Im Projekt 'Planungswerkzeuge für die energetische Stadtplanung sind erste Ansätze zur energetischen Stadtplanung auf Basis des Energiemodells URBS entwickelt worden. Die Analyse erlaubt eine Einteilung der Stadt in Vorranggebiete bezüglich der Wärmeversorgung. Die Arbeit basiert auf verschiedenen Analysemodulen. Der erste Schritt besteht in der Erstellung einer Gebäudedatenbank. Alle Gebäude der Stadt sollen hinsichtlich ihrer Geometrie, des Gebäudealters, der Bauweise, des aktuellen Energieverbrauches usw. enthalten sein. Diese Informationen werden dann genutzt, um den gegenwärtigen und zukünftigen Wärmeverbrauch zu bestimmen. Der zukünftige Gebrauch wird unter der Annahme verschiedener Sanierungsmaßnahmen bestimmt. Der erste Schwerpunkt der Arbeit liegt auf einer Analyse der Verdichtung und Ausweitung des bestehenden Fernwärmenetzes. Mit Hilfe der Gebäudedatenbank wird analysiert wo und zu welchen Kosten die Fernwärme ausgebaut werden könnte. Die Erhebungen aus dieser Analyse werden dann im nächsten Schritt an das Optimierungsmodell IJRBS übergeben. Im nächsten Schritt werden verschiedene Wärmeversorgungsmöglichkeiten hinsichtlich der technischen Realisierbarkeit und der wirtschaftlichen Wettbewerbsfähigkeit untersucht. Der zweite Schwerpunkt der Untersuchung liegt auf Wärmepumpen. Hierfür wurde ein eigenes Bodenmodell entworfen. Mit dem Modell kann bestimmt werden, wo welche Menge an Energie aus dem Boden entzogen werden kann, ohne bestimmte Nachhaltigkeitskriterien zu verletzten. All diese Informationen werden in das Energiemodell URBS-Augsburg eingepflegt. Neben der Warme- wird auch die Stromversorgung im Modell abgebildet. Anhand des Modells kann dann untersucht werden welche Technologien und Maßnahmen eingesetzt werden sollten um gesetzte Klimaschutzziele zu erreichen. Ein entscheidendes Ergebnis des Modells zeigt die starke Abhängigkeit der lokalen Entwicklung in Augsburg von der allgemeinen Entwicklung der Stromerzeugung in Deutschland. Wenn eine überregionale Lösung beispielsweise mit viel off-shore Wind und Ansätzen wie Desertec realisiert wird, dann wird in Augsburg durch die Optimierung wenig eigner Strom erzeugt, Kraft- Wärme-Kopplung und Fernwärme werden nicht ausgebaut. Städtische Klimaschutzziele sollten in diesem Fall durch Einsparungsmaßnahmen im Gebäude-Wärmebereich vorangetrieben werden. Ist die Entwicklung hin zu klimaneutralem Strom in Deutschland schleppend, dann muss in Augsburg viel mehr 'grüner ' Strom erzeugt werden. Hier kann dann der Kraft-Wärme-Kopplung eine zentrale Rolle zukommen. Die Ausweitung dieses Ergebnisses ist dringend notwendig, da sie für die aktuelle politische Diskussion von zentraler Bedeutung sind.
Umweltstaatssekretär Jochen Flasbarth übergibt Förderbescheid an das Unternehmen Steinicke in Niedersachsen. Das Bundesumweltministerium fördert mit mehr als 400.000 Euro eine innovative Agro-Photovoltaikanlage des Unternehmens Steinicke im niedersächsischen Lüchow. Mit dem Pilotprojekt sollen Agrarflächen sowohl zur Lebensmittelerzeugung als auch darüberliegend zur Stromgewinnung durch Photovoltaik genutzt werden. Jährlich sollen durch die Anlage 756.000 Kilowattstunden Strom erzeugt werden, mehr als zehn Prozent oberhalb einer konventionellen Photovoltaikanlage gleicher Leistung. Jochen Flasbarth, Staatssekretär im Bundesumweltministerium, übergibt heute den Förderbescheid aus dem BMU-Umweltinnovationsprogramm bei seinem Besuch des Unternehmens Steinicke - Haus der Hochlandgewürze GmbH in Lüchow. Umweltstaatssekretär Jochen Flasbarth: 'Auf dem Weg zur Klimaneutralität 2045 benötigen wir deutlich mehr Erneuerbare Energien. Beim Ausbau der Erneuerbaren Energien brauchen wir viel mehr Kreativität, wie wir Nutzungskonflikte bei den verfügbaren Flächen auflösen können. Deshalb ist die Erprobung von Mehrfachnutzungen von landwirtschaftlicher Produktion und darüberliegender Photovoltaik eine innovative Lösung mit viel Zukunftspotenzial. Bei dem Vorhaben der Steinicke GmbH wird die Agro-Photovoltaik erstmals in großtechnischem Maßstab umgesetzt. Das ist eine Win-Win-Situation für das Klima, für eine zukunftsfähige Landwirtschaft und die Lebensmittelerzeugung.' Konventionelle Freiflächen-Photovoltaikanlagen werden bodennah errichtet. Die bebaute Fläche ist dann für eine andere Verwendung, wie z.B. die landwirtschaftliche Nutzung, nicht mehr geeignet. Um diesen Flächenkonflikt aufzulösen, plant das Unternehmen die erstmalige Errichtung einer Agro-Photovoltaikanlage (APV) in großtechnischem Maßstab. Eine höhere Aufständerung und größere Reihenabstände zwischen den einzelnen Modulen ermöglichen es, die Fläche zusätzlich für die landwirtschaftliche Bestellung auch mit landwirtschaftlichen Maschinen zu nutzen. Hierzu sollen auch neue Anbauverfahren zum Einsatz kommen. Außerdem verfügt die Agro-Photovoltaikanlage über zweiseitige Zellen, die das einfallende Licht nicht nur über die Vorder-, sondern auch über die Rückseite nutzen, und erzeugt so im Vergleich zu konventionellen Photovoltaikanlagen einen höheren Stromertrag. Der Strom soll für den Eigenbedarf, wie z.B. den Trocknungsprozess, eingesetzt werden. Darüber hinaus wird der Boden unter den Modulen von diesen beschattet, was weitere positive Effekte mit sich bringt, zum Beispiel den Erhalt der Bodenfeuchtigkeit und die Verringerung der Erosion und des Wasserverbrauchs. Unterhalb der PV-Anlage entsteht so eine Bodenstruktur mit günstigem Mikroklima, was einen Beitrag für eine umwelt- und klimafreundliche und damit zukunftsfähige Landwirtschaft darstellt.
Prof. Dr. Aletta Bonn Als Landesbeauftragte für Naturschutz und Landschaftspflege führt sie den Vorsitz des Sachverständigenbeirats. Seit 2012 war sie an der FU Berlin tätig. 2014 übernahm Aletta Bonn die Professur für Ökosystemleistungen an der Friedrich-Schiller-Universität Jena und Leitung des Departments Ökosystemleistungen am Helmholtz-Zentrum für Umweltforschung – UFZ im Rahmen des Deutschen Zentrums für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig. Mit 10 Jahren Erfahrung im Naturschutz im Nationalpark Peak District, UK, und bei der Weltnaturschutzorganisation IUCN (2002-2012), arbeitet sie nun an der Schnittstelle von Forschung – Politik – Gesellschaft. Ihre Arbeitsschwerpunkte liegen auf der Verbindung von Mensch und Natur mit Fokus auf Biodiversitätswandel, Stadtökologie, partizipativem Naturschutz und Citizen Science, sowie Biodiversität und Gesundheit. E-Mail: LandesbeauftragterfuerNaturschutz@senmvku.berlin.de Dr. Carlo W. Becker Als freischaffender Landschaftsarchitekt ist er bundesweit und international tätig und setzt sich mit aktuellen Fragen der städtischen und ländlichen Entwicklung auseinander. Aufgrund seines Erfahrungshintergrundes werden vor allem konzeptionelle Beiträge zur Zukunft und zur Wechselbeziehung von Stadt, Natur und Landschaft im fachinterdisziplinären Zusammenhang geleistet. E-Mail: becker@bgmr.de www.bgmr.de Dipl. Ing. Christa Böhme Landschaftsplanerin; Studium der Landschaftsplanung an der Technischen Universität Berlin; freiberufliche Tätigkeit in Planungsbüro; seit 1991 wissenschaftliche Mitarbeiterin und Projektleiterin im Difu (Bereich Stadtentwicklung, Recht und Soziales) mit folgenden Arbeitsschwerpunkten: integrierte Stadt(teil)entwicklung, gesundheitsfördernde Stadtentwicklung, Umweltgerechtigkeit, urbanes Grün. E-Mail: boehme@difu.de www.difu.de Andrea Gerbode Seit 2005 ehrenamtlich im Berliner Naturschutz aktiv / 2005 bis 2013 Bürgerinitiative Stadtring Süd / 2011-2016 Kommunalpolitikerin / seit 2016 im Vorstand (Vorsitzende) der Berliner Landesarbeitsgemeinschaft BLN e.V. / seit 2017 im Vorstand (stellvertretende Vorsitzende) des BUND Berlin e.V. / seit 2017 Vorsitzende Naturschutzbeirat Treptow-Köpenick / Vertretung der Naturschutzverbände in verschiedenen Gremien. E-Mail: gerbode@bund-berlin.de Prof. Dr. Dagmar Haase Seit 2009 Leiterin des Lab für Stadtökologie an der HU Berlin und Gastwissenschaftlerin am Helmholtz-Zentrums für Umweltforschung UFZ. Arbeitsschwerpunkte: Urbanisierung, komplexe Systeme, sozial-ökologische Forschung, Ökosystemleistungen, Grüne Infrastruktur, urbane Biodiversität, Resilienz, Citizen Science. E-Mail: dagmar.haase@geo.hu-berlin.de www.hu-berlin.de Christian Hiller (*1975) ist Medienwissenschaftler und Kurator. Er realisierte internationale Ausstellungs-, Veranstaltungs- und Forschungsprojekte und veröffentlichte zahlreiche Publikationen, die die Schnittstellen von Architektur, Urbanismus, Kunst und Medien zu sozialen und politischen Fragestellungen beleuchten. Ausstellungen wie Updating Germany, Klimakapseln und Cohabitation stellten u.a. Bezüge zwischen räumlicher Gestaltungspraxis und Klimawandel, Umweltschutz sowie Artenvielfalt in den Fokus. Bei ARCH+ arbeitet er seit 2016 als Redakteur und Leiter der Forschungs- und Ausstellungsprojekte. Aktuell ist er Teil der kuratorischen Teams von Open for Maintenance / Wegen Umbau geöffnet (Deutscher Beitrag zur 13. Architekturbiennale, Venedig 2023) und The Great Repair (Akademie der Künste, ab Oktober 2023). E-Mail: hiller@archplus.net Prof. Dr. Jonathan Jeschke Forscht und lehrt seit 2014 als Professor für Ecological Novelty am Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB) und an der Freien Universität Berlin. Seine fachlichen Schwerpunkte sind invasive Arten, Biodiversität und Stadtökologie sowie interdisziplinäre Integration und Forschungssynthese. E-Mail: jonathan.jeschke@fu-berlin.de www.igb-berlin.de Florian Kliche Seit 2008 am Unabhängigen Institut für Umweltfragen e.V. im Fachgebiet „Klimaschutz & Umweltbildung“ als Projektleiter tätig; seit 2016 Fachgebietsleiter „Energieeffizienz & Energiewende“ und seit 2020 Geschäftsführer. Zuvor Ingenieur im Qualitätsmanagement bei Siemens Power Generation und der ENSOLUT GmbH. Arbeitsschwerpunkte sind die Themen Klimaneutralität, Energie und Energieeffizienz, erneuerbare Energien und nachhaltige Stadt. E-Mail: florian.kliche@ufu.de Kerstin Meyer Geboren bei 325ppm, Volkswirtin, Arbeitsschwerpunkte: wachstumsbefreit und mit ökologischer Weitsicht Wirtschaften. Erhalt von naturnahen, inklusiven Freiräumen. Regenerierung von Boden in der Stadt; Volksentscheid zum Erhalt des Tempelhofer Feldes; Offener Nachbarschaftsgarten am Moritzplatz. Beruflich: Wirtschaftspolitische Beraterin in der Entwicklungszusammenarbeit; Gemeinwohlökonomie; Politische Referentin beim BUND e.V. in Berlin. E-Mail: office@kersmeyer.de Dipl.-Ing. Gabriele Pütz Studium der Landschaftsplanung an der Technischen Universität Berlin. Mitgründerin des Büros gruppe F, Freiraum für alle GmbH, dass sie mit Partner*innen leitet. Lehrtätigkeit an der TU Berlin, der HTW Dresden, der Universität Potsdam und der Universität Hannover. Sie ist forschend im Auftrag des BBSR und des BfN tätig und Preisrichterin bei freiraumbezogenen Wettbewerbsverfahren. Schwerpunkte ihrer Arbeit sind Grüne Infrastruktur, Landschafts- und Klimaanpassungsplanung, strategische Freiraumentwicklung, Biodiversitätsplanung, Ausgleichskonzeptionen sowie Pflege- und Managementplanungen. Ein weiterer Arbeitsschwerpunkt ist die Moderation und Steuerung von Partizipationsprozessen. E-Mail: puetz@gruppef.com www.gruppef.com Ronja Schoenau Studium der Geoökologie an der Universität Potsdam und Masterstudium Umweltplanung an der Technischen Universität Berlin. Wissenschaftliche Mitarbeiterin für Mobilitätspolitik beim Bund für Umwelt und Naturschutz Deutschland e.V. (Bundesgeschäftsstelle). Aktuell als Public Affairs Managerin bei der IHK Berlin, Geschäftsfeld Wirtschaft & Politik, im Bereich Umwelt, Energie und Klima. Schwerpunkte ihrer Arbeit sind die Themen Umweltschutz, Klimaanpassung, Biodiversität, Immissionsschutz. E-Mail: ronja.schoenau@berlin.ihk.de www.ihk-berlin.de Dipl.-Biol. Manfred Schubert Diplom-Biologe und als Geschäftsführer der Berliner Landesarbeitsgemeinschaft (BLN) tätig. Er koordiniert die Verbandsbeteiligung in Berlin. Seine Schwerpunkte sind die Themen Naturschutz auf Friedhöfen und Gewässerschutz. E-Mail: manfred.schubert@bln-berlin.de www.bln-berlin.de Prof. Dr. Heiko Sieker Geschäftsführer der Ingenieurgesellschaft Prof. Dr. Sieker mbH in Hoppegarten, Honorarprofessor für Urbane Hydrologie an der TU Berlin, seit über 20 Jahre aktiv in Praxis und Lehre/Weiterbildung in den Bereichen Regenwasserbewirtschaftung, Gewässerentwicklung und Hochwasserschutz. E-Mail: h.sieker@sieker.de www.sieker.de Dr. Nike Sommerwerk Gewässerökologin; Wissenschaftlerin am Museum für Naturkunde Berlin. Leitung des MfN-Forschungsclusters NaturBerlin zu urbanem Biodiversitätswandel und des MfN-Biodiversity Policy Lab. Arbeitsschwerpunkte: Biodiversitätsforschung, Biodiversitätsmonitoring, Mensch-Ökosystem-Interaktionen und wissenschaftsbasierte Politikberatung. E-Mail: nike.sommerwerk@mfn.berlin Prof. Dr. Susanne Stoll-Kleemann Seit 2007 Lehrstuhlinhaberin und Professorin für Nachhaltigkeitswissenschaft und Angewandte Geographie an der Universität Greifswald, promoviert an der Technischen Universität Berlin und habilitiert an der Humboldt Universität zu Berlin. Mitglied der Beiräte der Biosphärenreservate Spreewald und Südost Rügen. Arbeitsschwerpunkte: sozialwissenschaftliche Aspekte von Naturschutz, Bedingungen einer echten sozial-ökologische Transformation an der Schnittstelle zwischen individuellen Verhalten und politischen Rahmenbedingungen, „Ocean Literacy“, Drittmittelprojekte zu Biodiversität, global und im Ostseeraum. E-Mail: susanne.stoll-kleemann@uni-greifswald.de
<p>Im Rahmen der Open-Data-Initiative der Stadt Münster erhalten Sie an dieser Stelle alle Rohdaten, die zur Darstellung des <a href="https://klimadashboard.ms/">"Klimadashboard Münster"</a> genutzt werden.</p> <ol> <li>Die angehängte CSV-Datei enthält alle Daten, die sich monatlich oder seltener aktualisieren.</li> <li>Daten, die sich häufiger aktualisieren, sowie detailliertere Datensätze finden Sie <a href="https://opendata.stadt-muenster.de/search?query=klimadashboard">in weiteren Datensätzen auf dem Open-Data-Portal der Stadt Münster</a>. </li> </ol> <p><strong>Infos zu den Datenspalten der CSV-Datei</strong></p> <p>Die CSV-Datei enthält alle Werte, die in den Diagrammen des Klimadashboards genutzt werden, die sich seltener als 1x im Monat aktualisieren. Dazu enthält sie folgende Spalten: </p> <ol> <li>DATEINAME - Über die Spalte "Dateiname" können zusammengehörende Zeilen zugeordnet werden. Die CSV-Datei enthält (fast) alle Rohdaten für die unterschiedlichen "Kacheln" bzw. Diagramme des Klimadashboards. Anhand des Dateinamens können Daten zu einer Klimadashboard-Kachel zugeordnet werden.</li> <li>RAUM - Räumlicher Bereich, auf den sich die Daten beziehen. Z.B. die Gesamtstadt, oder nur ein Stadtviertel.</li> <li>QUELLE_INSTITUTION - Von welcher Institution die Daten stammen, also z.B. die Stadtwerke.</li> <li>THEMENBEREICH - Nur intern genutzt. Die hier enthaltene Zahl stellt eine numerische ID des Dateinamens dar.</li> <li>MERKMAL - Die Beschreibung des Merkmals, auf das sich der Wert bezieht. </li> <li>ZEIT - Der Zeitraum, auf den sich der Wert bezieht.</li> <li>WERT - Der Wert selbst.</li> <li>WERTEEINHEIT - Die Einheit des Werts, z.B. Prozent.</li> </ol> <p><strong>Weitere Infos zum Klimadashboard</strong></p> <p>Der Quellcode, mit dem diese Daten für das Klimadashboard verarbeitet werden, ist Open Source Software und kann im <a href="https://gitlab.opencode.de/smart-city-muenster/klimadashboard-muenster">Klimadashboard-Repository unter OpenCODE.de</a> eingesehen werden. OpenCODE.de ist vergleichbar mit Github. Es ist eine gemeinsame Plattform der Öffentlichen Verwaltung für den Austausch von Open Source Software und kann von Bundes-, Landes- und Kommunalverwaltungen genutzt werden.</p> <p>Das Ziel des Klimadashboard Münster ist es, einen Eindruck zu geben, auf wie vielen unterschiedlichen Ebenen Fortschritte nötig sind, um Klimaneutralität zu erreichen. Ebenso zeigt es auf, wie viele Menschen, Unternehmen und Einrichtungen sich in Münster bereits auf den Weg gemacht haben, damit die Stadtgesellschaft gemeinsam das Klimaziel erreicht. Weitere Informationen zum Klimadashboard erhalten Sie auf der <a href="https://smartcity.ms/klimadashboard-muenster/">Homepage Smart City Münste</a>r.</p> <p>Das Klimadashboard Münster ist von den städtischen Stabsstellen Smart City und Klima in Zusammenarbeit mit weiteren Ämtern und Töchtern des Stadtkonzerns entwickelt worden. Die Maßnahme wurde im Rahmen der Strategiephase (01/2022-06/2023) des Programms „Modellprojekte Smart City (MPSC)“ vom Bundesministerium für Wohnen, Stadtentwicklung und Bauwesen (BMWSB) und der KfW (Kreditanstalt für Wiederaufbau) gefördert.</p>
Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.
Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.
Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.
Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.
Das Klimaschutzgesetz sieht eine Treibhausgasneutralität in 2050 u.a. durch den Ausbau an Erneuerbaren Energien vor. In dem Vorhaben soll untersucht werden, wie der aus Klimaschutzsicht erforderliche EE-Ausbau erreicht und Potenziale gehoben werden können. Es wird davon ausgegangen, dass der weitere Leistungszubau maßgeblich im Bereich der Windenergie und Photovoltaik stattfindet. Dies bringt dauerhaft eine Vielzahl technischer, wirtschaftlicher und fachplanerischer sowie zum Teil rechtlicher Fragestellungen mit sich. Im Rahmen der fortzuführenden Diskussionen, Gesetzesnovellierungen und Planungs- und Abstimmungsprozesse besteht für BMU und UBA Bedarf an hochspezialisierter wissenschaftlicher Unterstützung zu Rechts-, Technik-, und Fachfragen. Im Zuge dieser Beratung sollen auch konkrete Vorschläge für modifizierte Instrumente und neue oder flankierende Maßnahmen erarbeitet werden, um die Voraussetzungen für einen aus Klimaschutzsicht robusten und stetigen Ausbau der erneuerbaren Energien zu gewährleisten. Demgegenüber stellen sich im Bereich der Bioenergie vermehrt Fragen, wie eine klimagerechte Nutzung des nur begrenzten nachhaltigen Biomassepotenzials insbesondere im EEG-Kontext ausgestaltet werden kann. Auch hierzu besteht Bedarf für hochspezialisierte wissenschaftliche Unterstützung zu Rechts-, Technik-, und Fachfragen. Inhaltlich werden voraussichtlich folgende Aspekte im Fokus stehen: 1. finanzielle Bürger- oder Gemeindebeteiligung bei Windenergie und insbesondere bei Photovoltaik angesichts zunehmender Anlagengrößen, 2. Anforderungen und Auswirkungen 'besonderer Solaranlagen' (Agrar-PV, schwimmende PV, Parkplatz-PV) im Rahmen der Innovationsausschreibungen, 3. Ausbaupfade , Ziel- und Flächensteuerung, Monitoring, 4. Geschäftsmodelle ohne EEG-Förderung oder andere staatliche Finanzierung, 5. Planungs- und Genehmigungsrahmen für Windenergieanlagen und PV-Freiflächenanlagen, 6. Klimagerechtere Ausrichtung des EEG mit Blick auf die Bioenergie.
Mit Blick auf das Ziel einer treibhausgasneutralen Wärmeversorgung des Gebäudebestands bestehen vielfältige Planungsbedarfe auf kommunaler Ebene. Strategien zur Steigerung der Energieeffizienz und zur Dekarbonisierung der Wärmeversorgung durch Einbindung erneuerbarer Energien und Abwärme sind in Einklang zu bringen. Aufgrund der dringenden Handlungserfordernisse rückt die kommunale Wärmeplanung auch in Deutschland in den Mittelpunkt der Debatte. Die Implementierung innovativer Lösungen für die Wärmeversorgung wirft dabei nicht nur technische Fragen auf, sondern betrifft in erheblichem Maße auch die organisatorische Ausgestaltung und rechtliche Umsetzung. Vor dem Hintergrund der zeitlichen Erfordernisse des Klimaschutzes und nicht zuletzt der Entscheidung des Bundesverfassungsgerichts vom März 2021 müssen die Wärmeplanungen konsequent auf das Ziel der Klimaneutralität im Jahr 2045 ausgerichtet werden. Bislang fehlt es jedoch nahezu vollständig an spezifischen Vorgaben für die Umsetzung der Wärmepläne. Die allgemeinen Regelungen des Baurechts können dies nur in Ansätzen leisten. Es sollen daher ergänzende ordnungsrechtliche sowie prozess- und maßnahmenbezogener Ansätze untersucht werden. Zudem gilt es die kommunalen Anwendungsfelder sowie notwendige Fortentwicklungen des Rechtsrahmens zu klären. Die Wärmeplanung ist zudem in die Governance-Architektur des Klimaschutzrechts einzuordnen. Da kleinere Gemeinden mit der Aufgabe der Aufstellung und Umsetzung einer Wärmeplanung häufig überfordert sein dürften, wird untersucht, welche Kooperationsmöglichkeiten der Rechtsrahmen bereits bietet und wie diese ggf. fortentwickelt werden müssen, um eine interkommunale Zusammenarbeit zu ermöglichen. Zusätzlich müssen für einen prozessorientierte Strategieentwicklung die planerischen Abläufe innerhalb der Kommune untersucht und mögliche Interessenkonflikte innerhalb der der Akteurslandschaft und regionalen Planungsaufgaben identifiziert und Lösungsvorschläge entwickelt werden.
Origin | Count |
---|---|
Bund | 909 |
Europa | 1 |
Kommune | 1 |
Land | 181 |
Wissenschaft | 1 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Ereignis | 7 |
Förderprogramm | 707 |
Gesetzestext | 2 |
Text | 247 |
Umweltprüfung | 3 |
unbekannt | 124 |
License | Count |
---|---|
geschlossen | 372 |
offen | 716 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 1039 |
Englisch | 166 |
andere | 1 |
Resource type | Count |
---|---|
Bild | 1 |
Datei | 13 |
Dokument | 106 |
Keine | 686 |
Unbekannt | 8 |
Webseite | 348 |
Topic | Count |
---|---|
Boden | 714 |
Lebewesen und Lebensräume | 1090 |
Luft | 1090 |
Mensch und Umwelt | 1087 |
Wasser | 497 |
Weitere | 1026 |