umweltatlas/luft/strassenverkehr-emissionen-und-immissionen/2018/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2021: Umweltatlas Berlin, Karte 01.02 Versiegelung, Berlin. Internet: https://www.berlin.de/umweltatlas/boden/versiegelung/2021/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2015: Umweltatlas Berlin, Karte 01.11.3 Naturnähe, Berlin. Internet: https://www.berlin.de/umweltatlas/boden/bodenfunktionskriterien/2015/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2022: Umweltatlas Berlin, 2022, Karte 04.12 Entwicklung der Anzahl ausgewählter klimatologischer Kenntage, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimawandel/2022/zusammenfassung/ SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2022: Amtliches Liegenschaftskatasterinformationssystem (ALKIS), Berlin. Internet: https://gdi.berlin.de/geonetwork/srv/ger/catalog.search#/metadata/0a7c53a5-b29d-3f45-9734-1c811045e6c2 (Zugriff 16.04.2025) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2016: Umweltatlas Berlin, Karte 04.11 Klimamodell Berlin – Planungshinweiskarte Stadtklima, Berlin. Internet: https://www.berlin.de/umweltatlas/klima/klimabewertung/2015/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2020: Umweltatlas Berlin, Reale Nutzung der bebauten Flächen / Grün- und Freiflächenbestand 2020. Internet: https://www.berlin.de/umweltatlas/nutzung/flaechennutzung/2020/zusammenfassung/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2020: Umweltatlas Berlin, Gebäudehöhen. Internet: https://www.berlin.de/umweltatlas/nutzung/gebaeudehoehen/ (Zugriff 16.04.2025) SenStadt (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen Berlin) (Hrsg.) 2020: Umweltatlas Berlin, Vegetationshöhen. Internet: https://www.berlin.de/umweltatlas/biotope/vegetationshoehen/2020/methode/ (Zugriff 16.04.2025)
Die Entwicklung der Anzahl ausgewählter klimatologischer Kenntage ist ein Ergebnis der durchgeführten Klimamodellierung 2022 im Land Berlin. Mit dem Angebot der Kenntage ist ein Blick zur Entwicklung des Stadtklimas im Land Berlin möglich. Betrachtet werden die drei Parameter bestehend aus Sommertage, Heiße Tage und Tropennächte in unterschiedlichen Zeiträumen. Die Kenntagsentwicklung ist räumlich für das gesamte Stadtgebiet von Berlin in Karten dargestellt. Die Anzahl und Verteilung der jeweiligen klimatologischer Kenntage ist für den Referenzzeitraum 1971 bis2000 sowie für zwei Zeitabschnitte in der Zukunft 2031 bis2060 und 2071 bis2100 modelliert worden. Zudem wurde ausgehend vom Referenzzeitraum die Zunahme der Anzahl der Kenntage gegenüber den beiden Zeitschnitten jeweils berechnet. Die Karten werden jeweils in einem 10x10 m Raster und als Mittelwerte pro Block(teil)fläche (ISU5) angeboten.
[ Derived from parent entry - see the respective metadata entry ] The experiment CLM_A2_ZS contains Northern European regional climate simulations of the years 2070-2099 on a rotated grid (CLM non hydrostatic, 0.44 deg. hor. resolution, see http://www.clm-community.eu ). It is forced by the first (_1_) run of the global IPCC SRES A2 (EH5-T63L31_OM-GR1.5L40_A2_1_6H), which describes an economic development which is primarily regionally oriented and the technical change is more fragmented and slower than in the other SRES storylines. The model region starts at -19.36/-40.48 (lat/lon in rotated coordinates; centre of lower left corner of the domain) with rotated North Pole at 21.3/-175.0 (lat/lon). The number of grid points is 80/146 (lat/lon). The sponge zone (numerically unreliable boundary grid points) consists of 8 grid boxes at each border. EH5-T63L31_OM-GR1.5L40_A2_1_6H were nudged during the simulations (spectral nudging,von Storch, H., A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev, 2000 ) The regional model variables include two-dimensional near surface fields and atmospheric fields on 6 pressure levels (200, 500, 700, 850, 925 and 1000 hPa) for zonal and meridional wind, temperature and pressure. The time interval of the output fields is 3 hours. Please contact sga"at"dkrz.de for data request details. The output format is netCDF. Experiment with CLM 2.4.6 on HPC Cluster ( blizzard ).
Ziel dieses Projekts ist es, die Forschung im Bereich der wechselseitigen Beziehung zwischen biologischer Evolution und Landschaftsevolution maßgeblich voranzutreiben. Arbeitsgebiete sind aride bis hyperaride Systeme, in denen sowohl biologische Aktivität als auch Erdoberflächenprozesse vorwiegend und sehr stark durch die Verfügbarkeit von Wasser limitiert sind. In diesem Projekt sollen die Schlüsselmerkmale biologischer Aktivität in extrem wasserlimitierten Habitaten der Erde identifiziert und Erdoberflächenprozesse, die unter nahezu wasserfreien Bedingungen ablaufen, charakterisiert werden. Die Bestimmung kritischer Schwellenwerte der Umweltbedingungen, die eine biologische Kolonisation und/oder Landschaftstransformationen erlauben, stellt ein wesentliches Ziel dar. Das zeitliche und räumliche Muster biologischer Kolonisation und Isolation wird zusammen mit der Chronologie der Landschaftsentwicklung in Bezug zur auschlaggebenden gemeinsamen Triebkraft, dem (Paleo-) Klima, untersucht. Diese Ziele sollen durch: (i) paleoklimatische Rekonstruktion und Observation des gegenwärtigen Klimas, zur Entwicklung geeigneter Klimamodelle, (ii) Erfassung der biogeographischen Migrationsgeschichte, Phylogenie (Pflanzen, Insekten, Protisten und Bakterien) und deren molekularer Datierung und (iii) räumliche Erfassung, Prozesscharakterisierung und Datierung von (fossilen) Landschaftselementen (Entwässerungssysteme, Hänge, fluviale und aeolische Sedimente, Böden), angegangen werden. Die Datierung geologischer Archive (i & iii) erfordert eine innovative (Weiter-) Entwicklung isotopengeologischer Methoden, welche entsprechend durchgeführt werden sollen.Es werden u.a. wesentliche Beiträge zu den sich entwickelnden Konzepten des evolutionären Timelags (Guerreo et al. 2013, PNAS 110, 11469-11474), des Einflusses geographischer Barrieren auf klimabedingte Speziesmigration (Burrows et al. 2014, Nature 507, 492-495), der Biogeomorphologie (Corenbilt et al. 2011, Earth Sci. Rev. 106, 307-331), sowie der Entwicklung neuer Methoden zur Datierung und Prozesscharakterisierung von Erdoberflächenprozessen und biologischer Evolution erwartet.
BfG MapService 'CC_GAR_Temp_2000_2050', OGC:WMS 1.3.0; The maps and data sets summarise climate change information resulting from a well defined ensemble of 14 regional climate simulations (mainly based on EU-ENSEMBLES) for periods 2021 to 2050 and 2071 to 2100. The information are expressed as change of air temperature and precipitation with respect to the simulated present (1971-2000) averaged over meteorological seasons and 50km grid boxes. Based on the ensemble, a high, central and low estimate of the possible future development is given.
Wissenschaftler sowie Politiker erwägen die regionale Verwendung von Marine Cloud Brightening (RegMCB) als mögliche Solar Radiation Management Technologie um die Erderwärmung durch anthropogene Treibhausgase gezielt zu verlangsamen. Während theoretische Arbeiten bezeugen, dass dieser Ansatz prinzipiell einen kühlenden Effekt im Klimasystem erzeugen kann, verbleiben enorme Unsicherheiten bezüglich der Wirksamkeit und der potentiellen Auswirkungen dieses Ansatzes. Dennoch werden erste MCB Feldexperimente in Australien bereits durchgeführt und sind auch in anderen Ländern in der Planung.Der aufhellende Effekt in marinen Wolken durch die kontinuierliche Emission von Seesalz in die untere Troposphäre ist bis heute nur hinreichend verstanden. Der Grad der Wirksamkeit dieser Technologie basiert hauptsächlich auf entweder hoch-aufgelösten Modellrechnungen, welche räumlich und zeitlich stark eingeschränkt sind, oder auf globalen Klimamodellrechnungen, welche auf stark vereinfachten Annahmen über den Ausstoß von Seesalzpartikeln basieren. Diese Lücke zwischen bisher verwendeten Modellansätzen werden wir innerhalb dieses Forschungsantrags schließen. Mit Hilfe von Simulationen von möglichen MCB Strategien innerhalb des Kalifornischen Stratocumulus Wolkendecks, werden wir den Wirksamkeitsgrad dieser Technologie unter realistischen Annahmen quantifizieren, und gleichzeitig potentielle Auswirkungen auf der regionalen Skala identifizieren und quantifizieren können.Innerhalb dieses Projektes werden wir eine vereinfachte Version von ICON-HAM, einem Klimamodell mit einer umfassenden Parametrisierung der Aerosolmikrophysik inklusive Strahlungskopplung und Aerosol-Wolken-Wechselwirkungen, entwickeln und verifizieren. Unser Modellansatz beinhaltet die volle Komplexität ICON-HAMs für Seesalzgrößenverteilungen während alle anderen Aerosolspezien mit konstanten Hintergrundkonzentrationen vorgeschrieben werden. Diese Modellversion wird wir mithilfe von Beobachtungen des Kalifornischen Stratocumulus Wolkendecks verifiziert werden. Das Kalifornische Deck ist eins der vier subtropischen Stratocumulusregionen weltweit und ist im Vergleich zu den anderen Decks am umfassendsten vermessen und verstanden. Innerhalb von RegMCB werden wissenschaftliche Erkenntnisse gewonnen welche uns helfen werden den Wirksamkeitsgrad und die Grenzen dieser Technologie zu quantifizieren. Innerhalb dieses Antrages werden erstmals Simulationen durchgeführt welche auf realistischen MCB Szenarien basieren und die nötige Komplexität beinhalten Aerosol-Wolken-Wechselwirkungen korrekt abzubilden. Gleichzeitig tragen die hier vorgeschlagenen Arbeiten zu einer Verbesserung unseres Verständnisses und der Repräsentation von Aerosol-Wolken-Wechselwirkungen in marinen Stratocumuli allgmein bei.
Anpassung des Precipitation-Runoff-Modeling-System an mitteleuropaeische klimatische Verhaeltnisse und Abschaetzung der Wirkungen von Klima- und Landnutzungsaenderungen auf den Wasserhaushalt.
Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Die Verteilung der Kenngröße Lufttemperatur stellt in Berlin an typischen Sommertagen aufgrund fehlender ausgeprägter Orographie vor allem eine Folge der Verteilung von bebauten und begrünten Flächen in der Stadt dar. Die Karte stellt zum ausgewählten Zeitpunkt die Verteilung der Temperaturwerte in 2m Höhe dar. 04.10.01 Lufttemperatur Gesamtstadt 22.00 Uhr Weitere Informationen Die Verteilung der Kenngröße Lufttemperatur stellt in Berlin an typischen Sommertagen aufgrund fehlender ausgeprägter Orographie vor allem eine Folge der Verteilung von bebauten und begrünten Flächen in der Stadt dar. Die Karte stellt zum ausgewählten Zeitpunkt die Verteilung der Temperaturwerte in 2m Höhe dar. 04.10.02 Lufttemperatur Gesamtstadt 06.00 Uhr Weitere Informationen Die gute Durchlüftung von Siedlungsgebieten kann zum Abbau von thermischen Belastungen führen. In Berlin sind die aus den innerstädtischen Grünanlagen in die Bebauung gerichteten Strömungen von großer Bedeutung. Die Karte stellt anhand der Windrichtungspfeile und der Häufigkeit des Luftaustausches das örtliche Potenzial zur Belüftung der bebauten Gebiete zum dargestellten Zeitpunkt dar. 04.10.03 Bodennahes Windfeld und Luftaustausch Gesamtstadt 22.00 Uhr Weitere Informationen Die gute Durchlüftung von Siedlungsgebieten kann zum Abbau von thermischen Belastungen führen. In Berlin sind die aus den innerstädtischen Grünanlagen in die Bebauung gerichteten Strömungen von großer Bedeutung. Die Karte stellt anhand der Windrichtungspfeile und der Häufigkeit des Luftaustausches das örtliche Potenzial zur Belüftung der bebauten Gebiete zum dargestellten Zeitpunkt dar. 04.10.04 Bodennahes Windfeld und Luftaustausch Gesamtstadt 06.00 Uhr Weitere Informationen Die gute Durchlüftung von Siedlungsgebieten kann zum Abbau von thermischen Belastungen führen. In Berlin sind die aus den innerstädtischen Grünanlagen in die Bebauung gerichteten Strömungen von großer Bedeutung. Die Karte stellt anhand der Windrichtungspfeile und des Kaltluftvolumenstromes das örtliche Potenzial zur Belüftung der bebauten Gebiete zum dargestellten Zeitpunkt dar. 04.10.05 Bodennahes Windfeld und Luftmassenstrom Gesamtstadt 22.00 Uhr Weitere Informationen Die gute Durchlüftung von Siedlungsgebieten kann zum Abbau von thermischen Belastungen führen. In Berlin sind die aus den innerstädtischen Grünanlagen in die Bebauung gerichteten Strömungen von großer Bedeutung. Die Karte stellt anhand der Windrichtungspfeile und des Kaltluftvolumenstromes das örtliche Potenzial zur Belüftung der bebauten Gebiete zum dargestellten Zeitpunkt dar. 04.10.06 Bodennahes Windfeld und Luftmassenstrom Gesamtstadt 06.00 Uhr Weitere Informationen Die Verteilung der Kenngröße Lufttemperatur stellt in Berlin an typischen Sommertagen aufgrund fehlender ausgeprägter Orographie vor allem eine Folge der Verteilung von bebauten und begrünten Flächen in der Stadt dar. Die Karte stellt zum ausgewählten Zeitpunkt die Verteilung der Temperaturwerte in 2m Höhe dar. 04.10.07 Lufttemperatur Vertiefungsgebiet 22.00 Uhr Weitere Informationen Die Verteilung der Kenngröße Lufttemperatur stellt in Berlin an typischen Sommertagen aufgrund fehlender ausgeprägter Orographie vor allem eine Folge der Verteilung von bebauten und begrünten Flächen in der Stadt dar. Die Karte stellt zum ausgewählten Zeitpunkt die Verteilung der Temperaturwerte in 2m Höhe dar. 04.10.08 Lufttemperatur Vertiefungsgebiet 06.00 Uhr Weitere Informationen Die gute Durchlüftung von Siedlungsgebieten kann zum Abbau von thermischen Belastungen führen. In Berlin sind die aus den innerstädtischen Grünanlagen in die Bebauung gerichteten Strömungen von großer Bedeutung. Die Karte stellt anhand der Windrichtungspfeile und der Häufigkeit des Luftaustausches das örtliche Potenzial zur Belüftung der bebauten Gebiete zum dargestellten Zeitpunkt dar. 04.10.09 Bodennahes Windfeld und Luftaustausch Vertiefungsgebiet 22.00 Uhr Weitere Informationen Die gute Durchlüftung von Siedlungsgebieten kann zum Abbau von thermischen Belastungen führen. In Berlin sind die aus den innerstädtischen Grünanlagen in die Bebauung gerichteten Strömungen von großer Bedeutung. Die Karte stellt anhand der Windrichtungspfeile und der Häufigkeit des Luftaustausches das örtliche Potenzial zur Belüftung der bebauten Gebiete zum dargestellten Zeitpunkt dar. 04.10.10 Bodennahes Windfeld und Luftaustausch Vertiefungsgebiet 06.00 Uhr Weitere Informationen Die gute Durchlüftung von Siedlungsgebieten kann zum Abbau von thermischen Belastungen führen. In Berlin sind die aus den innerstädtischen Grünanlagen in die Bebauung gerichteten Strömungen von großer Bedeutung. Die Karte stellt anhand der Windrichtungspfeile und des Kaltluftvolumenstromes das örtliche Potenzial zur Belüftung der bebauten Gebiete zum dargestellten Zeitpunkt dar. 04.10.11 Bodennahes Windfeld und Luftmassenstrom Vertiefungsgebiet 22.00 Uhr Weitere Informationen Die gute Durchlüftung von Siedlungsgebieten kann zum Abbau von thermischen Belastungen führen. In Berlin sind die aus den innerstädtischen Grünanlagen in die Bebauung gerichteten Strömungen von großer Bedeutung. Die Karte stellt anhand der Windrichtungspfeile und des Kaltluftvolumenstromes das örtliche Potenzial zur Belüftung der bebauten Gebiete zum dargestellten Zeitpunkt dar. 04.10.12 Bodennahes Windfeld und Luftmassenstrom Vertiefungsgebiet 06.00 Uhr Weitere Informationen
Origin | Count |
---|---|
Bund | 1755 |
Europa | 3 |
Land | 385 |
Wirtschaft | 10 |
Wissenschaft | 37 |
Type | Count |
---|---|
Daten und Messstellen | 13 |
Ereignis | 11 |
Förderprogramm | 1570 |
Text | 152 |
unbekannt | 303 |
License | Count |
---|---|
geschlossen | 92 |
offen | 1936 |
unbekannt | 21 |
Language | Count |
---|---|
Deutsch | 1592 |
Englisch | 652 |
Resource type | Count |
---|---|
Archiv | 7 |
Bild | 7 |
Datei | 21 |
Dokument | 70 |
Keine | 1069 |
Unbekannt | 5 |
Webdienst | 137 |
Webseite | 933 |
Topic | Count |
---|---|
Boden | 1634 |
Lebewesen und Lebensräume | 1654 |
Luft | 1975 |
Mensch und Umwelt | 2049 |
Wasser | 1626 |
Weitere | 2018 |