Sachdaten der Blöcke zur Planungshinweiskarte Stadtklima (PHK). Sie stellt die Ergebnisse der Bewertung des Siedlungsraumes, der Grün- und Freiflächen sowie des Öffentlichen Raumes hinsichtlich der Anforderungen eines vorsorgenden Klimaschutzes dar.
Gemeinsame Presseinformation mit BBK, DWD und THW Der Klimawandel schreitet weiter voran. Deutschland muss deshalb schon ab dem Jahr 2040 ganzjährig mit einer starken Zunahme extremer Niederschläge rechnen. Damit drohen bereits in drei Jahrzehnten deutlich mehr Schäden durch Überschwemmungen. Politik, Wirtschaft und Gesellschaft müssen sich frühzeitig auf die wachsenden Gefahren durch Wetterextreme vorbereiten. Dieses Ergebnis eines gemeinsamen Forschungsprojekts des Bundesamtes für Bevölkerungsschutz und Katastrophenhilfe (BBK), des Technischen Hilfswerks (THW), des Umweltbundesamtes (UBA) sowie des Deutschen Wetterdienstes (DWD) zu den Auswirkungen des Klimawandels auf extreme Wetterereignisse wurde heute in Berlin von den vier Behörden vorgestellt. „Im Winter, also den Monaten Dezember, Januar und Februar, erwarten wir bis zum Jahr 2100 in weiten Teilen Deutschlands mehr Starkniederschläge“, erläutert Dr. Paul Becker, Vizepräsident des DWD . Als Starkniederschläge bezeichnen Meteorologen Regenmengen, die im Mittel vor Ort nur etwa an jedem 100. Tag überschritten werden und je nach Region 10 bis 100 Liter pro Quadratmeter in 24 Stunden erreichen. Die DWD-Experten erwarten, dass deren Häufigkeit etwa ab 2040 teilweise deutlich steigen wird. In küstennahen Gebieten könnte sich die Anzahl extremer Niederschläge - verglichen mit dem Zeitraum 1960 bis 2000 - verdoppeln, in den Alpenregionen nahezu konstant bleiben und zwischen Küste und Alpen um bis zu 50 Prozent zunehmen. In den Sommermonaten Juni, Juli und August dürfte sich die Häufigkeit von Starkniederschlagsereignissen nicht in allen Teilen Deutschlands einheitlich entwickeln. In den meisten Regionen rechnet der DWD mit einem Anstieg um etwa 50 Prozent, in Teilen des Nordostens auch mit einer leichten Abnahme der Starkniederschlagstage. Vorsorge gegenüber den Folgen des Klimawandels verstärken „Diese Ergebnisse erhöhen den Handlungsdruck, die Vorsorge gegenüber den Folgen des unvermeidbaren Klimawandels zu verstärken“, erklärt Jochen Flasbarth, Präsident des UBA . Insbesondere Extremereignisse haben ein großes Schadenspotenzial zum Beispiel für Infrastrukturen wie die Wasser- und Energieversorgung und die Verkehrswege. Deshalb habe der Bund einen besonders hohen Beratungsbedarf zu der Frage, wie sich extreme Wetterereignisse künftig verändern werden und wie Deutschland sich auf häufigere und heftigere Extremereignisse vorbeugend vorbereiten könne. Das Umweltbundesamt untersucht vor allem die Folgen von Wetterextremen auf Umwelt und Gesellschaft. Da diese in Deutschland regional unterschiedlich sein werden, braucht es auch regional unterschiedliche Anpassungsreaktionen. So richten zum Beispiel Starkniederschläge gerade in Städten große Schäden an. Deshalb seien dort Anpassungsmaßnahmen, die auf eine ‚wassersensible’ Stadtgestaltung hinaus liefen, von großer Bedeutung. Das UBA empfehle Städten deshalb eine dezentrale Regenwasserversickerung und ihre Oberflächen so zu gestalten, dass sie unter normalen Wetterbedingungen für Freizeitaktivitäten genutzt werden können, im Ereignisfall aber dem Wasserrückhalt dienen. Anpassung an den Klimawandel ist gesamtgesellschaftliche Aufgabe Christoph Unger, Präsident des BBK, betont, dass die Anpassung an den Klimawandel eine gesamtgesellschaftliche Aufgabe sei, denn es liege in der Verantwortung des Einzelnen, seinen Beitrag zu leisten. Zugleich gehöre der Umgang mit Extremwetterereignissen und anderen Naturgefahren für den Bevölkerungsschutz schon immer zu dessen originären Aufgaben. „Wenn wir aber das aktuell sehr hohe Niveau des Bevölkerungsschutzes in Deutschland halten und weiter erhöhen wollen, kommt es darauf an, Veränderungen von Gefahrenlagen frühzeitig zu erkennen und rechtzeitig zu reagieren.“ Eine mögliche Veränderung von Starkregenereignissen sei deshalb für die Rettungsdienste, Feuerwehren, das THW und andere Aktive im Bevölkerungsschutz von zentraler Bedeutung. Der Bevölkerungsschutz müsse sich angesichts der erwarteten Veränderungen die Frage stellen, ob die einsatztaktischen, personellen oder materiellen Mittel und Ressourcen auch in Zukunft geeignet und ausreichend verfügbar sein werden. So könne es sinnvoll sein, Alarmpläne und Ausstattungskonzepte zu überarbeiten und zu bewerten, ob die vorgehaltenen Kapazitäten ausreichen - unabhängig davon, ob es sich um Spezialgerät oder Einsatzkleidung handelt. Extremwetterereignisse sind die häufigsten Großschadensereignisse Extremwetterereignisse wie Schneekatastrophen, Hochwasserereignisse und extreme Trocken- und Hitzeperioden waren und sind in Deutschland die am häufigsten auftretenden Großschadensereignisse, erläutert Volker Strotmann, Leiter der Abteilung Einsatz im THW. Da das THW als Organisation des Bundes bei Wetterkatastrophen auf Anforderung der für die Gefahrenabwehr verantwortlichen lokalen Stellen technische Unterstützung vor Ort leiste, sei es von einer möglichen Veränderung extremer Wettereignisse stark betroffen. Als Beispiel nannte Strotmann das Jahr 2010. So fielen insgesamt 845.781 Einsatzstunden an - fast doppelt so viele wie 2009. Der größte Teil davon entfiel auf wetterbedingte Einsätze. „Das Jahr 2010 mag, klimatisch gesehen, ein Ausreißer gewesen sein. Ab er es zeigt, wie wichtig für das THW ist, ob solche Ereignisse zukünftig häufiger auftreten werden und ob wir uns einsatztaktisch auf eine veränderte Umwelt einstellen müssen.“ Um eine Entscheidungsgrundlage für die Zukunft zu bekommen, habe sich das THW als operativ tätige Organisation an dem Forschungsprojekt beteiligt. Nur durch die Identifizierung der Risiken, der Eintrittswahrscheinlichkeit und die Abschätzung des zu erwartenden Schadens sei es möglich, sich gezielt auf kommende Schadensereignisse auszurichten. Erst dann könne das THW entscheiden, ob die jetzige Struktur beibehalten werden kann oder ob es in bestimmten Bereichen andere Einsatzschwerpunkte geben muss, also ob zum Beispiel mehr Einheiten bereitgestellt werden müssen, die große Mengen Wasser fördern können, oder ob es mehr Kapazitäten geben müsse, die in größerem Umfang Elektrizität liefern. Die Reden sowie weitere Unterlagen zur Pressekonferenz finden Sie im Internetangebot des Deutschen Wetterdienstes. Dessau-Roßlau, 15.02.2011
Gewinnung von Kalisalzen: Die geförderten Rohsalze enthalten aufgrund ihrer Entstehungsgeschichte verschiedene Salzminerale. Das Ziel der Aufbereitung nach der Förderung ist das Abtrennen der Wertstoffe als verkaufsfähige Produkte von den Mineralsalzen, die den Rückstand bilden. Dies kann in Abhängigkeit der Eigenschaften der zu verarbeitenden Rohstoffe auf unterschiedliche Weise und in den verschiedensten Verfahrenskombinationen geschehen. Bei allen Prozessen steht am Anfang das Mahlen des stückigen Rohsalzes (bis zu Korngrößen um 1 mm). Die weiteren Verfahren sind sehr stark vom Rohsalztyp, dessen spezieller Zusammensetzung und dem Verwachsungsgrad der Salzminerale abhängig (BMU 1995). Die wichtigsten Prozesse sind: (1) Heißlöseverfahren: Aus dem Rohsalz wird Kaliumchlorid mittels einer heißen , mit Natriumchlorid gesättigten Kreislauflösung gelöst und durch Kristallisation mittels Vakuumverdampfung gewonnen. Der feste Rückstand wird meistens aufgehaldet. Falls Carnallit im Rohsalz enthalten ist, fällt dies in gelöster Form an und wird entsorgt (Ableitung in den Zechstein). (2) Elektrostatische Aufbereitung (ESTA): Das Rohsalz wird mit selektiv wirkenden oberflächenaktiven Stoffen behandelt und trocken im elektrischen Feld getrennt. Es fällt kein Prozeßwasser an. Der Rückstand der ersten Stufe wird aufgehaldet, während die Produkte weiterer Stufen anderen Aufbereitungsverfahren zugeführt werden können. Die ESTA kann auch zur Abtrennung von Kieserit eingesetzt werden. (3) Flotation: Dieses Verfahren wird für Rohsalze und den Rückstand des Heißlöseverfahrens angewendet. Auch bei diesem Verfahren werden selektiv wirkende oberflächenaktive Substanzen eingesetzt. Die Trennung erfolgt in einer sog. Traglauge durch das Abschöpfen eines wertstoffreichen, schaumigen Konzentrats. Der Rückstand wird aufgehaldet, die Trennflüssigkeiten weitestgehend im Kreis geführt. (4) Kieseritwäsche: Der feste Rückstand des Heißlöseverfahrens besteht aus einem Steinsalz-Kieserit-Gemisch, aus dem das Steinsalz in einem mehrstufigen Waschvorgang herausgelöst wird und als flüssiger Rückstand anfällt. (5) Herstellung von Kaliumsulfat: Aus Kaliumchlorid und Kieserit wird durch eine zweistufige Umsetzung Kaliumsulfat hergestellt. Dabei fällt magnesiumchloridhaltiges Abwasser an (BMU 1995). Insgesamt bestehen die Aufbereitungsrückstände im wesentlichen aus Magnesiumchlorid und Steinsalz. Magnesiumchlorid fällt dabei zwangsweise im Abwasser an. Der Abwasseranfall für die verschiedenen Verfahren wird vom BMU folgendermaßen beziffert: Tab.: Spezifischer Abwasseranfall für die einzelnen Aufbereitungsverfahren (BMU 1995) Verfahren Bezug Abwasser (m³) Heißlösen t verarbeitetes Rohsalz SylvinitHartsalz+Carnallit+ je % MgCl2 <0,10,10,03-0,05 Flotation je t verarbeitetes Rohsalz+ je % MgCl2 0,10,03-0,05 Kieseritwäsche je t Kieserit 5-7 Kaliumsulfat-Herstellung je t eingesetztes Kaliumchlorid mit 60 % K2O 3-5 Die beschriebenen Verfahren werden an den verschiedenen Standorten in unterschiedlichen Kombinationen je nach Vorkommen, Zusammensetzung des Salzes (Wertstoffgehalt) und Verwachsungsgrad eingesetzt. Die prägenden Rohsalztypen für die einzelnen Werke sind in der folgenden Tabelle gemeinsam mit den Produktionsdaten zusammengestellt. Tab.: Produktionskapazitäten der einzelnen Kaliwerke für 1993 incl. Produktionsstruktur (BMU 1995). Werke Rohsalz Kali Kaliumsulfat Kieserit Mio t Mio t K2O Mio t K2O Mio t Hattorf (He)H.salz/Carn. 9,6 0,7 0,38 0,1 Neuhof (He)H.salz/Carn. 3,7 0,35 - 0,6 Wintershall (He)H.salz/Carn. 9,5 0,65 0,26 0,1 Sigmundshall (Nd)Sylvinit 3,0 0,4 - - Unterbreizbach (Th)H.salz/Carn. 4,1 0,4 - 0,3 Zielitz (SA)Sylvinit 8,6 1,1 - - Summe 38,5 3,6 0,64 1,1 Der hier bilanzierte Prozess der Gewinnung von Kalisalzen umfaßt die Aufbereitung der geförderten Rohsalze zu absatzfähigen Produkten. Für die Bilanzierung standen lediglich Sekundärdaten zur Verfügung (OEKO 1992a), (BMU 1995), (Scharf 1993), (Kali 1996). Daraus ergibt sich sowohl der Grad der Aggregation als auch die weitgefaßten Systemgrenzen. Die Materialbilanzen konnten nur aus Daten hessischer Werke für den Bilanzzeitraum Anfang der 90er Jahre zur Erstellung der Kennziffern herangezogen werden. Dabei sind der Berechnung der Kennziffern die Planungsdaten für das Jahr 1993 zugrundegelegt, die aber durch reale Produktionsdaten verifiziert werden konnten. Über den Energiebedarf der Prozesse lagen keine Daten vor. Hier mußte auf statistische Daten zurückgegriffen werden (OEKO 1992a). Die hessischen Werke machen den weitaus größten Teil der westdeutschen Produktion aus. Die Förderung in den neuen Bundesländern konnte nicht berücksichtigt werden. Es muß jedoch darauf hingewiesen werden, daß die Werte für die anderen Werke stark abweichen kann. Je nach Zusammensetzung des Rohsalzes, der eingesetzten - meist kombinierten - Verfahren und dem Produktportfolio können andere Kenngrößen differieren. Weiterhin muß darauf hingewiesen werden, daß die Berechnungsgrundlage für die verwendeten Bilanzen nicht eindeutig geklärt ist (Scharf 1993). Dadurch können in der Bilanz auftretende Differenzen nicht abschließend erklärt werden. Eine abschließende Erklärung wäre nur im Rahmen einer weitergehenden Studie möglich, die im Rahmen von GEMIS nicht zu leisten ist. Eine weitergehende Untergliederung des Prozesses in einzelne Prozesseinheiten oder nach einzelnen oben beschriebenen Verfahren ist anhand der vorliegenden Daten nicht möglich gewesen. Aufgrund der mangelhaften Datenlage ist der vorliegende Datensatz nur als grobe Schätzung zu bezeichnen. Allokation: Neben den Kalisalzen Kaliumchlorid und Kaliumsulfat wird Magnesiumsulfat in großen Mengen gewonnen, das auf die Wirtschaftlichkeit der deutschen Werke einen entscheidenden Einfluß hat (Scharf 1993). Diese drei Produkte werden in der vorliegenden Bilanz gleichwertig in bezug auf die Masse als Hauptprodukt angesehen. Es findet somit eine Allokation nach Masse statt, wobei die Produkte summarisch bilanziert werden. Neben den erwähnten Produkten werden keine weiteren Produkte in der Bilanz berücksichtigt. Auch Brom wird nicht mitbilanziert, da die Bromproduktion durch die Kaliindustrie eingestellt wurde (BMU 1995). Mineralsalze in fester und gelöster Form werden als Rückstände angesehen, auch wenn teilweise Bestrebungen existieren, sie ebenso als Produkt zu verwerten. Bislang wird jedoch der Großteil verworfen. Genese der Kennziffern Massenbilanz: Bezogen auf eine Tonne Produktmix müssen nach den Planungsdaten der hessischen Werke für das Jahr 1993 8250 kg Rohsalz gefördert werden (Scharf 1993). Diese Daten können durch die realen Produktionszahlen bestätigt werden. Im Jahr 1993 mußten real zur Gewinnung einer Tonne Produktmix ca. 8120 kg Rohsalz verarbeitet werden (Kali 1996). Dieser Wert wird in der vorliegenden Studie angesetzt, da er auf Herstellerangaben beruht. Energiebedarf: Zum Energiebedarf bei der Gewinnung von Kalisalzen liegen derzeit nur sehr wenige Daten vor. Aus den Daten des Statistischen Bundesamtes (StBA) und der Arbeitsgemeinschaft Energiebilanzen (AGEB) sind lediglich Daten für den gemeinsamen Energieverbrauch der Kali- und der Steinsalzindustrie zu entnehmen (OEKO 1992a). Unter der Voraussetzung, daß Kali- und Steinsalz von der Masse her gleichrangig behandelt werden, ergibt sich ein vorläufiger Proporz der Kaliindustrie. Bezogen auf eine Tonne Produktmix werden daher die in der folgenden Tabelle dargestellten Daten für die Gewinnung der Kalisalze bilanziert: Tab.: Energiebedarf bei der Herstellung von Kalisalzen für das Jahr 1987 in den alten Bundesländern(OEKO 1992). Kenngröße Einheit Kali- & Steins. Kali Steinsalz Prod.menge t 1,0 E+7 2,77 E+6 7,26 E+6 Brennstoff GJ/t 1,516 0,419 1,097 Strom GJ/t 0,342 0,094 0,248 Demnach werden 0,419 GJ/t Prozesswärme und 0,094 GJ/t Strom benötigt zur Herstellung einer Tonne Produktmix benötigt. Die Werte konnten durch die überarbeitete Erklärung des Kalivereins zur Klimavorsorge von 1996 bestätigt werden. In ihr wird für das Jahr 1994 ein spezifischer Energieverbrauch von 0,528 GJ/t Rohsalz angegeben (Kaliverein 1996). Dieser wird allerdings nicht nach Energieträgern spezifiziert. Für GEMIS wird die Summe aus der Erklärung des Kalivereins angesetzt mit der Verteilung nach den statistischen Angaben zwischen den einzelnen Energieträgern. Daraus ergibt sich ein Brennstoffbedarf von 0,432 GJ/t und ein Strombedarf von 0,096 GJ/t. Als Brennstoff zur Bereitstellung der Prozeßwärme wird Gas angesetzt. Die vorliegenden Daten zum Energiebedarf der Kalisalzherstellung sind als Schätzung anzusehen (Kali 1996). Prozessbedingte Luftemissionen: Abgesehen von den Emissionen, die aus der Energiebereitstellung resultieren, werden keine weiteren Prozessemissionen bilanziert. Etwaige Staubemissionen, verursacht durch die Aufhaldung der festen Reststoffe, können hier nicht quantifiziert werden. Sie werden aber - trotz fehlender Daten - ausdrücklich nicht ausgeschlossen. Wasserinanspruchnahme: Wasser wird in nahezu allen Produktionsschritten in Anspruch genommen. Insgesamt waren für 1993 5,65 m³ Wasser angesetzt bezogen auf eine Tonne des in dieser Studie berücksichtigten Produktmixes. Diese Menge teilt sich folgendermaßen auf: Tab.: Abwassermengen bei der Kalisalzgewinnung (Scharf 1993). Abwasserherkunft Menge in m³/t Produktmix Ableitung Abwasser von Halden 0,1 Versenkung Prozeßabw. KCl-Herst. 1,25 Versenkung Prozeßabw. MgSO4-Herst. 2,3 Werra Prozeßabw. K2SO4-Herst. 1,75 Versenkung Kühl- und Sielwässer 0,25 Werra Summe 5,65 Aufgrund der eingeschränkten Datenverfügbarkeit wurde in der vorliegenden Studie vereinfachend die Wasserinanspruchnahme gleich der Abwassermenge gesetzt. Kühl- und Sielwässer sind in der Regel nicht oder nur gering mit Salzen belastet. Sie wurden jedoch auf Salzabwässer umgerechnet. Die real einzusetzende Wassermenge liegt also wahrscheinlich höher. Die Tendenzen in der Kaliindustrie gehen dahin, die Abwassermengen - respektive die Wasserinanspruchnahme - durch eine geeignete Verfahrensführung zu reduzieren. Das würde jedoch zwangsläufig zu größeren Mengen fester Reststoffe führen. Dieser Effekt kann hier nur qualitativ beschrieben werden. Eine quantitative Abschätzung ist hierzu nicht möglich. Abwasserinhaltsstoffe: Hinsichtlich der in dieser Studie bilanzierten organischen Summenparametern ist bei der Kalisalz-Herstellung nicht mit erheblichen Zusatzbelastungen zu rechnen. Da organische Hilfsstoffe (Flotationsmittel), die in den Prozessen eingesetzt werden, in der vorliegenden Untersuchung nicht bilanziert wurden, können über deren Auswirkungen auf die Abwasserqualität keine Aussagen getroffen werden. Daher werden die Frachten pro Tonne Produktmix für die organischen Summenparameter wie auch für die Nährstoffe hier auf Null gesetzt. Erheblich ist allerdings die Chloridfracht der Abwässer. Sie ist in der folgenden Tabelle aufgeführt. Tab.: Abwasseranalysen 1992 hessischer Werke (Scharf 1993). Parameter Einheit Versenkung Werra Chlorid g/l 190 160 Chlorid kg/t Produktmix 589 408 Summe kg/t Produktmix 997 Reststoffe: Aus den Planungsdaten der bilanzierten Werke für das Jahr 1993 geht hervor, daß pro Tonne Produktmix 5000 kg Haldenmaterial anfallen (Scharf 1993). Die realen Produktionszahlen für 1993 bestätigen diesen Wert. Aus ihnen geht hervor, dass pro Tonne Produkt 4710 kg aufgehaldet werden (Kali 1996). Dieser Wert wird in GEMIS als Kennziffer zugrundegelegt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 12,3% Produkt: Rohstoffe
Gewinnung von Kalisalzen: Die geförderten Rohsalze enthalten aufgrund ihrer Entstehungsgeschichte verschiedene Salzminerale. Das Ziel der Aufbereitung nach der Förderung ist das Abtrennen der Wertstoffe als verkaufsfähige Produkte von den Mineralsalzen, die den Rückstand bilden. Dies kann in Abhängigkeit der Eigenschaften der zu verarbeitenden Rohstoffe auf unterschiedliche Weise und in den verschiedensten Verfahrenskombinationen geschehen. Bei allen Prozessen steht am Anfang das Mahlen des stückigen Rohsalzes (bis zu Korngrößen um 1 mm). Die weiteren Verfahren sind sehr stark vom Rohsalztyp, dessen spezieller Zusammensetzung und dem Verwachsungsgrad der Salzminerale abhängig (BMU 1995). Die wichtigsten Prozesse sind: (1) Heißlöseverfahren: Aus dem Rohsalz wird Kaliumchlorid mittels einer heißen , mit Natriumchlorid gesättigten Kreislauflösung gelöst und durch Kristallisation mittels Vakuumverdampfung gewonnen. Der feste Rückstand wird meistens aufgehaldet. Falls Carnallit im Rohsalz enthalten ist, fällt dies in gelöster Form an und wird entsorgt (Ableitung in den Zechstein). (2) Elektrostatische Aufbereitung (ESTA): Das Rohsalz wird mit selektiv wirkenden oberflächenaktiven Stoffen behandelt und trocken im elektrischen Feld getrennt. Es fällt kein Prozeßwasser an. Der Rückstand der ersten Stufe wird aufgehaldet, während die Produkte weiterer Stufen anderen Aufbereitungsverfahren zugeführt werden können. Die ESTA kann auch zur Abtrennung von Kieserit eingesetzt werden. (3) Flotation: Dieses Verfahren wird für Rohsalze und den Rückstand des Heißlöseverfahrens angewendet. Auch bei diesem Verfahren werden selektiv wirkende oberflächenaktive Substanzen eingesetzt. Die Trennung erfolgt in einer sog. Traglauge durch das Abschöpfen eines wertstoffreichen, schaumigen Konzentrats. Der Rückstand wird aufgehaldet, die Trennflüssigkeiten weitestgehend im Kreis geführt. (4) Kieseritwäsche: Der feste Rückstand des Heißlöseverfahrens besteht aus einem Steinsalz-Kieserit-Gemisch, aus dem das Steinsalz in einem mehrstufigen Waschvorgang herausgelöst wird und als flüssiger Rückstand anfällt. (5) Herstellung von Kaliumsulfat: Aus Kaliumchlorid und Kieserit wird durch eine zweistufige Umsetzung Kaliumsulfat hergestellt. Dabei fällt magnesiumchloridhaltiges Abwasser an (BMU 1995). Insgesamt bestehen die Aufbereitungsrückstände im wesentlichen aus Magnesiumchlorid und Steinsalz. Magnesiumchlorid fällt dabei zwangsweise im Abwasser an. Die beschriebenen Verfahren werden an den verschiedenen Standorten in unterschiedlichen Kombinationen je nach Vorkommen, Zusammensetzung des Salzes (Wertstoffgehalt) und Verwachsungsgrad eingesetzt. Die prägenden Rohsalztypen für die einzelnen Werke sind in der folgenden Tabelle gemeinsam mit den Produktionsdaten zusammengestellt. Tab.: Produktionskapazitäten der einzelnen Kaliwerke für 1993 incl. Produktionsstruktur (BMU 1995). Werke Rohsalz Kali Kaliumsulfat Kieserit Mio t Mio t K2O Mio t K2O Mio t Hattorf (He)H.salz/Carn. 9,6 0,7 0,38 0,1 Neuhof (He)H.salz/Carn. 3,7 0,35 - 0,6 Wintershall (He)H.salz/Carn. 9,5 0,65 0,26 0,1 Sigmundshall (Nd)Sylvinit 3,0 0,4 - - Unterbreizbach (Th)H.salz/Carn. 4,1 0,4 - 0,3 Zielitz (SA)Sylvinit 8,6 1,1 - - Summe 38,5 3,6 0,64 1,1 Der vorliegenden Prozess zur Gewinnung von Kalisalzen umfaßt die Aufbereitung der geförderten Rohsalze zu absatzfähigen Produkten. Für die Bilanzierung standen lediglich Sekundärdaten zur Verfügung (OEKO 1992a), (BMU 1995), (Scharf 1993), (Kali 1996). Daraus ergibt sich sowohl der Grad der Aggregation als auch die weitgefaßten Systemgrenzen. Die Materialbilanzen konnten nur aus Daten hessischer Werke für den Bilanzzeitraum Anfang der 90er Jahre zur Erstellung der Kennziffern herangezogen werden. Dabei sind der Berechnung der Kennziffern die Planungsdaten für das Jahr 1993 zugrundegelegt, die aber durch reale Produktionsdaten verifiziert werden konnten. Über den Energiebedarf der Prozesse lagen keine Daten vor. Hier mußte auf statistische Daten zurückgegriffen werden (OEKO 1992a). Die hessischen Werke machen den weitaus größten Teil der westdeutschen Produktion aus. Die Förderung in den neuen Bundesländern konnte nicht berücksichtigt werden. Es muß jedoch darauf hingewiesen werden, daß die Werte für die anderen Werke stark abweichen kann. Je nach Zusammensetzung des Rohsalzes, der eingesetzten - meist kombinierten - Verfahren und dem Produktportfolio können andere Kenngrößen differieren. Weiterhin muß darauf hingewiesen werden, daß die Berechnungsgrundlage für die verwendeten Bilanzen nicht eindeutig geklärt ist (Scharf 1993). Dadurch können in der Bilanz auftretende Differenzen nicht abschließend erklärt werden. Eine abschließende Erklärung wäre nur im Rahmen einer weitergehenden Studie möglich, die im Rahmen von GEMIS nicht zu leisten ist. Eine weitergehende Untergliederung des Prozesses in einzelne Prozeßeinheiten oder nach einzelnen oben beschriebenen Verfahren ist anhand der vorliegenden Daten nicht möglich gewesen. Aufgrund der mangelhaften Datenlage ist der vorliegende Datensatz nur als grobe Schätzung und damit als vorläufig zu bezeichnen. Allokation: Neben den Kalisalzen Kaliumchlorid und Kaliumsulfat wird Magnesiumsulfat in großen Mengen gewonnen, das auf die Wirtschaftlichkeit der deutschen Werke einen entscheidenden Einfluß hat (Scharf 1993). Diese drei Produkte werden in der vorliegenden Bilanz gleichwertig in bezug auf die Masse als Hauptprodukt angesehen. Es findet somit eine Allokation nach Masse statt. Wobei die Produkte summarisch bilanziert werden. Neben den erwähnten Produkten werden keine weiteren Produkte in der Bilanz berücksichtigt. Auch Brom wird nicht mitbilanziert, da die Bromproduktion durch die Kaliindustrie eingestellt wurde (BMU 1995). Mineralsalze in fester und gelöster Form werden als Rückstände angesehen, auch wenn teilweise Bestrebungen existieren, sie ebenso als Produkt zu verwerten. Bislang wird jedoch der Großteil verworfen. Genese der Kennziffern Massenbilanz: Bezogen auf eine Tonne Produktmix müssen nach den Planungsdaten der hessischen Werke für das Jahr 1993 8250 kg Rohsalz gefördert werden (Scharf 1993). Diese Daten können durch die realen Produktionszahlen bestätigt werden. Im Jahr 1993 mußten real zur Gewinnung einer Tonne Produktmix ca. 8120 kg Rohsalz verarbeitet werden (Kali 1996). Dieser Wert wird in der vorliegenden Studie angesetzt, da er auf Herstellerangaben beruht. Energiebedarf: Zum Energiebedarf bei der Gewinnung von Kalisalzen liegen derzeit nur sehr wenige Daten vor. Aus den Daten des Statistischen Bundesamtes (StBA) und der Arbeitsgemeinschaft Energiebilanzen (AGEB) sind lediglich Daten für den gemeinsamen Energieverbrauch der Kali- und der Steinsalzindustrie zu entnehmen (OEKO 1992a). Unter der Voraussetzung, daß Kali- und Steinsalz von der Masse her gleichrangig behandelt werden, ergibt sich ein vorläufiger Proporz der Kaliindustrie. Bezogen auf eine Tonne Produktmix werden daher die in der folgenden Tabelle dargestellten Daten für die Gewinnung der Kalisalze bilanziert: Tab.: Energiebedarf bei der Herstellung von Kalisalzen für das Jahr 1987 in den alten Bundesländern(OEKO 1992). Kenngröße Einheit Kali- & Steins. Kali Steinsalz Prod.menge t 1,0 E+7 2,77 E+6 7,26 E+6 Brennstoff GJ/t 1,516 0,419 1,097 Strom GJ/t 0,342 0,094 0,248 Demnach werden 0,419 GJ/t Prozesswärme und 0,094 GJ/t Strom benötigt zur Herstellung einer Tonne Produktmix benötigt. Die Werte konnten durch die überarbeitete Erklärung des Kalivereins zur Klimavorsorge von 1996 bestätigt werden. In ihr wird für das Jahr 1994 ein spezifischer Energieverbrauch von 0,528 GJ/t Rohsalz angegeben (Kaliverein 1996). Dieser wird allerdings nicht nach Energieträgern spezifiziert. Für GEMIS wird die Summe aus der Erklärung des Kalivereins angesetzt mit der Verteilung nach den statistischen Angaben zwischen den einzelnen Energieträgern. Daraus ergibt sich ein Brennstoffbedarf von 0,43 GJ/t und ein Strombedarf von 0,1 GJ/t. Als Brennstoff zur Bereitstellung der Prozesswärme wird Gas angesetzt. Prozeßbedingte Luftemissionen: Abgesehen von den Emissionen, die aus der Energiebereitstellung resultieren, werden keine weiteren Prozeßemissionen bilanziert. Reststoffe: Aus den Planungsdaten der bilanzierten Werke für das Jahr 1993 geht hervor, daß pro Tonne Produktmix 5000 kg Haldenmaterial anfallen (Scharf 1993). Die realen Produktionszahlen für 1993 bestätigen diesen Wert. Aus ihnen geht hervor, daß pro Tonne Produkt 4710 kg aufgehaldet werden (Kali 1996). Dieser Wert wird in GEMIS als Kennziffer zugrundegelegt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 12,3% Produkt: Rohstoffe
Gewinnung von Kalisalzen: Die geförderten Rohsalze enthalten aufgrund ihrer Entstehungsgeschichte verschiedene Salzminerale . Das Ziel der Aufbereitung nach der Förderung ist das Abtrennen der Wertstoffe als verkaufsfähige Produkte von den Mineralsalzen, die den Rückstand bilden. Dies kann in Abhängigkeit der Eigenschaften der zu verarbeitenden Rohstoffe auf unterschiedliche Weise und in den verschiedensten Verfahrenskombinationen geschehen. Bei allen Prozessen steht am Anfang das Mahlen des stückigen Rohsalzes (bis zu Korngrößen um 1 mm). Die weiteren Verfahren sind sehr stark vom Rohsalztyp, dessen spezieller Zusammensetzung und dem Verwachsungsgrad der Salzminerale abhängig (BMU 1995). Die wichtigsten Prozesse sind: (1) Heißlöseverfahren: Aus dem Rohsalz wird Kaliumchlorid mittels einer heißen , mit Natriumchlorid gesättigten Kreislauflösung gelöst und durch Kristallisation mittels Vakuumverdampfung gewonnen. Der feste Rückstand wird meistens aufgehaldet. Falls Carnallit im Rohsalz enthalten ist, fällt dies in gelöster Form an und wird entsorgt (Ableitung in den Zechstein). (2) Elektrostatische Aufbereitung (ESTA): Das Rohsalz wird mit selektiv wirkenden oberflächenaktiven Stoffen behandelt und trocken im elektrischen Feld getrennt. Es fällt kein Prozeßwasser an. Der Rückstand der ersten Stufe wird aufgehaldet, während die Produkte weiterer Stufen anderen Aufbereitungsverfahren zugeführt werden können. Die ESTA kann auch zur Abtrennung von Kieserit eingesetzt werden. (3) Flotation: Dieses Verfahren wird für Rohsalze und den Rückstand des Heißlöseverfahrens angewendet. Auch bei diesem Verfahren werden selektiv wirkende oberflächenaktive Substanzen eingesetzt. Die Trennung erfolgt in einer sog. Traglauge durch das Abschöpfen eines wertstoffreichen, schaumigen Konzentrats. Der Rückstand wird aufgehaldet, die Trennflüssigkeiten weitestgehend im Kreis geführt. (4) Kieseritwäsche: Der feste Rückstand des Heißlöseverfahrens besteht aus einem Steinsalz-Kieserit-Gemisch, aus dem das Steinsalz in einem mehrstufigen Waschvorgang herausgelöst wird und als flüssiger Rückstand anfällt. (5) Herstellung von Kaliumsulfat: Aus Kaliumchlorid und Kieserit wird durch eine zweistufige Umsetzung Kaliumsulfat hergestellt. Dabei fällt magnesiumchloridhaltiges Abwasser an (BMU 1995). Insgesamt bestehen die Aufbereitungsrückstände im wesentlichen aus Magnesiumchlorid und Steinsalz. Magnesiumchlorid fällt dabei zwangsweise im Abwasser an. Der Abwasseranfall für die verschiedenen Verfahren wird vom BMU folgendermaßen beziffert: Tab.: Spezifischer Abwasseranfall für die einzelnen Aufbereitungsverfahren (BMU 1995) Verfahren Bezug Abwasser (m³) Heißlösen t verarbeitetes RohsalzSylvinitHartsalz+Carnallit+ je % MgCl2 <0,10,10,03-0,05 Flotation je t verarbeitetes Rohsalz+ je % MgCl2 0,10,03-0,05 Kieseritwäsche je t Kieserit 5-7 Kaliumsulfat-Herstellung je t eingesetztes Kaliumchlorid mit 60 % K2O 3-5 Die beschriebenen Verfahren werden an den verschiedenen Standorten in unterschiedlichen Kombinationen je nach Vorkommen, Zusammensetzung des Salzes (Wertstoffgehalt) und Verwachsungsgrad eingesetzt. Die prägenden Rohsalztypen für die einzelnen Werke sind in der folgenden Tabelle gemeinsam mit den Produktionsdaten zusammengestellt. Tab.: Produktionskapazitäten der einzelnen Kaliwerke für 1993 incl. Produktionsstruktur (BMU 1995). Werke Rohsalz Kali Kaliumsulfat Kieserit Mio t Mio t K2O Mio t K2O Mio t Hattorf (He)H.salz/Carn. 9,6 0,7 0,38 0,1 Neuhof (He)H.salz/Carn. 3,7 0,35 - 0,6 Wintershall (He)H.salz/Carn. 9,5 0,65 0,26 0,1 Sigmundshall (Nd)Sylvinit 3,0 0,4 - - Unterbreizbach (Th)H.salz/Carn. 4,1 0,4 - 0,3 Zielitz (SA)Sylvinit 8,6 1,1 - - Summe 38,5 3,6 0,64 1,1 Der in der vorliegenden Studie bilanzierte Prozeß der Gewinnung von Kalisalzen umfaßt die Aufbereitung der geförderten Rohsalze zu absatzfähigen Produkten. Für die Bilanzierung standen lediglich Sekundärdaten zur Verfügung (OEKO 1992a), (BMU 1995), (Scharf 1993), (Kali 1996). Daraus ergibt sich sowohl der Grad der Aggregation als auch die weitgefaßten Systemgrenzen. Die Materialbilanzen konnten nur aus Daten hessischer Werke für den Bilanzzeitraum Anfang der 90er Jahre zur Erstellung der Kennziffern herangezogen werden. Dabei sind der Berechnung der Kennziffern die Planungsdaten für das Jahr 1993 zugrundegelegt, die aber durch reale Produktionsdaten verifiziert werden konnten. Über den Energiebedarf der Prozesse lagen keine Daten vor. Hier mußte auf statistische Daten zurückgegriffen werden (OEKO 1992a). Die hessischen Werke machen den weitaus größten Teil der westdeutschen Produktion aus. Die Förderung in den neuen Bundesländern konnte nicht berücksichtigt werden. Es muß jedoch darauf hingewiesen werden, daß die Werte für die anderen Werke stark abweichen kann. Je nach Zusammensetzung des Rohsalzes, der eingesetzten - meist kombinierten - Verfahren und dem Produktportfolio können andere Kenngrößen differieren. Weiterhin muß darauf hingewiesen werden, daß die Berechnungsgrundlage für die verwendeten Bilanzen nicht eindeutig geklärt ist (Scharf 1993). Dadurch können in der Bilanz auftretende Differenzen nicht abschließend erklärt werden. Eine abschließende Erklärung wäre nur im Rahmen einer weitergehenden Studie möglich, die im Rahmen von GEMIS nicht zu leisten ist. Eine weitergehende Untergliederung des Prozesses in einzelne Prozeßeinheiten oder nach einzelnen oben beschriebenen Verfahren ist anhand der vorliegenden Daten nicht möglich gewesen. Aufgrund der mangelhaften Datenlage ist der vorliegende Datensatz nur als grobe Schätzung und damit als vorläufig zu bezeichnen. Allokation: Neben den Kalisalzen Kaliumchlorid und Kaliumsulfat wird Magnesiumsulfat in großen Mengen gewonnen, das auf die Wirtschaftlichkeit der deutschen Werke einen entscheidenden Einfluß hat (Scharf 1993). Diese drei Produkte werden in der vorliegenden Bilanz gleichwertig in bezug auf die Masse als Hauptprodukt angesehen. Es findet somit eine Allokation nach Masse statt. Wobei die Produkte summarisch bilanziert werden. Neben den erwähnten Produkten werden keine weiteren Produkte in der Bilanz berücksichtigt. Auch Brom wird nicht mitbilanziert, da die Bromproduktion durch die Kaliindustrie eingestellt wurde (BMU 1995). Mineralsalze in fester und gelöster Form werden als Rückstände angesehen, auch wenn teilweise Bestrebungen existieren, sie ebenso als Produkt zu verwerten. Bislang wird jedoch der Großteil verworfen. Genese der Kennziffern Massenbilanz: Bezogen auf eine Tonne Produktmix müssen nach den Planungsdaten der hessischen Werke für das Jahr 1993 8250 kg Rohsalz gefördert werden (Scharf 1993). Diese Daten können durch die realen Produktionszahlen bestätigt werden. Im Jahr 1993 mußten real zur Gewinnung einer Tonne Produktmix ca. 8120 kg Rohsalz verarbeitet werden (Kali 1996). Dieser Wert wird in der vorliegenden Studie angesetzt, da er auf Herstellerangaben beruht. Energiebedarf: Zum Energiebedarf bei der Gewinnung von Kalisalzen liegen derzeit nur sehr wenige Daten vor. Aus den Daten des Statistischen Bundesamtes (StBA) und der Arbeitsgemeinschaft Energiebilanzen (AGEB) sind lediglich Daten für den gemeinsamen Energieverbrauch der Kali- und der Steinsalzindustrie zu entnehmen (OEKO 1992a). Unter der Voraussetzung, daß Kali- und Steinsalz von der Masse her gleichrangig behandelt werden, ergibt sich ein vorläufiger Proporz der Kaliindustrie. Bezogen auf eine Tonne Produktmix werden daher die in der folgenden Tabelle dargestellten Daten für die Gewinnung der Kalisalze bilanziert: Tab.: Energiebedarf bei der Herstellung von Kalisalzen für das Jahr 1987 in den alten Bundesländern(OEKO 1992). Kenngröße Einheit Kali- & Steins. Kali Steinsalz Prod.menge t 1,0 E+7 2,77 E+6 7,26 E+6 Brennstoff GJ/t 1,516 0,419 1,097 Strom GJ/t 0,342 0,094 0,248 Demnach werden 0,419 GJ/t Prozeßwärme und 0,094 GJ/t Strom benötigt zur Herstellung einer Tonne Produktmix benötigt. Die Werte konnten durch die überarbeitete Erklärung des Kalivereins zur Klimavorsorge von 1996 bestätigt werden. In ihr wird für das Jahr 1994 ein spezifischer Energieverbrauch von 0,528 GJ/t Rohsalz angegeben (Kaliverein 1996). Dieser wird allerdings nicht nach Energieträgern spezifiziert. Für GEMIS wird die Summe aus der Erklärung des Kalivereins angesetzt mit der Verteilung nach den statistischen Angaben zwischen den einzelnen Energieträgern. Daraus ergibt sich ein Brennstoffbedarf von 0,432 GJ/t und ein Strombedarf von 0,096 GJ/t. Als Brennstoff zur Bereitstellung der Prozeßwärme wird Gas angesetzt. Die vorliegenden Daten zum Energiebedarf der Kalisalzherstellung sind als vorläufig anzusehen. Aktuellere und genauere Daten sind für die zweite Jahreshälfte des Jahres 1996 zu erwarten (Kali 1996). Prozeßbedingte Luftemissionen: Abgesehen von den Emissionen, die aus der Energiebereitstellung resultieren, werden keine weiteren Prozeßemissionen bilanziert. Etwaige Staubemissionen, verursacht durch die Aufhaldung der festen Reststoffe, können hier nicht quantifiziert werden. Sie werden aber - trotz fehlender Daten - ausdrücklich nicht ausgeschlossen. Wasserinanspruchnahme: Wasser wird in nahezu allen Produktionsschritten in Anspruch genommen. Insgesamt waren für 1993 5,65 m³ Wasser angesetzt bezogen auf eine Tonne des in dieser Studie berücksichtigten Produktmixes. Diese Menge teilt sich folgendermaßen auf: Tab.: Abwassermengen bei der Kalisalzgewinnung (Scharf 1993). Abwasserherkunft Menge in m³/t Produktmix Ableitung Abwasser von Halden 0,1 Versenkung Prozeßabw. KCl-Herst. 1,25 Versenkung Prozeßabw. MgSO4-Herst. 2,3 Werra Prozeßabw. K2SO4-Herst. 1,75 Versenkung Kühl- und Sielwässer 0,25 Werra Summe 5,65 Aufgrund der eingeschränkten Datenverfügbarkeit wurde in der vorliegenden Studie vereinfachend die Wasserinanspruchnahme gleich der Abwassermenge gesetzt. Kühl- und Sielwässer sind in der Regel nicht oder nur gering mit Salzen belastet. Sie wurden jedoch auf Salzabwässer umgerechnet. Die real einzusetzende Wassermenge liegt also wahrscheinlich höher. Die Tendenzen in der Kaliindustrie gehen dahin, die Abwassermengen - respektive die Wasserinanspruchnahme - durch eine geeignete Verfahrensführung zu reduzieren. Das würde jedoch zwangsläufig zu größeren Mengen fester Reststoffe führen. Dieser Effekt kann hier nur qualitativ beschrieben werden. Eine quantitative Abschätzung ist hierzu nicht möglich. Abwasserinhaltsstoffe: Hinsichtlich der in dieser Studie bilanzierten organischen Summenparametern ist bei der Kalisalz-Herstellung nicht mit erheblichen Zusatzbelastungen zu rechnen. Da organische Hilfsstoffe (Flotationsmittel), die in den Prozessen eingesetzt werden, in der vorliegenden Untersuchung nicht bilanziert wurden, können über deren Auswirkungen auf die Abwasserqualität keine Aussagen getroffen werden. Daher werden die Frachten pro Tonne Produktmix für die organischen Summenparameter wie auch für die Nährstoffe in dieser Studie 0 gesetzt. Erheblich ist allerdings die Chloridfracht der Abwässer. Sie ist in der folgenden Tabelle aufgeführt. Tab.: Abwasseranalysen 1992 hessischer Werke (Scharf 1993). Parameter Einheit Versenkung Werra Chlorid g/l 190 160 Chlorid kg/t Produktmix 589 408 Summe kg/t Produktmix 997 Reststoffe: Aus den Planungsdaten der bilanzierten Werke für das Jahr 1993 geht hervor, daß pro Tonne Produktmix 5000 kg Haldenmaterial anfallen (Scharf 1993). Die realen Produktionszahlen für 1993 bestätigen diesen Wert. Aus ihnen geht hervor, daß pro Tonne Produkt 4710 kg aufgehaldet werden (Kali 1996). Dieser Wert wird in GEMIS als Kennziffer zugrundegelegt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 12,3% Produkt: Rohstoffe
Zum Umgang mit zunehmenden Hitzebelastungen veröffentlichte die Bund/Länder Ad-Hoc Ar beitsgruppe "Gesundheitliche Anpassung an die Folgen des Klimawandels" 2017 Empfehlungen für die Erstellung von Hitzeaktionsplänen zum Schutz der menschlichen Gesundheit. Ca. fünf Jahre nach der Publikation wird in dem vorliegenden Bericht eine Bilanz zur Wirkung dieses Do kuments gezogen, u. a. mit Blick auf die Bekanntheit der Empfehlungen und angestoßenen Ent wicklungen. Dies wurde verbunden mit einer Bestandsaufnahme von Maßnahmen, die Instituti onen, Kommunen und Länder in Deutschland etablieren, um hitzebedingte Gesundheitsrisiken zu verringern. Das Projektteam widmet sich dieser Aufgabe u. a. mit der Auswertung von Litera tur und Klimavorsorgediensten, einer Online-Befragung, Interviews und Fallstudien. Zu den so gewonnenen Einblicken gehören: 91% der befragten Personen aus Verwaltungen der Bundes länder kennen die Handlungsempfehlungen, bei Kommunen sind es 54%. Der Begriff des Hitze aktionsplans (HAP) wird von kommunalen Akteuren unterschiedlich interpretiert. Zu den Er folgsfaktoren für einen kommunalen HAP gehört u. a. eine Ämter-übergreifende Verteilung von zuständigen Akteuren in Kommunalverwaltungen. Blickt man auf Akteure außerhalb der Kom munalverwaltungen, zeigen sich u. a. erste Aktivitäten zum Gesundheitsschutz bei Hitze in der Gesundheitsversorgung. Aus den Befunden leitete das Projektteam diese Empfehlungen zur Un terstützung kommunaler Hitzeaktionspläne ab: 1) Gesundheitsschutz vor und bei Hitze im Rah men einer kommunaler Pflichtaufgaben gesetzlich verankern; 2) Aktivitäten der Bundesbehör den abstimmen und auf weitere Ressorts ausweiten; 3) Zusammenarbeit des Bundes mit den Ländern optimieren und ausbauen; 4) niedrigschwellige Anschubfinanzierung für kommunale Hitzeaktionspläne etablieren; 5) für hitzebedingte Gesundheitsrisiken sensibilisieren; 6) Hitze warnsystem weiterentwickeln; 7) Forschung zum Thema Hitze und Gesundheit fördern. Quelle: Forschungsbericht
Extreme Wettereignisse können große Schäden anrichten. Es ist absehbar, dass durch die zunehmende Erderhitzung solche Ereignisse zukünftig häufiger und intensiver auftreten werden. Bisher ist die Vorsorge gegen mögliche Schäden unzureichend. Die Risiken für Immobilien und Infrastrukturen sind nicht immer bekannt. Deutlich weniger als die Hälfte aller Wohnimmobilien sind bisher überhaupt gegen Naturgefahren versichert. In großen Schadensfällen, wie den Extremniederschlägen im Juli 2021, werden kurzfristig staatliche Hilfen eingerichtet. Diese ad hoc Hilfen sind für Betroffene kaum kalkulierbar und setzen in der Regel keine Anreize zur Vorsorge oder Versicherung. Zudem belasten sie die öffentlichen Haushalte und verhindern im schlimmsten Fall wichtige Investitionen an anderer Stelle. Insgesamt fehlt es an einer strategischen Klimarisikovorsorge. Das vorliegende Papier skizziert ein Bündel an Maßnahmen, um diese Situation zu verbessern. Quelle: www.umweltbundesamt.de
Das Deutsche Klimavorsorgeportal (KLiVO Portal) ist das zentrale öffentlichkeitswirksame Gesamtangebot des Bundes zu Klimaanpassungsdiensten und Klimainformationsdiensten. Es bietet Zugang zu qualitätsgesicherten und kostenfreien Diensten von Behörden des Bundes, der Länder und von staatlich unterstützten Drittanbietern, die sich an die Bundesebene, Länder, Landkreise und Kommunen, Zivilgesellschaft und Wirtschaft richten. Das inhaltliche Angebot an Klimaanpassungsdiensten wird von KlimAdapt eingebracht, Klimainformationsdienste vom Deutschen Klimadienst. Das KLiVO Portal wird durch das KlimAdapt Anbieter-Nutzer-Netzwerk begleitet. Der Bericht fasst die Ergebnisse, Erkenntnisse und wissenschaftlichen Hintergründe zu KlimAdapt und dem Deutschen Klimavorsorgeportal zusammen. Hierzu gehören die Ergebnisse einer Befragung der Zielgruppen des Portals zu Nutzungsanforderungen, die Darstellung der KlimAdapt Netzwerkarbeit und Ergebnisse von deren Evaluation sowie Erkenntnisse, die während des Aufbaus und des Betriebs des KLiVO Portals gesammelt wurden. Der Bericht gibt Empfehlungen zur Weiterentwicklung des Portals und nennt Potenziale von Klimaanpassungsdiensten sowie weiteren Forschungsbedarf. Ebenso verweist er auf Erfolgsfaktoren bei der Entwicklung, Umsetzung und Evaluation neuer und nutzerfreundlicher Klimaanpassungsdienste. Quelle: Forschungsbericht
Das Bundeskabinett beschließt mit dem zweiten Fortschrittsbericht die künftigen Schwerpunkte zur Anpassung an die Folgen des Klimawandels in Deutschland. Zudem legt der Bund mit dem dritten Aktionsplan Anpassung über 180 konkrete Maßnahmen aller Bundesressorts zur Klimavorsorge vor.
Liebe Leser*innen, die verheerenden Überflutungen nach Starkregen in diesem Juli, aber auch die Schäden durch Hitze und Dürre in den vergangenen Jahren in Deutschland zeigen es deutlich: Die Zeit ist überfällig für wirksamen Klimaschutz – aber auch für die Anpassung an mittlerweile unvermeidliche Folgen der Erderhitzung. Unsere Vorschläge für die Vorsorge vor Klimarisiken in Deutschland stellen wir in dieser Newsletter-Ausgabe vor. Außerdem haben wir den wissenschaftlichen Stand zum Thema Lüftung, Lüftungsanlagen und mobile Luftreiniger an Schulen in Zeiten der Corona-Pandemie zusammengefasst. Kommunen, Unternehmen, Verbände und Bildungseinrichtungen möchten wir auf die im September wieder anstehende Europäische Mobilitätswoche aufmerksam machen: Teilnehmen lohnt sich in diesem Jahr besonders! Nicht zuletzt wollen wir auf unsere neuen Ratgeber für verschiedene Zielgruppen hinweisen, um Verpackungsmüll bei Speisen und Getränken zum Mitnehmen zu reduzieren. Interessante Lektüre wünscht Ihre Pressestelle des Umweltbundesamtes Klimaanpassung jetzt gesetzlich verankern: Vorschläge für eine wirksame Vorsorge vor Klimarisiken Extreme Wetterereignisse werden durch den Klimawandel heftiger und häufiger. Quelle: Jürgen Flächle / Fotolia.com Die Risiken durch Folgen der Erderhitzung für Deutschland sind seit langem bekannt und wurden zuletzt in der im Juni 2021 von Bundesumweltministerium und Umweltbundesamt vorgestellten Klimawirkungs- und Risikoanalyse für Deutschland umfassend identifiziert. Ein Netzwerk von 25 Bundesbehörden und -institutionen aus neun Ressorts entwickelte wissenschaftlich fundierte Maßnahmenvorschläge, mit denen Länder, Kommunen, Unternehmen und Privatpersonen Schäden reduzieren, für Extremwettereignisse vorsorgen und sich an unvermeidliche Klimafolgen anpassen können. Doch bisher fehlt es in Deutschland an geeigneten rechtlichen und finanziellen Rahmenbedingungen, um diese Maßnahmen flächendeckend umzusetzen. Die bereits erfolgte Aufnahme von Klimawandelanpassung in bestehende Förderinstrumente, wie die Städtebauförderung oder das neue Förderprogramm „Klimawandelanpassung in sozialen Einrichtungen“, ist ein wichtiger Schritt in die richtige Richtung. Wirksame Klimavorsorge ist nur von Bund und Ländern gemeinsam zu leisten. Um Klimaanpassung als staatliche Daueraufgabe zu verankern und Länder und Kommunen bei der flächendenkenden Umsetzung von Anpassungsmaßnahmen zu unterstützen, braucht es eine neue Gemeinschaftsaufgabe „Anpassung an den Klimawandel“ im Grundgesetz . Mit diesem Instrument kann der Bund finanzielle Unterstützung für umfassende kommunale Klimavorsorge leisten, etwa zur Starkregenvorsorge, Hitze- und Hochwasserprävention sowie für Dürreschutzmaßnahmen. Artikel 91a des Grundgesetzes, in dem auch die Agrarstruktur und der Küstenschutz als Gemeinschaftsaufgabe geregelt sind, sollte um Klimaanpassung erweitert werden. Die notwendige Verfassungsänderung sollte von der neuen Regierung mit höchster Priorität behandelt und als solche auch im Koalitionsvertrag festgehalten werden. Ein bundesweites Klimaanpassungsgesetz sollte die Einrichtung der neuen Gemeinschaftsaufgabe flankieren. Das Gesetz hätte im Hinblick auf die Fachgesetze, wie das Baugesetzbuch, einen leitenden und ergänzenden Charakter und würde Planungs- und Investitionssicherheit schaffen. Zudem würden klare Verantwortlichkeiten und Verfahrensregelungen für die Umsetzung einer langfristigen Klimawandelanpassungspolitik des Bundes und der Länder geschaffen. Das Gesetz sollte einen Rahmen vorgeben, der für eine regelmäßig Bewertung und Fortschreibung von rechtlichen und finanziellen Rahmenbedingungen und Maßnahmen, wie etwa Land(um)nutzungen (beispielsweise Ausmaß der Versiegelung und Entwaldung), oder Risikokartierungen für lokalen Starkregen sorgt. Die verheerenden Starkregenfälle im Juli 2021 zeigen aber auch deutlich, dass es Grenzen der Anpassung gibt. Weil der Klimaschutz bisher in Deutschland und weltweit nicht ambitioniert genug vorangetrieben wurde, können Schäden und Zerstörungen infolge der globalen Erwärmung nicht mehr gänzlich verhindert, sondern lediglich reduziert werden. Vor diesem Hintergrund ist die entschlossene Reduzierung der Treibhausgasemissionen die erste und wichtigste Maßnahme, um Menschenleben, Infrastrukturen, Städte und Wohlstand zu schützen. Ziel muss es bleiben, die globale Erwärmung des Planeten auf unter 2 Grad zu begrenzen, um weiter eskalierende Klimafolgen zu begrenzen. Je erfolgreicher Klimaschutz betrieben wird, desto wirksamer kann die Klimaanpassung an unvermeidliche Folgen der globalen Erwärmung noch ausfallen. Misslingt der Klimaschutz, steigen die Kosten der Anpassung, die Unsicherheiten für die Bevölkerung und die Zahl von Extremereignissen, die die Handlungsfähigkeiten unserer Gesellschaft überfordern. Auch noch so erfolgreicher Klimaschutz und kluge Anpassungsstrategien werden Restrisiken der globalen Erwärmung nicht vollständig ausschließen und umfassenden Katastrophenschutz nicht vermeiden können. Dies sind, im Zeitalter globaler Erwärmung, Gemeinschaftsaufgaben, denen sich Staat, Wirtschaft und Gesellschaft stellen müssen. Klimaanpassung – eine Generationenaufgabe UBA-Präsident Dirk Messner im Interview mit dem RBB-Inforadio Präsident des Umweltbundesamts: "Klimaschutz ist Menschheitsaufgabe für dieses Jahrhundert" UBA-Präsident Dirk Messner im Interview mit dem Radiosender SWR2 Messner: Ohne höheren CO2-Preis wird Klimaschutz noch teurer UBA-Präsident Dirk Messner im "Interview der Woche" des Deutschlandfunks über Klimaschutz, den CO2-Preis, einen sozialen Ausgleich und die Bedeutung der Artenvielfalt für den Klimaschutz UBA-Zahl des Monats Juli 2021 Quelle: Umweltbundesamt Die Badegewässer Deutschlands sind in einem guten Zustand. Rund 91 % der Binnengewässer und fast 84 % der Küstengewässer erreichten im Jahr 2020, gemessen an den Qualitätsanforderungen der EU-Badegewässerrichtlinie, eine ausgezeichnete Badegewässerqualität. Zwischen 1992 und 2001 stieg der Anteil der Badegewässer, die die Richt- und Grenzwerte einhalten, beständig an.
Origin | Count |
---|---|
Bund | 81 |
Land | 6 |
Type | Count |
---|---|
Förderprogramm | 21 |
Text | 58 |
unbekannt | 7 |
License | Count |
---|---|
geschlossen | 61 |
offen | 22 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 86 |
Englisch | 2 |
Resource type | Count |
---|---|
Archiv | 5 |
Bild | 3 |
Datei | 3 |
Dokument | 23 |
Keine | 29 |
Multimedia | 1 |
Webdienst | 1 |
Webseite | 44 |
Topic | Count |
---|---|
Boden | 72 |
Lebewesen & Lebensräume | 75 |
Luft | 72 |
Mensch & Umwelt | 86 |
Wasser | 72 |
Weitere | 86 |