2022 (aktuell) | 2015 | 2008 Berlin wird im Jahr 2100 das gleiche Klima haben wie die südfranzösische Stadt Toulouse – so lauten die Prognosen . Hinzukommen extreme Wetterbedingungen wie lange Hitze- und Trockenperioden sowie Starkregen. Woher wissen wir das? Weil der Senat von Berlin die Klimaentwicklung seit Jahren im Blick hat und durch Messungen und Modellierungen entsprechende Zukunftsszenarien erstellen lässt. Die Basis dafür schaffen langjährige Messungen von Klimaparametern. Durch sie erhält man sogenannte Kenntage – das sind Tage, an denen bei bestimmten Klimaparametern markante Werte unter- oder überschritten werden. Auf diese Weise lassen sich Sommertage, heiße Tage, Tropennächte oder auch Frosttage ausmachen. Die Bestimmung der Anzahl der Kenntage wurde für drei Zeiträume, nämlich den Referenzzeitraum 1971-2000 und die zukünftigen Perioden 2031-2060 und 2071-2100, durchgeführt. Die Ergebnisse der Berechnung der Kenntage zeigt die räumliche Ausprägung und die zeitliche Entwicklung der Häufigkeit von Hitzeereignissen. Wenn Sie mehr über die Klimaentwicklung in der Stadt erfahren wollen und wie es um die Prognosen dazu steht, dann finden Sie hier Daten, Erklärungstexte und Karten. Klimafolgenmonitoring Informationen zu Klimaprojektionen beim DWD
Die Bundesanstalt für Gewässerkunde (BfG) erstellt Abflussprojektionen für Pegel in den Einzugsgebieten von Donau, Elbe, Ems, Rhein und Weser und stellt diese als Beitrag und Grundlage zur Deutschen Anpassungsstrategie an den Klimawandel (DAS) über den DAS-Basisdienst "Klima und Wasser" bereit. Die Projektionen fußen auf den Szenarien und Daten, die auch den Berichten des Weltklimarates zugrunde liegen. Diese globalen Klimadaten werden durch Europäische Wetterdienste und Klimaforschungsinstitute für Europa regionalisiert. Für Deutschland und die internationalen Einzugsgebietsanteile werden diese Daten durch den Deutschen Wetterdienst (DWD) ebenfalls im Rahmen des DAS-Basisdienstes aufbereitet. Die BfG setzt die hydrometeorologischen Größen (Lufttemperatur, Niederschlag, Globalstrahlung, Wind, relative Luftfeuchte) und deren für die Zukunft projizierten Änderungen mittels eines Wasserhaushaltsmodells in Tageswerte hydrologischer Größen (u.a. Abfluss) um. Die hier bereitgestellten Daten basieren auf einem Klimadatenfundus, der im Kontext des 5. IPCC-Sachstandsberichts (IPCC, 2013) durch das globale Coupled Model Intercomparison Project Nr. 5 (CMIP5, Meehl und Bony, 2011) und den europäischen Teil des Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX, Jacob et al., 2014) sowie nationale Modellaktivitäten (ReKliEs-De, Hübner et al., 2017) generiert wurden. Die rohen Klimamodelldaten wurden durch die BfG einer grundlegenden Prüfung unterzogen (Nilson, 2021; Nilson et al., 2014) um unplausible Projektionen auszuschließen. Auf Basis dieser Prüfung ergeben sich somit Ensembles von 16 Abflussprojektionen für das Hochemissionsszenario RCP8.5, 11 Projektionen für das mittlere Szenario RCP4.5 und 10 Simulationen für das bzgl. klimaschutzfortgeschritten optimistische RCP2.6-Szenario. Die verbliebenen Klimaprojektionen wurden durch den DWD aufbereitet. Zu den Aufbereitungsschritten gehört eine multivariate Biasadjustierung (Cannon, 2018) auf Basis des hydrometeorologischen Referenzdatensatzes HYRAS (Tageswerte; z.B. Rauthe et al., 2013) sowie eine räumliche Disaggregierung auf das ebenfalls von HYRAS vorgegebene Raster von 5 km x 5 km. Auf dieser Grundlage wurden durch die BfG Simulationen mit dem Wasserhaushaltsmodell LARSIM-ME (Version 2019; Fleischer et al., in Vorber.) durchgeführt und in die bereitgestellten 37 Abflussprojektionen generiert. Die Projektionen sind u.a. in Teile der Klimawirkungs- und Risikoanalyse des Bundes für Deutschland eingeflossen (KWRA 2021). Die Veröffentlichung der nächsten Risikoanalyse ist für 2028 geplant (KRA 2028). Die Pflege und Weiterentwicklung der Modelle und Daten erfolgt kontinuierlich u.a. im Rahmen der Ressortforschung der Bundesministerien für Verkehr und Umwelt.
Confronting Climate Change is one of the paramount societal challenges of our time. The main cause for global warming is the increase of anthropogenic greenhouse gases in the Earth's atmosphere. Together, carbon dioxide and methane, being the two most important greenhouse gases, globally contribute to about 81% of the anthropogenic radiative forcing. However, there are still significant deficits in the knowledge about the budgets of these two major greenhouse gases such that the ability to accurately predict our future climate remains substantially compromised. Different feedback mechanisms which are insufficiently understood have significant impact on the quality of climate projections. In order to accurately predict future climate of our planet and support observing emission targets in the framework of international agreements, the investigation of sources and sinks of the greenhouse gases and their feedback mechanisms is indispensable. In the past years, inverse modelling has emerged as a key method for obtaining quantitative information on the sources and sinks of the greenhouse gases. However, this technique requires the availability of sufficient amounts of precise and independent data on various spatial scales. Therefore, observing the atmospheric concentrations of the greenhouse gases is of significant importance for this purpose. In contrast to point measurements, airborne instruments are able to provide regional-scale data of greenhouse gases which are urgently required, though currently lacking. Providing such data from remote sensing instruments supported by the best currently available in-situ sensors, and additionally comparing the results of the greenhouse gas columns retrieved from aircraft to the network of ground-based stations is the mission goal of the HALO CoMet campaign. The overarching objective of HALO CoMet is to improve our understanding and to better quantify the carbon dioxide and methane cycles. Through analysing the CoMet data, scientists will accumulate new knowledge on the global distribution and temporal variation of the greenhouse gases. These findings will help to better understand the global carbon cycle and its influence on climate. These new findings will be utilized for predicting future climate change and assessing its impact. Within the frame of CoMet and due to the operational possibilities we will concentrate on small to sub-continental scales. This does not only allow to identify local emission sources of greenhouse gases, but also opens up the opportunity to use important remote sensing and in-situ data information for the inverse modelling approach for regional budgeting. The project also aims at developing new methodologies for greenhouse gas measurements, and promotes technological developments necessary for future Earth-observing satellites.
Das Datenpaket enthaelt Aenderungssignale fuer Kennwerte des Hoch-, Mittel- und Niedrigwasserabflusses am Pegel Basel fuer die Zeitscheiben 2021-2050 und 2071-2100 gegenueber der Referenzperiode 1961-1990. Die Daten wurden in den Jahren 2008 bis 2010 in den Projekten KLIWAS4.01 und Rheinblick2050 durch die BfG erarbeitet. Sie basieren auf rund 20 im Jahr 2010 verfuegbaren Klimaprojektionen und erfassen somit einen wesentlichen Teil der Unsicherheiten der Modellierung. Einzelheiten zur Datenprozessierung sowie Interpretationshinweise finden sich im Bericht I-23 der Internationalen Kommission für die Hydrologie des Rheingebietes.
Die Anpassungsstrategie geht auf von den Folgen des Klimawandels betroffene Bereiche - wie die menschliche Gesundheit - ein und berücksichtigt dabei die regionalen Besonderheiten Nordrhein-Westfalens. Basierend auf detaillierten Klimaprojektionen für die einzelnen Regionen des Bundeslandes wurden spezifische Anpassungsmaßnahmen erarbeitet.
1
2
3
4
5
…
31
32
33