API src

Found 139 results.

Related terms

Hausbrand / Kleingewerbe

Die Quellgruppe Hausbrand beschreibt die Emissionen aus nicht genehmigungsbedürftigen Feuerungsanlagen für Berlin. Zu den nicht genehmigungsbedürftigen Feuerungsanlagen zählen alle Feuerungsanlagen entsprechend der Verordnung über kleinere und mittlere Feuerungsanlagen der 1. Bundes-Immissionsschutzverordnung (1. BImSchV). Den Hauptteil der nicht genehmigungsbedürftigen Feuerungsanlagen bilden die Haushalte, aber auch Feuerungsanlagen öffentlicher Einrichtungen und gewerblicher Unternehmen werden dazugezählt. Die Emissionen aus Kleinfeuerungsanlagen werden anhand des Endenergieeinsatzes berechnet, wobei der Heizwärmebedarf in Wohn- und Nichtwohngebäuden bestimmt wird, der durch unterschiedliche Energieträger gedeckt wird. Die Emissionen ergeben sich dann aus dem Produkt des Endenergieeinsatzes der einzelnen Energieträger in den Kleinfeuerungsanlagen mit entsprechenden Emissionsfaktoren. Als Basis wurden die Emissionsfaktoren der Bund/Länder-Arbeitsgemeinschaft Immissionsschutz von 2013 verwendet. Zudem wurden neuere Erkenntnisse zu Emissionseigenschaften aus der Erstellung des Emissionskatasters “Kleinfeuerungsanlagen für Brandenburg” mit Stand 2015 berücksichtigt. Die Berechnung der Emissionen beruht auf Daten zum Gebäudebestand mit beheizbarer Fläche, Angaben zu den Anteilen verschiedener Beheizungsarten und dem Brennstoffverbrauch. Bei der Berechnung der Emissionen der Quellgruppe Hausbrand werden Fernwärmeheizungen nicht berücksichtigt, da die mit der Produktion von Fernwärme verbundenen Emissionen in der Quellgruppe der genehmigungsbedürftigen Anlagen enthalten sind. Die Datengrundlage ist vielfältig: Es wurden Daten, die im Rahmen des Zensus 2011 zum Gebäudebestand und zur vorwiegenden Heizungsart verwendet. Zudem wurden aktuelle Gebäudedaten aus dem Allgemeinen Liegenschaftskataster mit Stand 2014, Daten zur Gebäudenutzung, Daten zu den Gas- und Fernwärmeversorgten Gebieten mit Stand 2011 bzw. 2007, Daten der Schornsteinfeger mit Stand 2012 sowie Daten zum Absatz von Kohle und Öl mit Stand 2014 verwendet. Der durch Fernwärme beheizte Anteil wurde bei der Berechnung des Endenergieeinsatzes subtrahiert, übrig blieb der lokal zu deckende Heizwärmebedarf. Gas ist mit einem Beitrag von knapp 80 % der dominierende Energieträger in Berlin, gefolgt von Heizöl mit einem Beitrag von knapp 17 %. Die Beiträge der Festbrennstoffe (Kohle, Holz und Pellets) tragen mit Werten unter 3 % nur gering zum Endenergieeinsatz bei. Beim Verbrauch von Kohle ist eine starke Abnahme festzustellen. Seit 2000 ist in Deutschland jedoch ein starker Anstieg von Holz- sowie von Holzpelletheizungen registriert worden. In Berlin ist dieser Trend auch vorhanden. Obwohl die Verkaufszahlen von Brennholz in Berlin seit Jahren relativ konstant liegen, ist damit zu rechnen, dass deutlich mehr Holz aus Wäldern Berlins und Brandenburgs in Feuerstätten verbrannt wird, dies aber in den offiziellen Verkaufszahlen nicht erfasst wird. Bei der Betrachtung der aus den Endenergieeinsätzen für alle Gebäude Berlins berechneten Emissionen wird deutlich, dass Festbrennstoffe besonders hohe spezifische Emissionen von Feinstaub (PM 10 und EC) und Benzo[a]pyren (BaP) pro Energieeinsatz aufweisen. Obwohl nur ca. 3,4 % der Wärmeenergie durch Kohle, Holz und Pellets gedeckt wird, stammen die Staubemissionen fast ausschließlich von diesem Energieträger, weil bei der Verbrennung von Festbrennstoffen pro Tonne etwa 1 kg Staub, bei der Verbrennung von einer Tonne Heizöl aber nur etwa 0,064 kg Staub entsteht. Die Verbrennung von Festbrennstoffen ist außerdem in Berlin die mit Abstand wichtigste Quelle für Benzo[a]pyren und Ruß (EC). Auch die SO 2 -Emissionen aus dem Kleinfeuerungssektor stammen zu 87 % aus den Festbrennstoffanlagen. Die Karten zeigen die räumliche Verteilung der Emissionen von Stickoxiden bzw. Feinstaub (PM 10 ) aus dem Hausbrand mit maximalen Werten in Gebieten mit hoher Altbauten- und Bevölkerungsdichte. Besonders niedrige Emissionen weisen Gebiete auf, in denen die Gebäude überwiegend mit Fernwärme geheizt werden, z.B. die Plattenbausiedlungen im Ostteil der Stadt. Karte im Geoportal Berlin ansehen

Senkung des Bedarfs an fossilem Brennstoff durch Kreislaufentlastung

STAIR- Klimaschutz - BioEffGen - Erweiterte Vorbehandlung und Charakterisierung von Biomasse für die effiziente Erzeugung von Strom und Wärme, Teilprojekt 2: Entwicklung eines Biomasse-Staubmessgeräts für den Einsatz in staubgefeuerten Feuerungsanlagen

STAIR- Klimaschutz - BioEffGen - Erweiterte Vorbehandlung und Charakterisierung von Biomasse für die effiziente Erzeugung von Strom und Wärme, Teilprojekt 1: Entwicklung und Validierung eines Verfahrens zur Bestimmung der Mahlbarkeit von Biomasse und Verbrennungsuntersuchungen mit Additiv-behandelter Biomasse

WavE - WaterMiner: Räumlich-zeitlich abgestimmte Kreislaufführung und Wiederverwendung bergbaulicher Abwässer am Beispiel eines urban geprägten Bergbaugebietes, Teilprojekt 4

Die Halbinsel Hon Gai, Vietnam, ist geprägt von konkurrierenden Land- und Oberflächenwasser-Nutzungen durch Kohlebergbau, Industrie und Tourismus, durch ein klimabedingt stark schwankendes Wasserdargebot und damit einhergehender ökologischer Probleme. Aufbauend auf der Erfassung der gesetzlichen, administrativen, naturräumlichen und sozioökonomischen Rahmenbedingungen sowie einer umfassenden hydrologischen Systemanalyse des Ist-Zustandes wird am Beispiel eines Flusseinzugsgebietes ein Konzept zur effizienteren Nutzung und zum schonenderen Umgang mit der Ressource Wasser entwickelt. Kernelemente des zu erarbeitenden Wasserressourcenmanagements sind die Kreislaufführung und bedarfsgerechte Wiederverwendung bergbaulicher Abwässer und die Rückgewinnung von nutzbaren Reststoffen (Kohlestäube). Aufbauend auf planungsrelevanten Gelände-, Fließgewässer- und Stofftransportmodellen werden technische Konzepte erarbeitet und im Feld in Form von Pilotanlagen exemplarisch implementiert. Vorhabensziele sind der Einsatz technisch möglichst einfacher und robuster Technologien, die von den lokalen Stakeholdern angenommen werden, die Integration der Maßnahmen in die Struktur der Einzugsgebiete und die bestehenden Nutzungen. Es soll für die Aufbereitungsprozesse weitgehend auf zusätzliche Energiequellen zu verzichtet werden. Zur einzugsgebietsübergreifenden Steuerung der einzelnen Komponenten soll ein flexibles Mess-, Steuerungs- und Regelungssystem erstellt werden. Aufbauend auf einer Datenerhebung durch Materialsichtung und Feldarbeiten erfolgt die Auswahl des Einzugsgebietes sowie die Ausarbeitung des technischen Konzeptes. Vorversuche in Labor- und Technikumsmaßstab liefern die Grundlage für die Bemessung konkreter technischer Elemente. Nach Auswahl möglicher Standorte für technische Elemente und Abstimmung mit Stakeholdern erfolgt die objektkonkrete Planung der wasserbaulichen Elemente, die wissenschaftliche Begleitung der baulichen Realisierung und der Inbetriebnahme.

WavE - WaterMiner: Räumlich-zeitlich abgestimmte Kreislaufführung und Wiederverwendung bergbaulicher Abwässer am Beispiel eines urban geprägten Bergbaugebietes, Teilprojekt 2

Der Fokus des Projektes liegt auf dem Aspekt der Kreislaufführung bergbaulicher Abwässer und von Sümpfungswässern mit hohen Stoffkonzentrationen (Kohlestäube) und Salzgehalten im Steinkohlenbergbau ebenso wie auf der bedarfsgerechten Wiederverwendung bergbaulicher Abwässer und von Sümpfungswässern für bergbauliche Zwecke sowie Trinkwasser- und Brauchwasserzwecke. Im TP 3,' Fachinformationssystem Monitoring' werden die im Projektrahmen erhobenen Daten und Informationen in einem integrierten 'Fachinformationssystem Monitoring' basierend auf den Programmen GW-Base und GW-Web systematisch erfasst, ausgewertet und bereitgestellt. Das System wird in der Lage sein, neben den in TP 1 und 2 erhobenen Daten, auch Informationen durch Monitoring mit Sensoren mit GSM/GPRS Datenübertragung in Echtzeit zu erfassen und sowohl lokal (Desktopsystem), als auch im Internet (benutzerkontengesteuertes Websystem) bereitzustellen und auszuwerten. Das System wird die Darstellung aller erhobenen Daten auf Karten, in Tabellen, Zeitreihen, fachspezifischen Diagrammen, Statistiken, Reports und auch in Themen- und Isolinienkarten ermöglichen. Besondere Beachtung finden hierbei die speziellen, sowie an die Rahmenbedingung im Zielgebiet angepassten Anforderungen, im Bereich des Monitorings und der Auswertung von Bergbau- und Minenwässern. Das System stellt die Grundlage für eine Stoffstrombetrachtung und die angestrebte nachhaltige Verbesserung der Wasseraufbereitung sowie Wiederverwendung dar. - Aufbau und Implementierung der Datenbank mit Grundlagendaten / Übersicht Datenstatus - Einbinden der zur Projektlaufzeit erhobenen Daten - Implementierung des Echtzeitmonitorings - Entwicklung und Implementation der innovativen Funktionen und Schnittstellen - Entwicklung einer installierbaren Pilotanwendung - Capacity Building.

Minimising the plant operating costs and environmental impacts of utilising low grade fuels in conjunction with coal in pulverised coal-fired boilers

Low grade fuels can vary largely in composition, ash content and composition, volatiles, moisture and Hardgrove index. This result in operational problems such milling, ignition, slagging and emissions. IVD focus their work on investigations how the process affect the release of heavy metals and fine particles. A range of different fuels (sewage sludge, RDF) will be co-fired in a 500 kW pulverised fuel facility.

Phase 3b^Phase 3b^Phase 3b^Druck-Kohlenstaubfeuerung, Phase 3a

ENG-LIGASF C, Coal gasification - Waste heat utilization ( Phase 1)

Objective: To design and construct a coal gasification demonstration plant for the testing and development of the Prenflo process. A 48 T/d PRENFLO unit is intended to convert a total of 24,000 tons of coal to +- 48 x 1,000,000 m3 n synthesis or fuel gas at a calorific value of +- 11,850 KJ/m3 under standard conditions. See projects LG /270/85/DE, LG/354/87/DE and LG/255/89/DE.L per cent General Information: The PRENFLO process is a pressurized version of the Koppers-Totzek process. This project is the first phase in a two-phase undertaking to develop the PRENFLO process for eventual industrial scale introduction into the market. The pressurized version of the entrained-flow process for the use of coal, injected as dry coal dust, is a new technology with a high gasifier unit capacity (1,000 to 2,500 T/d coal throughput), high thermal efficiency, high product gas quality and low environmental load. Sluicing members, coal feeding, reaction in the pressurized reactor, waste heat boiler, and gas purification unit are to be adapted to novel loads. For the period covered by this contract (Phase 1) the pilot plant is being designed and constructed for test operations (Phase 2). The plant is located at the Technological Centre Saar of Saarbergwerke AG in Fürstenhausen. The centre has provided space for supplies, fuel, and waste disposal from the 48 T/d PRENFLO unit. Workshops and laboratory facilities are also provided. The major components of the process will be tested in continuous operation during a first operational phase. Modifications will be made and material and heat balances as well as balances of detrimental materials will be determined for various solid fuels. The fouling of heating areas in the waste heat boiler will be tested using chlorinated coal. Cleaning systems will also be tested. The PRENFLO unit will have a coal throughput of 2 T/h at 30 Bar operating pressure, corresponding to a gas output of +- 4,000 m3/h dry raw gas. The gas consists primarily of a mixture of carbon monoxide and hydrogen. There will be no liquid or gaseous hydrocarbons. The project (Phase 1) is estimated to cost DM 38,314 million. Achievements: Construction and commissioning were completed in early 1986. Three patent applications regarding the Prenflo process were filed by KRUPP KOPPERS during 1985: 1. Device for fixing samples in position; 2. Process for generating electrical energy in a combined cycle power plant with upstream coal gasification; 3. stuffing box seal.

Prozesstechnische Minderung der NOX-Emissionen durch Reduktion mit CO und anschliessender Nachverbrennung

Zur Reduzierung der NOx-Emissionen bei der Herstellung von Klinkern werden in einem Zementwerk folgende Massnahmen durchgefuehrt: Die Brennstoffzugabe in der Zweitfeuerung im Kalzinator erfolgt gestuft. Dem Abgas wird vor dem Eintritt in den Kalzinator ein Teil des Brennstoffes in Form von Kohlenstaub zugegeben, der aufgrund der stoechiometrischen Verhaeltnisse unvollstaendig verbrennt und somit eine reduzierende Atmosphaere geschaffen wird. Dadurch wird im Ofen gebildetes NOx durch CO reduziert. Der zweite Teil des Brennstoffes wird zusammen mit der Tertiaerluft zugegeben, der Abgasstrom wird in einer Wirbelkammer zur besseren Oxidation des CO vermischt. Auf diese Weise werden die CO-Emissionen auf 0,20 g/m3 reduziert.

1 2 3 4 512 13 14