API src

Found 777 results.

Wie wirken sich natürliche Variabilität und anthropogen bedingte Änderungen auf die stratosphärische Brewer-Dobson Zirkulation und den Ozonfluss in die Troposphäre aus?

Die Brewer-Dobson Zirkulation (BDC) spielt eine Schlüsselrolle für das globale Klima, da sie die Konzentrationen von Ozon, Wasserdampf und Aerosol in der oberen Troposphäre und unteren Stratosphäre (UTLS) beeinflusst. Diese Spurengase wiederum wirken sich über Strahlungsprozesse auf das Klima aus. Insbesondere bewirken Änderungen in der BDC Änderungen im Ozonfluss aus der Stratosphäre in die Troposphäre und haben darüber einen Einfluss auf Klima und Gesundheit. Das Verständnis der Variabilität der BDC auf saisonalen bis dekadischen Zeitskalen ist Voraussetzung für eine verläßliche Detektion von anthropogen bedingten Langzeit-Änderungen (Trends). Allerdings ist die Variabilität der BDC in den Klimamodellen nur unzureichend repräsentiert, und nicht in Übereinstimmung mit Spurengas-Messungen.Der Projektantrag zielt auf eine Abschätzung der Einflüsse von natürlicher Variabilität und Trends der BDC auf die Spurengaskonzentrationen in der UTLS ab. Insbesondere sollen diejenigen dynamischen Mechanismen untersucht werden, die die Unterschiede zwischen Modellen und Beobachtungen bewirken. Das Projekt verbindet etablierte diagnostische Methoden, neuartige Modell-Simulationen mit einem Lagrangeschen Transportmodell (CLaMS) und mit einem gekoppelten Chemie-Klimamodell (EMAC) mit Beobachtungsdaten, um die BDC Änderungen und dadurch bedingte Klimaeinflüsse zu untersuchen. Der Arbeitsplan gliedert sich in drei Arbeitpakete: (1) Untersuchung von natürlicher Variabilität und anthropogen bedingter Trends der BDC, (2) Untersuchung der involvierten dynamischen Mechanismen, (3) Abschätzung der Einflüsse von BDC Änderungen auf den Ozonfluß aus der Stratosphäre in die Troposphäre.Dazu werden erstens Zeitreihen von Luftalter und Ozon aus Beobachtungen auf Variabilitäten und Trends der BDC untersucht und mit Simulationen des CLaMS und des EMAC Modells verglichen, zur Validierung der Modelle. Mithilfe von Regressions-Methodiken werden dann Variabilitäten und Trends in der BDC und in den UTLS Spurengasverteilungen verschiedenen Variabilitäts-Moden im Klimasystem zugeschrieben. Zweitens, werden die involvierten dynamischen Prozesse anhand von drei Arten von Sensitivitäts-Experimenten mit dem EMAC Modell untersucht. Insbesondere können mit diesen vorgeschlagenen Sensitivitäts-Experimenten die dynamischen Mechanismen der BDC Änderungen durch ENSO und Vulkanaerosol aufgedeckt werden, sowie die Gründe für diesbezügliche Differenzen zwischen Modell und Beobachtung. Schließlich sollen der Effekt von BDC Änderungen auf den Ozonfluß in die Troposphäre und die dadurch bedingten Klimaeffekte angeschätzt werden. Dabei wird der Ozonfluß im Modell anhand eines Budget-Ansatzes für die untere Stratosphäre bestimmt. Regressions-Analyse ermöglicht eine Zuschreibung der Variabilität im Ozonfluß zu den verschiedenen Variabilitäts-Moden im Klimasystem, und somit eine Abschätzung der entsprechenden Effekte auf Klima und Luftqualität.

Reaktionen des terrestrischen Systems auf nordatlantische Klimaschwankungen im letzten glazialen Zyklus: Hochauflösende Löss-Paläoboden-Sequenzen aus Remagen-Schwalbenberg (Mittelrheintal, Deutschland) (TerraClime)

Klimaschwankungen des Quartärs sind anhand von Tiefsee- und Eisbohrkernen sehr detailliert erforscht und bekannt. Reaktionen des terrestrischen Systems auf diese Klimaänderungen sind bis heute hingegen nur vage definiert. Diese besser zu verstehen ist jedoch von entscheidender Bedeutung, da der Mensch auf der Erdoberfläche lebt, und die Steuerungsfaktoren sowie Rückkopplungen zwischen Erdoberfläche und Atmosphäre sich anders als in Tiefseesedimenten oder Eisbohrkernen niederschlagen. Hauptziel des TERRACLIME-Projekts ist es, die Reaktionen des terrestrischen Systems auf Klimaänderungen der Nordhemisphäre während des letztglazialen Zyklus (LGZ) anhand neuer Löss-Paläoboden-Sequenzen (LPS) aus Remagen-Schwalbenberg (Mittelrheintal, Deutschland) zu rekonstruieren. Der im Zuge der Projektvorarbeiten gewonnene Pilotkern REM 3A beinhaltet die mächtigste und womöglich vollständigste für den LGZ in West- und Mitteleuropa bekannte Sequenz, die eine umfassende Rekonstruktion der Landschaftsgeschichte und Paläoumweltbedingungen ermöglicht. Der neue Kern ist länger und vollständiger als Aufschlüsse und Profile früherer Studien. Letzteren fehlen zudem hochauflösende Paläoklimarekonstruktionen mittels neuer Methoden sowie ein hochauflösender chronologischer Rahmen. Die systematische geophysikalische Prospektion des gesamten Schwalbenbergs bildet die Basis zur Detektion bestmöglicher Bohrpunkte an Stellen maximaler Lössmächtigkeit, um neben einem weiteren, hoch auflösenden Kern gezielte Testsondierungen durchzuführen. Durch diesen Catena-Ansatz wird es möglich sein, die Reaktionen von Löss auf Klimaänderungen zu erfassen sowie archiv-intrinsische Variabilitäten zur Differenzierung zwischen lokal, regional und überregional gesteuerten Prozessen zu nutzen. Neben etablierten Methoden (Sedimentologie, Mineralogie, Umweltmagnetismus) wird sich das Projekt auch neuartiger, innovativer Ansätze bedienen (anorganische und stabile Isotopen-Geochemie, Biomarker-Analysen). Dadurch werden neue Erkenntnisse zu paläoklimatischen Bedingungen, Sedimentationsprozessen, post-sedimentären Veränderungen sowie zur Vegetationsgeschichte generiert. Geochemische Daten werden außerdem herangezogen, um mögliche Änderungen der Sedimentherkunft zu erfassen. Hochauflösende Lumineszenz-Datierungen zur Erstellung eines unabhängigen und verlässlichen Altersmodells spielen im Rahmen des Projektes eine entscheidende Rolle. Ein Altersmodell, das auf der Kopplung von OSL an Quarzen mit pIR-IRSL an polymineralischen Präparaten basiert, fehlt bislang für den Schwalbenberg. Im Vergleich mit anderen lokalen, regionalen und überregionalen Paläoklimaarchiven wird es damit möglich sein, Reaktionen des terrestrischen Systems auf atmosphärische Klimaänderungen im Nordatlantik innerhalb des LGZ zu entschlüsseln. Die Erfassung synchron und asynchron verlaufender Veränderungen wird unser Verständnis von der Verknüpfung mariner, eisbasierter und terrestrischer Klimaarchive deutlich verbessern.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Sedimente des Melvillesees: Ein Zeitfenster in die präholozäne Glazialgeschichte des Laurentidischen Eisschildes (Akronym: MELSED)

Der Melvillesee ist ein Fjordsee, der sich in der letzten Eiszeit am Rande des hochdynamischen Laurentidischen Eisschildes (LIS) befand. Die obersten 10 m der insgesamt ca. 300-400 m Seesedimente haben die postglaziale Geschichte der letzten 10000 Jahre aufgezeichnet. In diesem dicken Sedimentpaket dürfte der See die Klimageschichte bis weit zurück vor das letzte Glazial gespeichert haben und würde sich daher als exzellentes Klimaarchiv anbieten. Um diesen Sachverhalt zu klären, wurde im Sommer 2019 eine Expedition mit dem FS Maria S. Merian (MSM84) unternommen. Während dieser Expedition wurden Sedimentkerne gezogen sowie ein dichtes Netz von hydroakustischen Messungen durchgeführt. Anhang der Sedimentkerne und der Sedimentecholot-Daten kann man fünf verschiedene Schichten im Untergrund des Sees erkennen: (I) post-glaziale Sedimente; (II) Sedimente aus der Zeit des Eisrückzuges; (III) Sedimente, die mit großer Wahrscheinlichkeit in einem subglazialen See unterhalb des aufschwimmenden LIS abgelagert wurden. Darunter finden sich (IV) wiederum schön geschichtete Sedimente, die aus einem früheren eisfreien Zeitraum stammen dürften, vermutlich MIS5, MIS4 oder die erste Hälfte des MIS3. Als unterste Schichte ist das Grundgestein (V) zu erkennen. Unsere Sedimentkerne enthalten Sedimente aus I und II sowie aus dem obersten Bereich von III. Im Rahmen dieses Projektes schlagen wir vor, die post-glazialen Sedimente sowie diejenige vom Rückzug des LIS genauer zu untersuchen, um daran Paläoklimaschwankungen sowie die Rückzugsgeschichte des LIS zu rekonstruieren. In einem zweiten Schritt möchten wir auch die Sedimente analysieren, die vom subglazialen See zu stammen, um diesen besser zu charakterisieren und um zu testen, ob auch diese Sedimente Klimaschwankungen aufgezeichnet haben. Um diese Fragen zu beantworten, werden wir die Sedimentkerne zuerst mit zerstörungsfreien Methoden wie CT-Scanning, Multisensor-Core-Logging und XRF-Scanning untersuchen. Danach werden ausgewählte Kernabschnitte beprobt. Mit Hilfe von Radiokarbondatierungen und paläomagnetischen Messungen werden wir ein Altersmodell erstellen können. Mit einer Kombination der zerstörungsfreien Messungen mit Einzelprobenmessungen (TIC, TOC, Korngröße, XRD, WD-XRF) werden wir die in den Kernen enthaltene paläoklimatologische Information entschlüsseln. Hierbei werden wir einen Schwerpunkt auf die Entwicklung von Proxies legen, die geeignet sind, die vergangenen Vorstöße und Rückzüge des LIS zu rekonstruieren. Falls wir zeigen können, dass die Sedimente des Melvillesees tatsächlich ein Archiv für Klimageschichte auch jenseits des Holozäns sind, dann empfiehlt sich der See als ein Hauptziel einer zukünftigen amphibischen Tiefbohrung von IODP und ICDP. Diese würde mit dem Ziel abgeteuft, die Dynamik des LIS zu rekonstruieren.

Response der Alpen auf atlantische Klimawechsel in MIS 3

Unser Projekt erforscht das Paläoklima-Archive der Bändertone, die in einem ehemaligen fjordähnlichen See im österreichischen Inntal entstanden sind. Solche Ablagerungen sind eine große Seltenheit in den Alpen und dokumentieren eine Periode gewaltiger Klima-Instabilität zwischen 59.000 und 28.000 Jahre vor heute, deren Spuren - unter dem Namen Dansgaard-Oeschger Ereignisse - im grönlandischen Eis und in Sedimentproben des Atlantiks detektiert wurden. Ihr Impakt auf das damalige Klima und die Umwelt in den Alpen ist jedoch kaum bekannt und bildet das Hauptziel dieses Forschungsprojektes. Herzstück der Untersuchungen ist ein vor kurzem erbohrter 150 m langer Sedimentkern der Bändertone sowie zwei geplante benachbarte Kerne, mit denen die gesamte ehemalige Seefüllung erfasst werden kann. Diese Proben werden mit hochmodernen Methoden analysiert, um zeitlich gut datierte qualitative wie quantitative Proxy-Daten der Temperatur, Primärproduktion, Vegetation und Hydrologie dieses Sees und seines Einzugsgebietes mit jährlicher und z.T. sogar jahreszeitlicher Auflösung zu erheben. Diese Informationen stellen entscheidende Fakten dar um regionale Modelle dieser abrupten Klimaänderungen zu validieren, und den Einfluss von Änderungen der Tiefenwasserströmungen im Atlantik auf das Alpenklima zu erfassen.

Klimawechsel im späten Eifelium: Auswirkungen auf tropische Korallenfaunen

Während des frühen bis mittleren Devon (ca. 418-383 Mio. Jahre) herrschten Treibhausverhältnisse auf der Erde. Die Klimaentwicklung zu jener Zeit führte schließlich zu einem Höhepunkt an Diversität, Größe und Verbreitung von Riffen im mittleren Devon (Eifelium und Givetium). Doch auch während des Klimax im Mittel-Devon kam es vermehrt zu Klimaschwankungen, die in mehr oder weniger schweren biotischen Krisen resultierten. Eine dieser Krisenzeiten entspricht dem Kacak-Event während des späten Eifelium, der als Schwarzschiefer und Hornstein-Horizont in marinen Sedimenten global nachgewiesen ist. Das mehrphasige dysoxische/anoxische Ereignisintervall beschränkt sich auf die kockelianus und ensensis Biozone (Conodontenzonierung) und entspricht in etwa einer Dauer von 200+-10 Tausend Jahren. Der Event ist geprägt von markanten Faunenwechsel, die mit signifikanten Exkursionen im geochemischen und geophysikalischen Signal gekoppelt sind. Bisher durchgeführte Untersuchungen haben gezeigt, dass vor allem benthische Organismen aus tiefer marinen Ablagerungen auf die veränderten Umweltbedingungen reagiert haben. Neuere Erkenntnisse über diesen Event basieren vor allem auf Conodonten-Stratigraphie, sowie der Studie von stabilen Isotopen und Untersuchungen zur Magneto-Suszeptibilität von Sedimenten. Im Rahmen des vorgeschlagenen Projektes sollen Veränderungen in tropischen Korallen-Vergesellschaftungen (im speziellen von rugosen Korallen) während der Kacak-Krise untersucht werden. Die Lokalitäten der ausgewählten Gebiete (Karnische Alpen, Grazer Paläozoikum, Barrandium und Mähren) befanden sich zur damaligen Zeit, als Teile des Kontinentalschelfs von Nord-Gondwana, an unterschiedlichen Positionen in den niederen Breiten. Vor allem aus dem Mittel-Devon der Karnischen Alpen und des Grazer Paläozoikums sind fossile Kollektionen bekannt, die eine reiche und vielfältige rugose Korallenfauna beinhalten. Neben einer Menge an nicht bearbeitetem Material, welches sich in den Sammlungen wieder findet, gibt es unter den beschriebenen Korallen auch Arten, die Unstimmigkeiten hinsichtlich ihrer taxonomischen Stellung sowie der stratigraphischen Reichweite aufzeigen. Dazu kommt noch umfangreiches Material an rugosen Korallen aus Mähren, welches bis heute noch keiner detaillierten Bearbeitung unterzogen werden konnte. Ziel dieses Projektes ist es, einen Überblick über die rugosen Korallen geben zu können, die vom Kacak-Event betroffen waren. Dadurch sollen Fragen zur Resonanz von Klima empfindlichen Organismen auf sich verändernden Umweltbedingungen geklärt werden. Zusätzlich soll die Berechnung von Meerwasser Temperaturen aus unterschiedlich niederen Breiten und die Anwendung von geochemischen und geophysikalischen Methoden dazu beitragen, Ursachen die für den Kacak-Event verantwortlich waren, heraus zu finden. usw.

Stoerungen des Wasserhaushaltes durch Rodungen in der Eifel und im Hunsrueck

Zeitpunkt und Ausmass postglazialer Klimaschwankungen sind zu ermitteln und gegenueber den Stoerungen des Haushalts der Natur durch den Menschen abzugrenzen.

Der Einfluss von Modellfehlern auf ENSO Projektionen für das 21. Jahrhundert

El Niño/Southern Oscillation (ENSO) ist die dominate Mode der Klimavariabilität des gekoppelten Ozean-Atmosphäre-Systems im tropischen Pazifik und ergibt sich aus einem komplexen Zusammenspiel zwischen verstärkenden und dämpfenden Feedbacks. Angesichts seiner großen sozioökonomischen Auswirkungen ist es sehr wichtig genau vorherzusagen, wie sich ENSO unter der globalen Erwärmung verändern wird. Obwohl in den letzten Jahrzehnten Verbesserungen bei der Simulation von ENSO erreicht wurden, bleibt eine realistische Darstellung von ENSO und seiner Projektion unter der globalen Erwärmung eine Herausforderung. Die Projektionen von ENSO unterscheiden sich stark zwischen den Klimamodellen, die an den Phasen 3 und 5 des Coupled Model Intercomparison Project (CMIP3 und CMIP5) teilnehmen. Obwohl diese Modelle ENSO simulieren, der in einfachen Indizes mit Beobachtungen übereinstimmt, unterscheidet sich die zugrunde liegende Dynamik stark von der beobachteten. In Beobachtungen wächst eine anfängliche SST-Anomalie während ENSO-Ereignissen durch windinduzierte Änderungen der Ozeandynamik. Dieser Tendenz wirkt ein dämpfendes Feedback der atmosphärischen Wärmeflüsse entgegen, insbesondere durch die Sonneneinstrahlung (SW) und latenten Wärmeflüsse. In den meisten Klimamodellen ist jedoch das Wind-SST-Feedback zu schwach und das SW-SST-Feedback fehlerhaft positiv, so dass ENSO ein Hybrid aus Wind-getriebener und SW-getriebener Dynamik ist. In den Modellen mit dem größten Fehler trägt der SW-SST-Feedback zum Wachstum der SST-Anomalie in ähnlichem Maße wie das Wind-SST-Feedback bei. In den Klimamodellen existiert ein breites Spektrum an ENSO-Dynamiken, das die große Streuung der ENSO-Projektionen für das 21. Jahrhunderts erklären könnte.Im IMBE21C-Projekt untersuchen wir die Auswirkungen der Modellfehler auf die ENSO-Projektionen. Mit einer neuen Methode, der „Offline Slab Ocean SST“, können wir die Rolle der verstärkenden und dämpfenden Feedbacks quantifizieren. Dafür separieren wir die SST-Änderungen der Wind-getriebenen Meeresdynamik von der durch atmosphärische Wärmeflüsse verursacht werden. In diesem Projekt werden wir diese Methode verwenden, um den Antrieb und die Dämpfung in der beobachteten ENSO-Dynamik zu quantifizieren und mit dem in Klimamodellen simulierten ENSO zu vergleichen, um die Fehler in der simulierten ENSO-Dynamik zu identifizieren und zu quantifizieren. Des Weiteren werden wir den Einfluss der fehlerhaften ENSO-Dynamik auf die Projektionen von ENSO im Klimawandel analysieren, indem wir die Modelle in Gruppen mit realistischer und fehlerhafter ENSO-Dynamik unterteilen. Darüber hinaus werden wir die Gesamtunsicherheit der projizierten ENSO-Amplitudenänderung in Modellunsicherheit, Szenariounsicherheit und Unsicherheit aufgrund interner Variabilität aufteilen. Insgesamt zielt das IMBE21C Projekt darauf ab, durch innovative Methoden die Quellen von Unsicherheiten in ENSO-Projektionen zu identifizieren und diese zu reduzieren.

Rekonstruktion der Paläoumwelt im nördlichen Oman

Die Verlagerung der hauptsächlichen sommerlichen Position der innertropischen Konvergenzzone (ITC) über der südlichen Arabischen Halbinsel hat starken Einfluss auf die klimatischen Verhältnisse des südlichen Arabiens. Eine Verschiebung der ITC nach Norden führt zu einer gleichgerichteten Verlagerung des Indischen Monsuns, was einen Anstieg der Niederschläge im südlichen Arabien zur Folge hat. Das Projekt befasst sich mit der Rekonstruktion der Paläoumwelt der heute ariden Jabal Bani Jabir Region in der südlichen Hajar Bergkette im Nordosten Omans, die im hohem Maße von den Paläoniederschlägen in dieser Region abhängig ist. Die Rekonstruktion der Paläoumwelt wird auf der Grundlage eines 20 m mächtigen Sedimentarchivs erstellt werden, das sich in einer Senke in der Nähe der Bergoase von Maqta in einer Höhe von 1.160 m befindet. Der Schwerpunkt der wissenschaftlichen Arbeiten liegt im Bereich holozäner Klimaschwankungen unter besonderer Berücksichtigung ihrer möglichen Einflüsse auf die landwirtschaftliche Tätigkeit in diesem Gebiet.

Detection and Attribution des Klimawandels im Hochgebirge anhand der Kryosphäre: Auflösung der Prozessebene

Der menschliche Einfluss auf großräumige Änderungen des Klimas hat in den letzten Jahrzehnten stark zugenommen, sowohl in Atmosphäre, Ozean und Kryosphäre. Die genauen Eigenschaften physikalischer Prozesse und Mechanismen, die den menschlichen Einfluss von großräumigen auf lokale Skalen übertragen, sind allerdings kaum bekannt. Dies bedeutet eine erhebliche Unsicherheit für die Folgen des Klimawandels in der Zukunft. Das Problem der Übertragung betrifft auch den Gletscherrückgang im Hochgebirge, der überdies ein seltener Indikator für den Klimawandel in der mittleren Troposphäre ist. --- Das vorliegende Projekt hat das Ziel, unser Verständnis des Klimawandels in großer Höhe entscheidend zu verbessern. Das Fundament dafür legt eine neuartige und interdisziplinäre Methodik, mit der wir den menschlichen Anteil am Klimawandel in der großräumigen Klimadynamik, der regionalen Zirkulation über den ausgewählten Gebirgen sowie in der atmosphärischen Grenzschicht der dortigen Gletscher quantifizieren können. Die Verknüpfung prozessauflösender, physikalischer Modelle von globaler bis lokaler Skala sowie außergewöhnliche Messungen auf Gletschern in großer Höhe spannen diese Methodik auf. Sie wird letztlich ermöglichen, den menschlichen Anteil präzise zu erklären und die dafür verantwortlichen Mechanismen ausweisen zu können, inklusive der empfindlichsten Zusammenhänge im multiskaligen System ('Achillesfersen'). --- Der Einfluss des Projekts wird sich deutlich über die Glaziologie hinaus erstrecken. Unser Wissen über das globale Klimasystem wird durch den besser verstandenen Aspekt der Verknüpfung zwischen bodennahen Luftschichten und der mittleren Troposphäre profitieren. Auf regionalen und lokalen Skalen helfen die Ergebnisse für die Abschätzung von Klimafolgen, da Gletscheränderungen Wasserreserven und Naturgefahren beeinflussen. Und schließlich werden die Ergebnisse neue Wege für die Klimafolgenforschung allgemein aufzeigen, indem sie eine prozessauflösende und skalenübergreifende Methodik demonstrieren.

Biogeochemie des Kohlenstoffs und Stickstoffs im Arabischen Meer - ein Beitrag zur Internationalen Indian Ocean Expedition 2

1 2 3 4 576 77 78