API src

Found 391 results.

Related terms

PROaktive Steuerung von WAsserVErteilungssystemen

Zielsetzung: Klimatische Veränderungen beeinflussen die verfügbare Wassermenge und -qualität in Talsperren, was deutliche Auswirkungen auf die Sicherheit der Trinkwasserversorgung und auf die Ökosysteme der Stauseen und den Landschaftswasserhaushalt hat. Klimaprognosen deuten für Gebiete wie den Harz auf einen Anstieg von Niederschlägen im Winter und häufigere Trockenperioden im Sommer hin, was stärker schwankende Wasserstände bedeutet. Zur Anpassung im Management der Talsperren und deren Ökosystemen mangelt es jedoch oft an präzisen Vorhersagen und den nötigen Instrumenten, um risikobasierte Entscheidungen über notwendige dynamische Betriebsstrategien zu treffen. Vor diesem Hintergrund soll im Rahmen des Projekts ein vorhersagebasiertes, mengen- und gütegewichtetes Entscheidungsunterstützungssystem für Talsperren entwickelt werden, welches auf datengetriebenen Modellen basiert und am Beispiel des Systems der Harzwasserwerke implementiert wird. Das Projekt konzentriert sich darauf, durch die Nutzung moderner Technologien und Methoden der Künstlichen Intelligenz (KI), wie LSTM-Netzwerke (Long Short-Term Memory) und Ensemble-Methoden, zuverlässige Vorhersagen des Wasserbedarfs und -dargebots zu erstellen. Diese Vorhersagen werden in ein hydrodynamisches Optimierungsmodell integriert, um eine flexible und belastbare Entscheidungsunterstützung im Ereignisfall zu ermöglichen. Hierdurch sollen die verschiedenen Bewirtschaftungsziele wie Hochwasserschutz, Versorgungssicherheit, Ökosystemleistungen, Landschaftswasserhaushalt und Energieerzeugung bestmöglich erfüllt werden. Die Kombination von Echtzeit-Sensoren, Open-Source-Datensätzen und fortschrittlichen Datenanalyse-Tools ermöglicht es, komplexe und dynamische Prozesse zu simulieren und in Echtzeit Informationen bereitzustellen. Im Sinne der nachhaltigen Klimawandelanpassung werden so proaktive Maßnahmen zur Unterstützung der Versorgungssicherheit, des Hochwasserschutzes sowie des Landschaftswasserhaushaltes ermöglicht. Die Implementierung des Demonstrators im System der Harzwasserwerke soll die Vorteile einer proaktiven Steuerung demonstrieren und eine multikriterielle Bewertung im Vergleich zu herkömmlichen Methoden ermöglichen. Der Fokus liegt nicht nur auf einem hohen Technology Readiness Level, sondern auch auf der Handhabung von Unsicherheiten und der Berücksichtigung verschiedener Vorhersagehorizonte. Diese sind für die verschiedensten wasserwirtschaftlichen Zielsetzungen von entscheidender Bedeutung.

Die Rolle eines hoch-aufgelösten Ozeans und dessen Initialisierung sowie die Bestimmung von atmosphärischen Cold Pools für Wetter- und Klimavorhersagen sowie deren Implementierung in das gekoppelte Erdsystemmodell ICON

Turbulenzinteraktionen in der atmosphärischen Grenzschicht: Ein skalenübergreifender Ansatz zur Aufklärung oberflächennaher Austauschprozesse

Die Atmosphäre und die Vegetation der Erdoberfläche beeinflussen sich gegenseitig durch bidirektionale Austauschprozesse. Modelle zur Wetter- und Klimavorhersage basieren auf einem mechanistischen Verständnis dieser Interaktionen. Die Vorhersagen und die grundlegenden Theorien funktionieren allerdings nur im Falle einer gut durchmischten (turbulenten) atmosphärischen Grenzschicht. Wenn jedoch stabile atmosphärische Bedingungen vorherrschen, wie typischerweise nachts der Fall, dann sind die bisherigen Theorien nicht ausreichend, um zuverlässige Vorhersagen zu treffen. Um oberflächennahe turbulente Austauschprozesse während stabiler atmosphärischer Schichtung mechanistisch zu verstehen und neue Theorien zu entwickeln, sind zunächst neuartige Mess- und Analyse-Methoden notwendig. Ziel dieses Projekts ist die Beobachtung und Charakterisierung von oberflächennahen Prozessen in der stabilen atmosphärischen Grenzschicht durch eine neuartige Kombination von Mess- und Analysemethoden. Mit einem hochauflösenden in-situ Messkubus (20x20x5m), der sich innerhalb eines größeren mittels Fernerkundung überwachten Raumes (500x500x1000m) befindet, können Bewegung und Strukturen von Temperatur gleichzeitig in Raum und Zeit erfasst werden. Dieser skalenübergreifende Ansatz erlaubt es, nicht-periodische, nicht gut gemischte und räumlich heterogene Bewegungen der Luft nahe der Erdoberfläche zu erfassen. Die gewonnenen Daten werden mittels neuester stochastischer Auswerteverfahren analysiert, um die (nicht-)turbulenten Bedingungen und deren Durchmischung zu charakterisieren. Der wissenschaftliche Gewinn des Projektes liegt in einem wegweisenden innovativen Ansatz, um Modelle in den Bereichen Strömungsmechanik und Erd-System Wissenschaften zu validieren, und so zu einem verbesserten Verständnis unseres Lebensraums, der Schnittstelle zwischen Land und Atmosphäre, zu führen.

Von El Nino zu Super - El Nino: Wie wird das Wetter beeinflusst?

El Niño ist die warme Phase der El Niño/Southern Oscillation (ENSO), und beschreibt die dominante Variabilität der Tropen auf Zeitskalen von Monaten bis Jahren. Obwohl ENSO im tropischen Pazifik geschieht, werden starke regionale und globale Einflüsse auf das Klima, auf die Ökosysteme der Meere und auf dem Land, und damit auch auf die Wirtschaft einzelner Länder beobachtet. Klimamodelle sagen vorher, dass El Niño sich unter dem Einfluss der globalen Erwärmung verstärken könnte, und dass sich sogenannte Super El Niños entwickeln könnten, d.h. El Niño Ereignisse, welche stärker und langlebiger sind als die stärksten im 20. und 21. Jahrhundert beobachteten Ereignisse. Es ist allerdings noch unklar, ob sich zum Beispiel die sogenannten Teleconnections, also Fernwirkungen von El Niño, linear mit der Stärke des Ereignisses im tropischen Pazifik entwickeln werden. Es ist zudem noch unzureichend erforscht, ob sich die Teleconnections selbst verändern werden. Es gibt aber Hinweise, dass sich die Teleconnections von El Niño nichtlinear verhalten, und dass daher ein Super El Niño völlig andere globale Auswirkungen haben könnte als ein historischer El Niño. Durch die Vorhersage der Klimamodelle, dass sich solche Super El Niño - Ereignisse in Zukunft häufen könnten, ist ein besseres Verständnis möglicher Nichtlinearitäten von Teleconnections nötig. Dieses Forschungsvorhagen untersucht die Nichtlinearität in der Stärke und im Charakter von El Niño Teleconnections für eine Erde in einem wärmeren Klima. Im Speziellen wird die Fernwirkung von El Niño auf die Troposphäre und Stratospähre der mittleren Breiten in der Nord- und Südhalbkugel untersucht.

Klimawandel in Bremen - Folgen und Anpassung

Das Fachkonzept beschreibt die potenziellen Klimaänderungen in und um Bremen und analysiert ausgewählte Handlungsfelder.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), CoMet (Carbon Dioxide and Methane) Mission

Confronting Climate Change is one of the paramount societal challenges of our time. The main cause for global warming is the increase of anthropogenic greenhouse gases in the Earth's atmosphere. Together, carbon dioxide and methane, being the two most important greenhouse gases, globally contribute to about 81% of the anthropogenic radiative forcing. However, there are still significant deficits in the knowledge about the budgets of these two major greenhouse gases such that the ability to accurately predict our future climate remains substantially compromised. Different feedback mechanisms which are insufficiently understood have significant impact on the quality of climate projections. In order to accurately predict future climate of our planet and support observing emission targets in the framework of international agreements, the investigation of sources and sinks of the greenhouse gases and their feedback mechanisms is indispensable. In the past years, inverse modelling has emerged as a key method for obtaining quantitative information on the sources and sinks of the greenhouse gases. However, this technique requires the availability of sufficient amounts of precise and independent data on various spatial scales. Therefore, observing the atmospheric concentrations of the greenhouse gases is of significant importance for this purpose. In contrast to point measurements, airborne instruments are able to provide regional-scale data of greenhouse gases which are urgently required, though currently lacking. Providing such data from remote sensing instruments supported by the best currently available in-situ sensors, and additionally comparing the results of the greenhouse gas columns retrieved from aircraft to the network of ground-based stations is the mission goal of the HALO CoMet campaign. The overarching objective of HALO CoMet is to improve our understanding and to better quantify the carbon dioxide and methane cycles. Through analysing the CoMet data, scientists will accumulate new knowledge on the global distribution and temporal variation of the greenhouse gases. These findings will help to better understand the global carbon cycle and its influence on climate. These new findings will be utilized for predicting future climate change and assessing its impact. Within the frame of CoMet and due to the operational possibilities we will concentrate on small to sub-continental scales. This does not only allow to identify local emission sources of greenhouse gases, but also opens up the opportunity to use important remote sensing and in-situ data information for the inverse modelling approach for regional budgeting. The project also aims at developing new methodologies for greenhouse gas measurements, and promotes technological developments necessary for future Earth-observing satellites.

Sonderforschungsbereich Transregio 181 (SFB TRR): Energietransfer in der Atmosphäre und im Ozean, Sonderforschungsbereich Transregio 181 (SFB TRR): Energietransfer in der Atmosphäre und im Ozean

Die Energietransfers der drei dynamischen Regime - kleinskalige Turbulenz, interne Schwerewellen und geostrophisch balancierte Strömung - sind fundamental für den Energiezyklus in der Atmosphäre und dem Ozean. Nichtsdestotrotz sind sie aber nicht gut verstanden und quantifiziert, und ihre Repräsentation in modernen Erdsystemmodellen ist unbefriedigend. Weil durch die Interaktion der dynamischen Regime die kleinsten Skalen ultimativ mit den größten Skalen durch eine Vielzahl von komplexen Prozessen verbunden sind, ist das Verständnis dieser Interaktionen wichtig um Ozean- und Atmosphärenmodelle zu konstruieren und um das Klima vorherzusagen. Die gegenwärtige Unkenntnis dieser Prozesse wird durch energetisch inkonsistente Modelle mit relativ großen Fehlern, aber auch durch Inkonsistenzen numerischer und mathematischer Natur, reflektiert. Wir glauben, dass es nun an der Zeit ist momentane Anstrengungen zu kombinieren, diese Defizite zu überwinden, neue Aktivitäten zu fördern die dynamischen Interaktionen zu verstehen und die Konsistenz von Ozean- und Atmosphärenmodellen zu verbessern. Die Arbeit des SFB/TRR soll die Modellfehler reduzieren, die Modellgüte verbessern, und ultimativ die Klimamodelle und Klimavorhersagen verbessern. Die wesentlichen Ziele dieses SFB/TRR sind - i. das notwendige Verständnis der Energietransfers zwischen den verschiedenen dynamischen Regimen in Atmosphäre und Ozean zu entwickeln, - ii. mit diesem Verständnis neue und konsistente Parametrisierungen zu entwickeln und in Modellen zu implementieren und zu testen, und - iii. numerischen Methoden mit konsistenter Energetik zu entwickeln. Es ist unsere Vision dadurch eine energetisch konsistente Beschreibung der Energiekonversionen im Klimasystem zu etablieren sowie physikalisch, mathematisch und numerisch konsistente Ozean- und Atmosphärenmodelle zu entwickeln.

Biogeochemie des Kohlenstoffs und Stickstoffs im Arabischen Meer - ein Beitrag zur Internationalen Indian Ocean Expedition 2

Führen elektrochemische Prozesse in der Eisphase in hochreichender Konvektion zur Bildung von Partikeln in der oberen Troposphäre?

Der Klimawandel stellt eines der größten Probleme unserer Gesellschaft der nächsten Jahrzehnte dar. Verlässliche Klimaprognosen sind in diesem Zusammenhang von enormer politischer und sozioökonomischer Relevanz. Genaue Vorhersagen sind jedoch derzeit durch ein noch begrenztes Verständnis wichtiger atmosphärischer Parameter, wie zum Beispiel der chemischen Zusammensetzung der Atmosphäre, der Aerosolbelastung, den Zirruswolken und Zirkulationsrückkopplungen in der oberen Troposphäre/unteren Stratosphäre (OTUS) nur sehr eingeschränkt möglich. Insbesondere unser Wissen über die wichtigsten klimarelevanten atmosphärischen Bestandteile wie z.B. der Wasserdampf, Eis- und Aerosolpartikel ist unvollständig.Kürzlich wurden in der OTUS starke Partikelneubildungsereignisse beobachtet, in einer Region, in der Eisbildung und tiefe Konvektion vorherrschen. Es scheint, dass die Region überhalb troposphärischen Wolken ein günstiger Ort für die Bildung neuer Teilchen ist. Der zugrunde liegende Bildungsmechanismus ist jedoch nur sehr qualitativ verstanden. Diese Partikelneubildungsereignisse sind möglicherweise mit der Bildung von kondensierbaren Dämpfen in großer Höhe verbunden und nicht nur mit dem Aufsteigen verschmutzter Luftmassen, die diese enthalten. Partikelneubildung erfordert somit eine Quelle von atmosphärischen Oxidationsmitteln, die die Flüchtigkeit von Vorläufergasen reduzieren, um Partikel im unteren Nanometerbereich durch Gas-zu-Partikel-Umwandlung zu bilden. Diese Oxidationsmittelquelle muss stark genug sein, um mit den durch die bereits vorhandenen Partikel induzierten Kondensationssenken zu konkurrieren.Wir vermuten, dass die Bildung von Eispartikeln durch das Gefrieren von unterkühltem flüssigem Wasser, gefolgt von Wasserkondensation, Quellen von H2O2 oder HOx-Radikalen in der OTUS sind, die zur Partikelneubildung führen Es ist bekannt, dass das Gefrieren wässriger Lösungen elektrische Felder erzeugt (sogenannter Workman-Reynolds-Effekt). In ähnlicher Weise wurde kürzlich gezeigt, dass die bevorzugte Orientierung der Wassermoleküle an der Grenzfläche zwischen Luft und Wasser ein elektrisches Grenzflächenpotential induziert. Solche lokalisierten elektrischen Felder können elektrochemische Prozesse in oder auf den Eispartikeln induzieren, die H2O2 oder HOx produzieren und erheblich zur Oxidationskapazität der Atmosphäre beitragen, wodurch die Bildung neuer Partikel und Wolken und schließlich der Strahlungshaushalt und das Klima der Erde beeinflusst werden. Diese Hypothese wird durch einige sehr aktuelle aktuelle Messungen gestützt.Dieses Projekt hat zum Ziel, diese Oxidationsprozesse zu charakterisieren und quantifizieren.

Abschätzung der Folgen des Klimawandels für gartenbauliche Kulturen in NRW

Die Vorhersage von Klimafolgen auf den Gartenbau erfordert neue Modellierungsansätze, die die Vielfalt gartenbaulicher Kulturen und Produktionsverfahren, sowie deren besonderen Anfälligkeiten gegenüber Klima- und Wetterphänomen gerecht werden. Da konventionelle Herangehensweisen zur Klimaprognose hierfür schlecht geeignet sind, wird ein neuartiger Bayes'scher Modellierungsansatz entwickelt, der durch die Synthese bestehenden Wissens bestmögliche Prognosen und Handlungsempfehlungen erarbeitet. Die zu entwickelnde Methodik basiert auf den Prinzipien der Entscheidungsanalyse, zu deren Bausteinen partizipative Modellierung, probalistische Simulationen und eine sorgsame Berücksichtigung aller bedeutender Unsicherheiten und Risken gehören. Mit diesem Ansatz werden Prognosen für mindestens drei für Nordrhein-Westfalen bedeutende gartenbauliche Kulturen erstellt. Vorgesehen sind Analysen für Spargel, Äpfel und Erdbeeren. Bei gutem Fortschritt können auch Zwiebeln, Kohl, Strauchbeeren, Callunen oder andere Kulturen bearbeitet werden. Dafür werden zunächst unter Einbeziehung von Experten- und Praxiswissen, sowie der Literatur, konzeptionelle Modelle übersetzt, mit Hilfe derer Simulationen durchgeführt werden können. Als Eingangsgrößen dienen sowohl Klimaprojektionen für mehrere Zeithorizonte, als auch geschätzte Bandbreiten für diejenigen Variablen, für die keine objektiven Daten zur Verfügung stehen. Diese Schätzwerte basieren auf allen verfügbaren Quellen , inklusive durch ein spezielles Trainingsprogramm im Schätzen von Wahrscheinlichkeiten geschulten Experten und Praktikern. Die Simulationsergebnisse bilden die Bandbreite der Klimawirkungen auf die modellierten Kulturen ab und erlauben es, die Auswirkungen von Anpassungsmaßnahmen zu simulieren. Zudem können mit Hilfe weiterführender Analysen bedeutsame Wissenslücken aufgezeigt werden, die im Nachgang durch gezielte Untersuchungen adressiert werden können. So erlaubt dieses Vorhaben eine Eingrenzung der zu erwartenden Klimafolgen, ein Aufzeigen bedeutender Unsicherheiten und einen Einblick in vielversprechende Anpassungsmaßnahmen.

1 2 3 4 538 39 40