API src

Found 749 results.

Similar terms

s/kohlenstoff-fluss/Kohlenstofffluss/gi

Über Kohlenstoff-Entnahme aus der Atmosphäre bis hin zum Erreichen des Ziels des Pariser Klimakommens: Temperature Stabilisation

Die anthropogenen Kohlendioxidemissionen (CO2) sind für den größten Teil der jüngsten globalen Oberflächenerwärmung der Erde um etwa 1°C gegenüber dem vorindustriellen Niveau verantwortlich. Das Land und die Ozeane nehmen derzeit etwa die Hälfte unserer Emissionen durch komplexe Prozesse des Kohlenstoffkreislaufs auf. Der Klimaantrieb durch anthropogene CO2-Emissionen hört erst auf, wenn ein Gleichgewicht zwischen CO2-Quellen und -Senken erreicht ist. Da es nicht realisierbar ist, alle CO2-Emissionen bis Mitte des 21. Jahrhunderts zu eliminieren, bestehen alle plausiblen zukünftigen Emissionsszenarien, die auf eine mit dem Pariser Abkommen übereinstimmende Temperaturstabilisierung anstreben, aus einem Portfolio menschlicher Aktivitäten, die Emissionssenkungen mit Maßnahmen zur so genannten Kohlendioxidentnahme (CDR) kombinieren, die die verbleibenden positiven Emissionen kompensieren sollen.Allerdings werden CDR-Maßnahmen wie die meisten anderen menschlichen Aktivitäten durch Emissionen von andere Treibhausgase als CO2 (z.B. Methan oder Distickstoffoxid), Aerosolen oder durch Landnutzungsänderungen zusätzliche Klimaveränderungen verursachen. Gegenwärtig machen diese weiteren Treibhausgase mehr als 40% der globalen Oberflächenerwärmung aus, während Aerosole einen Teil der Erwärmung ausgleichen. Darüber hinaus beeinflussen diese zusätzlichen Klimaeinflüsse den Kohlenstoffkreislauf, der wiederum Einfluss auf die atmosphärische CO2-Konzentration und damit auf die Oberflächentemperatur nimmt (Abb. 1). Diese Wechselwirkung beeinflusst die Menge der CO2-Entnahme, die durch CDR-Maßnahmen erforderlich ist, um eine Temperaturstabilisierung zu erreichen.Es ist daher wichtig, die vollständige Reaktion des Klimas auf spezifische menschliche Aktivitäten, einschließlich CDR-Maßnahmen, zu erfassen, um gut informiert Maßnahmen zur Temperaturstabilisierung ein zu leiten. Insbesondere die Untersuchung der Reaktion des Erdsystems auf realistische Portfolios künftiger anthropogener Aktivitäten erfordert die Einbeziehung aller damit verbundenen Klimafaktoren - CO2, andere Treibhausgase als CO2, Aerosole und Landnutzungsänderungen - um bestmögliche Einschätzungen der möglichen Wege zur Temperaturstabilisierung zu erhalten.

Wachstumsschwankungen europäischer Baumarten während der letzten 1000 Jahre

Als Grundlage für hochaufgelöste Klimarekonstruktionen der letzten Jahrtausende dienen jahrgenau datierbare natürliche Klimaproxies wie Jahresringe von Bäumen. Bisher konzentrierten sich dendroklimatologische Untersuchungen in Europa auf Temperaturrekonstruktionen borealer und alpiner Waldgrenzstandorte. In weitaus geringerem Umfang liegen dagegen hydroklimatische Rekonstruktionen basierend auf niederschlagssensitiven Baumarten der Tieflagen (kleiner als 1000 m NN) vor, obgleich hydroklimatische Schwankungen in der Abschätzung zukünftiger und historischer Klimaveränderungen eine wichtige Rolle spielen. Die Steuerungsfaktoren, das Ausmaß und die zeitliche Abfolge dekadischer bis mehrhundertjähriger Schwankungen im Baumwachstum, welche für die Rekonstruktion des gesamten Spektrums hydroklimatischer Variabilität von entscheidender Bedeutung sind, wurden bisher kaum untersucht und verstanden. In dem geplanten Projekt sollen nun zum ersten Mal langfristige Wachstumstrends auf verschiedenen raum-zeitlichen Skalen von acht europäischen Baumarten über die letzten 1.000 Jahre gegenübergestellt werden. Die hauptsächlich aus archäologischen und historischen Holzfunden generierten Jahrringdaten von Eiche, Buche, Erle, Esche, Ulme, Tanne, Kiefer und Fichte, in Verbindung mit Daten lebender Bäume, decken die letzten 1.000 Jahre lückenlos mit hoher Belegung ab. Dieser einmalige Datenbestand mit rund 60.000 Jahrringserien ökologisch und ökonomisch wichtiger heimischer Baumarten wird von europäischen Jahrringforschern bereitgestellt. Das Ziel des geplanten Projektes ist ein besseres Verständnis der raum-zeitlichen Variabilität von niederfrequenten Wachstumstrends und die Identifizierung gemeinsamer Faktoren, die das längerfristige Baumwachstum in Europa maßgeblich steuern (z.B. Klima und/oder Vulkanemissionen, Kohlenstoffdioxidgehalt der Atmosphäre oder Veränderungen der Sonnenaktivität). Die angewandten Methoden umfassen neue Standardisierungsverfahren, Trend- und Spektralanalysen sowie Filterungsverfahren, um niederfrequente Schwankungen der Jahrringchronologien zu detektieren und extrahieren. Faktoren, die das langfristige Baumwachstum maßgeblich steuern, werden unter Einbeziehung verschiedener Klimaparameter (Temperatur, Niederschlag, Abflussmengen von Flüssen, Grundwasserstände) sowie Zeitreihen externer und interner Einflüsse auf das Klimasystem identifiziert. Darüber hinaus werden die langfristigen Wachstumstrends mit Zeitreihen anderer Paläoarchive verglichen. Die in dem geplanten Projekt gewonnenen neuen Erkenntnisse über klimabedingter, langfristiger Wachstumsschwankungen und deren Ursachen werden eine deutlich bessere Grundlage für zukünftige valide Klimarekonstruktionen, globale Klimamodelle und für die Quantifizierung von Langzeitveränderungen des globalen Kohlenstoffkreislaufs schaffen.

Sonderforschungsbereich (SFB) 1537: Skalenübergreifende Quantifizierung von Ökosystemprozessen in ihrer räumlich-zeitlichen Dynamik mittels smarter autonomer Sensornetzwerke, Teilprojekt A01: Multifunktionale und energieautarke Bodensonden-Messsysteme zur Quantifizierung von Kohlenstoffflüssen im Wurzelraum

A1.1 Quantifizierung Bodenökologischer Prozesse. Wir analysieren kleinräumig die räumlich-zeitliche Heterogenität der Bodenkohlenstoffflüsse im Wurzelraum sowie mikroklimatische und edaphische Bedingungen. Dadurch lassen sich die wurzelbürtige Rhizosphärenatmung von der reinen mikrobiellen Atmung des Bodens unterscheiden. Hiermit können wir die Entstehung von Hot Spots und Hot Moments aus beiden Quellen und ihre Interaktionen identifizieren.A1.2 Multifunktionale und energieautarke Bodensonden-Messsysteme. Wir entwickeln neuartige Bodensonden zur CO2 und Temperatur Messung, die mit hoher räumlicher Auflösung in einem Messfeld installiert werden können. Durch Nutzung thermoelektrischer und Solarenergie sind sie energieautark und erfüllen damit perfekt eine "Deploy and Forget"-Strategie.

SINATRA: CO2UPLED - Kopplung neuartiger Photoelektrodenmaterialien an selektive Katalysatorsysteme für die künstliche Photosynthese

Export von organischem Kohlenstoff aus Islands Gletschern: Quantifizierung, Herkunft und Kohlenstoffflüsse in Gletscherbächen

Gletscher sind bedeutende Speicher organischen Kohlenstoffs (OC) und tragen zum Kohlenstofffluss vom Festland zum Meer bei. Aufgrund des Klimawandels wird eine Intensivierung dieser Flüsse erwartet. Der Export von OC aus Gletschern wurde weltweit in verschiedenen Regionen quantifiziert, trotzdem liegen keine vergleichbaren Daten für Island vor, obwohl sich dort die größte europäische außerpolare Eiskappe befindet. Um die globalen Prognosen der glazialen Kohlenstofffreisetzung zu verbessern, ist es das Ziel dieses Pilotprojektes, den Export von gelöstem und partikulärem organischen Kohlenstoff (DOC, POC) aus Islands Gletschern erstmalig zu quantifizieren und neue Kooperationen mit isländischen Wissenschaftler/innen für gemeinsame zukünftige Forschungsprojekte aufzubauen. Hierzu werden 4 Feldkampagnen zu unterschiedlichen Jahreszeiten sowie Treffen mit isländischen Kollegen/innen durchgeführt. In jeder Feldkampagne werden von 23 Gletschern der Eiskappen Vatnajökull, Langjökull, Hofsjökull, Myrdalsjökull und Snaeellsjökull Eisproben entnommen, um die biogeochemische Diversität des glazialen OC zu charakterisieren sowie dessen Export in Verbindung mit Massenbilanzen zu quantifizieren. In Gletscherbächen werden Wasserproben entnommen, um den Austrag von OC direkt am Gletschertor zu bestimmen sowie die Kohlenstoffflüsse entlang von 6 Gletscherbächen mit unterschiedlicher Länge (2 km bis 130 km) beginnend am Gletschertor bis zur Mündung zu untersuchen. Wie sich der Gletscherrückgang langfristig auf ein Gletscherbachökosystem auswirkt, wird durch die taxonomische Bestimmung von Makroinvertebraten im Vergleich zur Bestimmung von Prof. Gíslason aus dem Jahre 1997 beurteilt. Gleichzeitig werden in diesem Gletscherbach Wasserproben zum eDNA-Barcoding entnommen, um eine rasche und gering invasive Methode zur laufenden Beobachtung des zukünftigen Einflusses der Gletscherrückgang zu entwickeln. Vor Ort werden Wassertemperatur, elektr. Leitfähigkeit, pH-Wert, gelöster Sauerstoff, Trübung und Chlorophyll alpha gemessen. Innovative Labormethoden (HPLC, DNA-Barcoding, Picarro, GC, TOC) werden zur Analyse des OC im Eis und Wasser (DOC, DIC, POC, Fluoreszenz, Absorption), der Nährstoffe (P-PO4, N-NO3, N-NO2, N-NH4), stabiler Isotope (18O, 2H), Chlorophyll alpha, CO2 und aquatischen Organismen eingesetzt. Die Anwendung statistischer Methoden (Faktorenanalyse, Hauptkomponentenanalyse) basierend auf Anregungs- und Emissionsmatrizen erlauben die Quellen des OC im Gletschereis sowie -schmelzwasser zu bestimmen und die räumliche Vielfalt des OC zu erklären. Das gewonnene Wissen wird zur Verbesserung globaler Prognosen glazialer Kohlenstofffreisetzung beitragen sowie einen intensiven Einblick in das glaziale Ökosystem geben. Für die antragstellenden Nachwuchswissenschaftler/innen entstehen vielversprechende Kooperationen mit isländischen Wissenschaftlern/innen, fokussierend auf die zeitlichen sowie räuml. Aspekte der glazialen Kohlenstoffflüsse sowie das Ökosystem Gletscher

Verteilung und Stabilität des Kohlenstoffs beim Abbau von 14C-markiertem Weizenstroh in den verschiedenen Kompartimenten eines Bodens mit unterschiedlicher landwirtschaftlicher Bewirtschaftung

Es ist die Hypothese aufgestellt worden, dass neben nicht abgebauten Pflanzenresten die organische Substanz des Bodens grob aus zwei Kompartimenten besteht. Bestimmt durch den Ton- und Feinschluffanteil entwickelte sich ein inerter C-Pool während der Genese von Böden. Dieser an die mineralischen Feinanteile gebundene Kohlenstoff nimmt nur über einen langen Zeitraum am Kohlenstoffumsatz von Böden teil. In Abhängigkeit von der landwirtschaftlichen Praxis entwickelt sich während des durch die metabolische Aktivität von Bodentieren und Mikroorganismen verursachten Abbaus von Pflanzenresten und organischen Düngern ein zweiter, labiler C-Pool. Dieser ist im wesentlich verantwortlich für die Nährstoffflüsse in Böden. Das Ziel des geplanten Forschungsprojektes ist es, in Laborexperimenten die Verteilung von frisch zugeführten 14C aus markiertem Weizenstroh zwischen inertem und labilem C-Pool über den Zeitraum eines Jahres zu verfolgen. Zusätzlich wird die Mineralisierung des Pflanzenmaterials zu 14CO2, die Bildung wasserlöslicher 14C-Metabolite und die anabolische Verwertung des markierten Kohlenstoffs durch die mikrobielle Biomasse des Bodens verfolgt. Nach einer physikalischen Fraktionierung der mineralisch-organischen Bodensubstanz in einzelne Größenfraktionen soll deren Gehalt an 14C/12C organischer Substanz über die Zeit bestimmt werden. In einem Inkubationsexperiment werden die isolierten Größenfraktionen mit der autochthonen Bodenflora beimpft werden, und die dabei durch die Aktivität der Mikroorganismen freigesetzten 14CO2 Mengen sind ein Indikator für die Stabilität der organischen Substanz in den einzelnen Fraktionen. Für diese Untersuchungen werden Proben eines landwirtschaftlichen Bodens ausgesucht, der für viele Jahrzehnte verschiedener Düngungspraxis (null, mineralisch, organisch) unterlag. Durch dieses Forschungsprojekt werden Informationen über die kausalen Zusammenhänge von Bodenprozessen bei der Bildung und Speicherung der organischen Substanz im Boden erwartet.

Diversität, metabolische Aktivität und Anpassung von Bakterien in marinen Oberflächenfilmen

Neue Befunde zeigen, dass die Umsetzung von organischem Material durch Bakterioneuston in marinen Oberflächenfilmen (engl. sea-surface microlayer, SML) eine Rolle spielen, bei der Kontrolle des Flusses von klimarelevanten Spurengasen, sowie bei der Speicherung von anthropogenen Ablagerungen aus der Atmosphäre. Unsere früheren Untersuchungen weisen auf die Bedeutung der bakteriellen Aktivität bzgl. des Kohlenstoffzyklus in der SML hin, heben aber auch die vielen unbekannten Einflüsse des Bakterioneuston in der SML hervor. Besonders photochemische Umwandlung von organischem Material, in Verbindung mit schädlichen Effekten durch Sonnenstrahlung auf die Bakterien in der SML, wurden bisher nicht detailliert untersucht. Demzufolge besteht unsere Motivation für das vorgeschlagene Projekt darin, das Wissen über Stoffwechselprozesse und Anpassungen von Bakterien in der SML in ihrer Gesamtheit, aber auch auf Einzelzell- und Stammebene, in Bezug auf physikalische und chemische Variabilität in dieser Grenzschicht zu untersuchen. Des Weiteren ist das Zooplankton eine wichtige Komponente für die Verbindung zwischen Phytoplankton, Bakterien und den höheren Ebenen des Nahrungsnetzes in der SML, wobei auch hier für das Verständnis relevante Daten fehlen. Daher werden wir im Rahmen des Projektes zum ersten Mal Studien zur Verbreitung des Zooplanktons sowie zu dessen Fressverhalten in der SML der Nordsee durchführen.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Untersuchung der Rolle von Vulkanismus am Beginn und Ende des Paläozän-Eozän-Temperaturemaximum basierend auf Sedimenten der IODP-Expedition 396

Es ist bekannt, dass Vulkanausbrüche das Klima auf verschiedene Weise beeinflussen. Diese reichen von kurzfristigen Auswirkungen wie Sulfat-Injektionen, die die einfallende Sonnenstrahlung reduzieren und zu Abkühlung führen, bis zu mittelfristigen Auswirkungen wie Erwärmung durch Kohlendioxid-Entgasung. Langfristig können Auswirkungen wie eine verstärkte Verwitterung eingelagerter Basalte zu einer Entfernung von Kohlendioxid und damit Abkühlung führen. Lange Perioden intensiven Vulkanismus, die als Large Igneous Provinces (LIPs) bekannt sind, können besonders tiefgreifende Auswirkungen auf das Klima haben, wobei mehrere LIPs entweder mit der globalen Erwärmung oder Abkühlung in der Erdgeschichte sowie mit Massenaussterben in Verbindung gebracht werden. Das Paläozän-Eozän-Temperaturemaximum (PETM), eine 200.000 Jahre lange Periode intensiver globaler Erwärmung vor ca. 56 Millionen Jahren, ereignete sich zur gleichen Zeit wie die Entstehung eines LIP, der North Atlantic Igneous Province (NAIP). Die NAIP-Entstehung wurde als Ursache für das PETM vorgeschlagen, da während des Vulkanismus Kohlendioxid und Methan freigesetzt werden, welches zu einer schnellen Erwärmung führt. Es wurde auch vermutet, dass die Ablagerung von Vulkanasche während des NAIP das Klima abgekühlt hat. Als solches ist das PETM eine ideale Periode, um die Auswirkungen des Vulkanismus auf das Erdsystem zu untersuchen. Expedition 396 des International Ocean Discovery Program (IODP) hat erfolgreich eine Reihe von langen Sedimentsequenzen aus dem PETM-Zeitalter am norwegischen Rand geborgen. In diesem Projekt beabsichtige ich, detaillierte deskriptive, geochemische und modellbasierte Untersuchungen mit den Sedimenten der Expedition 396 durchzuführen, um die Rolle des NAIP-Vulkanismus im PETM zu dokumentieren. Erstens wird die Intensität des Vulkanismus durch neue Schätzungen der Kohlendioxid-, Methan- und Sulfatemissionen bewertet, um die Rolle der Gase auf den Klimawandel zu bestimmen. Durch detaillierte geochemische Untersuchungen werden die Auswirkungen der Ascheablagerung auf den Kohlenstoffkreislauf bewertet mit Schwerpunkt auf der Rolle der Asche als Nährstofflieferant für Phytoplankton liegt. Die potenziellen Auswirkungen der Ascheablagerung auf die Speicherung von Kohlenstoff im Sediment werden ebenfalls geochemisch und isotopisch untersucht. Abschließend werden die Ergebnisse unter Verwendung von Erdsystemmodelle kombiniert, um die genaue Rolle des Vulkanismus im PETM zu bestimmen. Die erwarteten Ergebnisse werden uns neue Erkenntnisse über die Rolle der LIP-Entstehung und der Ablagerung von Vulkanasche beim Klimawandel geben. Sedimente von Expedition 396 bieten eine einzigartige Gelegenheit, den geochemischen Abdruck des Vulkanismus hochauflösend zu untersuchen. Die Ergebnisse dieser Arbeit werden zu einer erheblichen Verbesserung unseres Verständnisses des PETM führen.

Bedeutung von mehrjährigen und nicht mehrjährigen Flüssen für Kohlendioxid- und Methanemissionen bei Regenereignissen und Trocknungs-Wiederbefeuchtungszyklen (StreamFlux)

Fließgewässer tragen wesentlich zum globalen organischem Kohlenstoffkreislauf und zu der Emission der klimarelevanten Gase Kohlendioxid (CO2) und Methan (CH4) bei. Die Dynamik der CO2-Emissionen wurde mit dem Wasserabfluss und der Hydrologie des Einzugsgebietes in Verbindung gebracht, während CH4 mit dem Biom des Fließgewässers und der umgebenden Landnutzung korrelierte. Die Mehrzahl dieser Studien wurde jedoch an ganzjährig wasserführenden (perennierenden) Fließgewässern und unter stabilem Wasserabfluss durchgeführt, mit einer nur begrenzten Abdeckung von Hochwasserepisoden (Niederschlagsereignissen). Bislang sind daher Gasemissionen von nicht ganzjährig wasserführenden (intermittierenden) Fließgewässern nicht ausreichend in den lokalen und regionalen Kohlenstoff-Budgets enthalten. Diese erlangen jedoch erhöhte Bedeutung, da die aktuellen Prognosen zum Klimawandel darauf hindeuten, dass das Ausmaß und die Häufigkeit schwerer klimatischer Ereignisse wie Überschwemmungen und Dürre wahrscheinlich zunehmen wird. Das vorgeschlagene Projekt zielt darauf ab, diese wichtige Forschungslücke zu schließen, indem die treibenden Kräfte und die jahreszeitliche Relevanz der CO2- und CH4-Emissionen nicht nur in perennierenden sondern auch in intermittierenden Fließgewässern untersucht werden sollen. Das erste Ziel des Projekts ist die Quantifizierung der lokalen Relevanz von ereignisgesteuerten CO2- und CH4-Emissionen aus perennierenden Fließgewässern mittels einer Kombination von i) State-of-the-art Techniken zur Quantifizierung von Gasflüssen über die Wasser-Luft-Grenzfläche, ii) Sensoren nach dem Stand der Technik und In-situ-Gasmessungen und iii) etablierten Verfahren zur Bewertung der mikrobiellen Gemeinschaft und potentieller metabolischer Aktivität Das zweite Projektziel ist die Untersuchung des Kohlenstoff-Kreislaufs und der Gasemissionen von kontinentalen, nicht-perennierenden Fließgewässern, mit Schwerpunkt auf Trocknungs- und Wiederbefeuchtungszyklen. Das Projekt konzentriert sich auf das Einzugsgebiet des Flusses Queich (271 km2) in Rheinland-Pfalz. Der Fluss entspringt in einem natürlichen Reservoir (Biosphärenreservat Pfälzerwald) und fließt entlang eines ausgeprägten Landschaftsgefälles (natürlich bis anthropogen beeinflusst). Diese Umgebung bietet ein ideales Untersuchungsgebiet um die Rolle der Hydrologie und der Bodennutzung für kohlenstoffrelevante Gasemissionen aus Fließgewässern zu erforschen. Das übergeordnete Ziel des Projekts ist die Quantifizierung der Beiträge von episodischen (ereignisbasierten) Einflüssen und von saisonalen Trocknungs-Wiederbefeuchtungszyklen zum lokalen und regionalen Kohlenstoff-Kreislauf. Die Projektdaten werden mit zusätzlichen hydrologischen und biogeochemischen Daten in bestehenden geografischen Informationssystemen kombiniert, um die Entwicklung von Upscaling-Verfahren zu ermöglichen, die die oben genannten Beiträge schließlich in umfangreiche Budgets für den Kohlenstoffkreislauf überführen können.

Biogeochemie von Spurenmetallen und deren Isotope im Südindischen Ozean, Vorhaben: Produktivität des Oberflächenwassers und deren Kohlenstoff- und Stickstoffkreisläufe

1 2 3 4 573 74 75