Ziel des Projektes ist die Charakterisierung von Kolloiden (dp = 0.001-1 mym) in biologischen Kläranlagen. Es existieren derzeit kaum Erkenntnisse über die kolloiden Frachten in solchen Anlagen und deren Einfluß auf die Reinigungsleistung. Neben einer elementanalytischen Bilanzierung der räumlichen und zeitlichen Varianz der Kolloidkonzentration in technischen Anlagen und Identifizierung von spezfischen Partikelquellen über größenselektive elementare 'Fingerabdrücke' sollen Erkenntnisse über den Verbleib und die chemische und strukturelle Modifikation von Kolloiden durch Wechselwirkung mit Biofilmen gewonnen werden. Die Bilanzierung basiert methodisch auf der induktiv-gekoppelten Plasmamassenspektrometie (ICP-MS). Der Eintrag der Kolloide in das ICP-MS erfolgt entweder durch Kopplung mit einer asymmetrischen Fluß-Feldflußfraktionierung (AF4), die eine vorherige größenselektive Auftrennung erlaubt, oder durch Laserablation von Membranfiltern nach einer mehrstufigen Ultrafiltration. In einem weiteren Schritt soll mit natürlichen (d.h. Kolloiden, die spezifischen Quellen zugeordnet werden können) bzw. künstlichen Tracerkolloiden die Dynamik von makroskopischen kolloidalen Transportvorgängen in techenischen Anlagen bzw. die mikroskopische Wechselwirkung mit Biofilmen in einem Laborfließsystem untersucht werden.
Die Sorptionsstärke organischer Moleküle an Mineralien und die Stabilität von Aggregaten, die organische Substrate schützen, gehören zu den Randbedingungen, die „die Energie- und Stoffdynamik der Bodenbiota prägen“ (Gesamthypothese C des SPP 2322). Obwohl die Stabilisierung organischer Substanz gegen mikrobielle Nutzung und Mineralisierung im Boden mit Sorption in Verbindung gebracht wurde, ist ihr Zusammenhang mit der Thermodynamik von Sorptionsprozessen weiterhin Gegenstand laufender Forschung. In der ersten Förderphase fanden wir heraus, dass die Sorptionsenergie von Carbonsäuren an Eisenoxidoberflächen wahrscheinlich ein dominierender Faktor für die mikrobielle Verarbeitung und damit die Bindung von Kohlenstoff ist. Bei Zuckern und Aminosäuren überlagerten biochemische Kreisläufe und andere Randbedingungen wie Nährstoffverfügbarkeit, Feuchtigkeitsgehalt oder pH-Wert die Effekte der Sorption und beeinflussten das Verhältnis mineralisierter/assimilierter Substrate (Kohlenstoffnutzungseffizienz). Um die Reaktion auf komplexe Randbedingungen zu analysieren, die die Energie- und Stoffnutzung beeinflussen, da sie von der Sorptionsthermodynamik abhängen, werden wir die folgenden Hypothesen testen: (HI) Die Gibbs-Freienergie der Sorption kleiner organischer Säuren und die thermodynamische Hysterese steigen mit der Nichtkristallinität des Minerals und den Hydroxylgruppen an der Oberfläche der sorbierenden Oxidmineralien. (HII) Die Kohlenstoffnutzungseffizienz (CUE) wird hauptsächlich durch Assimilation bestimmt und durch eine komplexe Kombination von Randbedingungen (Desorbierbarkeit, Nährstoffverfügbarkeit, Feuchtigkeit und pH-Wert) und nicht durch die Sorptionsstärke allein gesteuert. (HIII) Die mikrobielle Nutzung sorbierter Substrate steigt mit zunehmender funktioneller Vielfalt und Komplexität der mikrobiellen Gemeinschaft des Bodens bei konstanter N-, P- und Energieverfügbarkeit. Und (HIV) die Stabilität mineralischer Aggregate steigt mit sinkendem osmotischem Potenzial und Mikroben produzieren extrazelluläre polymere Substanzen, wodurch die Zugänglichkeit von Substanzen zur mikrobiellen Verarbeitung in wasserstabilen Aggregaten sinkt. Wir werden diese Hypothesen in sechs Arbeitspaketen (AP) anhand gespiegelter mineral- und aggregatbasierter Ansätze in Bochum/Gießen und Freiburg testen. Der mineralbasierte Ansatz skaliert von Oberflächen-Molekül-Interaktionen bis hin zur mikrobiellen Nutzung von an Mineralen sorbierten Substraten mit zunehmender Komplexität der Mineraloberflächen (Anzahl der OH-Gruppen, Kristallinität). Der aggregatbasierte Ansatz skaliert vom Wasserpotenzial von Bodensäulen bis hin zu einzelnen wasserstabilen Aggregaten, die aus komplexen Wechselwirkungen zwischen Wasser, Wärme und Mikroorganismen entstehen. Beide verwenden einen gemeinsamen Satz von Mineralen und Substraten: Goethit, Gibbsit, Kaolinit, Glucose*, Zitronensäure und teilweise Phenol* (*C6-Verbindungen aus dem Kernexperiment). Das Bodenmaterial stammt aus Thyrow (Projektstandard) sowie einer Auswahl der Zeitschritte und aller Bodenmischungen aus den jeweiligen gemeinsamen Batterie- und Komplexitätsexperimenten des SPP. Durch die Kombination der erwarteten Ergebnisse aus komplexen Randbedingungen wird unser Projekt wesentliche Erkenntnisse für die Integration thermodynamischer Konzepte in die Funktionsweise von Bodenökosystemen liefern.
Die Ausbreitung invasiver Pflanzenarten ist ein Nebeneffekt von geplantem Landnutzungswandel in afrikanischen Savannen. Eine rasche Verbuschung von Weideflächen ist daher zu beobachten. Wir quantifizieren die Ausbreitung der Arten hier, und in Migrations-Korridoren von Rindern, bestimmen deren Determinanten und ermitteln Effekte auf die Lebensgrundlage pastoraler Gruppen im zentralen KRV. Durch die Kombination der Erkenntnisse trägt das Projekt zum Verständnis zukunftsorientierter Praktiken von Nutzern betroffenen Weideflächen bei und analysiert Effekte und Muster der Transformation.
Im Rahmen der hier vorgeschlagenen Studie sollen erstmalig das Vorkommen und die ökologische Bedeutung mixotropher Protisten in küsten- bzw. ufernahen Sedimenten aquatischer Lebensräume untersucht werden. Im Konzept des mikrobiellen Nahrungsnetzes, eines integralen Teils planktischer Nahrungsnetze, das durch den Fraßdruck kleiner Protisten auf Bakterien geprägt ist, spielen mixotrophe Einzeller eine entscheidende Rolle. Durch ihre Fähigkeit zur Kombination der oxygenen Photosynthese wirken sie im System sowohl auf der Ebene der Primärproduzenten als auch auf der der Konsumenten partikulären organischen Materials. Ausmaß und relative Bedeutung der unterschiedlichen Ernährungsmodi unterlagen sowohl auf Organismen- als auch auf Lebensraumebene sehr großen Schwankungen. Im Vergleich zu pelagischen Lebensräumen gibt es noch große Lücken im Wissensstand zur ökologischen Bedeutung benthischer Protisten. Zwar ist die Gemeinschaft des Mikrophytobenthos sowohl hinsichtlich der von ihr gestellten Biomasse als auch hinsichtlich ihrer Photosyntheseleistung sehr gut untersucht, der Großteil der Arbeiten an benthischen 'Protozoen' beschränkt sich dagegen auf Studien, die wenig zu ihrer Funktion im Lebensraum sagen. Zum Potential für Mixotrophie benthischer Einzeller gibt es bisher keine Studien. Die enge taxonomische Verwandschaft zwischen Vertretern der benthischen und der pelagischen Einzeller legt die Vermutung nahe, dass in den euphotischen Bereichen mariner und limnischer Sedimente mixotrophe Protisten vorkommen und einen erheblichen Beitrag sowohl an der Produktion als auch am Konsum organischen Materials haben. Das hier vorgestellte Projekt dient dem Ziel, das Vorkommen benthischer Mixotrophre zu verifizieren, ihre Bedeutung für die Lebensgemeinschaft zu ermitteln und die Auswirkungen verschiedener abiotischer und biotischer Faktoren (Licht, Temperatur, Nährstoff- bzw. Nahrungsangebot) für die Ausbildung oder Dominanz der unterschiedlichen Ernährungsmodi zu beschreiben
<p>Bodennahes Ozon und hohe Lufttemperatur bergen für Mensch und Umwelt nach wie vor ein hohes Schädigungspotenzial. Der Klimawandel kann zu mehr Heißen Tagen führen, was die Bildung von Ozon fördern und die damit verbundenen gesundheitlichen Risiken erhöhen kann.</p><p>Gesundheitliche Risiken von Ozon und hoher Lufttemperatur</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beeinflusst in vielfältiger Weise unsere Umwelt. Der Anstieg der mittleren jährlichen Lufttemperatur führt derzeit bereits zu wärmeren bzw. heißeren Sommern und zukünftig wahrscheinlich auch zu milderen Wintern. Eine hohe Lufttemperatur begünstigt gemeinsam mit intensiver Sonneneinstrahlung die Bildung von Ozon in Bodennähe. Dies führt bei anhaltend sommerlicher Schönwetterlage neben der Hitzebelastung auch zu einer erhöhten gesundheitlichen Belastung durch hohe bodennahe Ozonkonzentrationen.</p><p>Zur Charakterisierung der Ozonbelastung dient der Wert von 120 Mikrogramm pro Kubikmeter (µg/m³) als 8-Stunden-Mittelwert. Während der letzten extremen <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a> 2018 und 2022 (siehe <a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-hitze">„Gesundheitsrisiken durch Hitze“</a>) wurde dieser EU-Zielwert für Ozon zum Beispiel an der Messstation in Stuttgart-Bad Cannstatt 47- und 40-mal überschritten. Zur besseren Einordnung des umweltbezogenen Gesundheitsrisikos dient zudem die Kenngröße „Heißer Tag“ des Deutschen Wetterdienstes, definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius liegt. In den Sommern 2018 und 2022 wurden an der Messstation in Stuttgart-Schnarrenberg 29 und 30 <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> registriert. Beide Messgrößen sind in der Abbildung „Überschreitungen des Zielwertes für Ozon und Anzahl Heißer Tage in Stuttgart“ dargestellt.</p><p>* Zahl der Tage mit Überschreitung des Ozon-Zielwertes (120 µg/m³) zum Schutz der menschlichen Gesundheit als 8-Std.-MW</p><p>Gesundheitliche Wirkungen</p><p>Ozon ist ein Reizgas. An Tagen mit hoher Ozonkonzentration leiden viele Menschen an Reizerscheinungen der Augen (Tränenreiz), Atemwegsbeschwerden (Husten) und Kopfschmerzen. Diese Reizungen treten weitgehend unabhängig von der körperlichen Aktivität auf. Ihr Ausmaß wird primär durch die Aufenthaltsdauer in der ozonbelasteten Luft bestimmt. Besonders nach reger körperlicher Aktivität im Freien wurde bei Schulkindern und Erwachsenen eine verminderte Lungenfunktion sowie eine Einschränkung der körperlichen Leistungsfähigkeit festgestellt. Diese funktionellen Veränderungen und Beeinträchtigungen normalisierten sich im Allgemeinen spätestens 48 Stunden nach Expositionsende. Bei einem erhöhten Atemvolumen, zum Beispiel bei körperlicher Anstrengung, kann Ozon tief in das Lungengewebe vordringen, dort das Gewebe schädigen und Entzündungen hervorrufen. Im Gegensatz zur Veränderung der Lungenfunktionswerte bildeten sich entzündliche Reaktionen des Lungengewebes nur teilweise zurück. Atemwegs- und Herz-Kreislauf-Erkrankungen sind mit dem Auftreten erhöhter bodennaher Ozonkonzentrationen assoziiert.</p><p>Eine hohe Lufttemperatur während Hitzeperioden kann ein zusätzliches Risiko für die Gesundheit der Bevölkerung darstellen. Bei sehr hohen Temperaturen kann das körpereigene Kühlsystem überlastet werden. Als Folge der Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit Herz-Kreislauf-Erkrankungen sind von diesen Symptomen besonders betroffen. <br><br>Klimamodelle prognostizieren, dass sich die gesundheitlichen Risiken von Phasen mit erhöhter sommerlicher Luftverschmutzung – unter anderem mit Ozon – im Zusammenwirken mit sommerlicher Hitze zukünftig erhöhen werden. Zudem wird vermutet, dass sich beide Einzelbelastungen in ihrer Kombinationswirkung verstärken können.</p><p><em>Tipps zum Weiterlesen: </em><br><br><em>Mücke, H.-G. (2014): Gesundheitliche Auswirkungen von atmosphärisch beeinflussten Luftverunreinigungen. Kapitel 3.1.3, S. 1-7. In: Lozan et al. (Hrsg.): Warnsignal <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>: Gesundheitsrisiken; Gefahren für Pflanzen, Tiere und Menschen. GEO Wissenschaftliche Auswertungen, Hamburg.<br><br>Mücke, H.-G. und A. Matzarakis (2017): <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> und Gesundheit. In: Wichmann et al. (Hrsg.): Handbuch der Umweltmedizin, Kapitel VIII-1.10, 38 Seiten. Ecomed Verlag, Landsberg.</em></p><p><em>Augustin J. et al. (202</em>3<em>): Gesundheit. Teil III, Kapitel 14. S. 171-189. </em><em>In: </em><em>Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland, 2. überarb. und erweiterte Auflage, Springer Spektrum, Heidelberg.</em></p><p>Weniger bodennahes Ozon ist möglich</p><p>Gesundheitliche Belastungen durch höhere Ozonkonzentrationen in Bodennähe sind zu vermeiden. Hierzu müssen die Zielwerte und langfristigen Ziele für Ozon zum Schutz der menschlichen Gesundheit erreicht und auf Dauer eingehalten werden. Die Europäische Union (EU) hat im Jahr 2002 in der <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1582627655982&uri=CELEX:32002L0003">Richtlinie über den Ozongehalt in der Luft</a> einen Ozonzielwert zum Schutz der menschlichen Gesundheit festgelegt und ihn im Jahr 2008 mit der <a href="https://eur-lex.europa.eu/legal-content/de/TXT/?uri=CELEX:32008L0050">Richtlinie über Luftqualität und saubere Luft</a> bestätigt:</p><p>Um die gesundheitlichen Belastungen durch Ozon zu verringern, müssen die Emissionen jener Schadstoffe sinken, welche als Vorläufersubstanzen die Ozonbildung befördern. Dazu zählen vor allem Stickstoffoxide (NOx) und flüchtige Kohlenwasserstoffe. Möglichkeiten, die Emissionen dieser Luftschadstoffe zu senken, bestehen im Verkehrssektor, innerhalb des Einsatzes von <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a> zur Energiegewinnung, durch Energieeinsparmaßnahmen sowie bei der Lösemittelverwendung in Industrie, Gewerbe und Haushalten.</p><p>Weiterführende Informationen</p><p><a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1582627655982&uri=CELEX:32002L0003">Richtlinie über den Ozongehalt in der Luft</a></p><p><a href="https://eur-lex.europa.eu/legal-content/de/TXT/?uri=CELEX:32008L0050">Richtlinie über Luftqualität und saubere Luft</a></p>
Die Belastung von Boeden setzt eine Klaerung der geogenen und anthropogenen Herkunft von relevanten Schadstoffen voraus. Exakte Aussagen ueber die Herkunft solcher Schadstoffe lassen sich jedoch stets nur dann machen, wenn auch die lokalen geochemischen Verhaeltnisse bekannt sind und bei den Untersuchungen mit erfasst werden. Dieses ist besonders ausschlaggebend, wenn Klaerschlaemme aufgebracht werden. Hierbei sind die Tonmineralien als Schadstoffadsorber eine Loesung zur Vermeidung der staendig wachsenden Mengen, die insbesondere zur Deponierung oder Verbrennung fuehren. Desweiteren sind bisher nur wenige Untersuchungen ueber die Relevanz von Arsen und Thallium durchgefuehrt worden.
Mykorrhizen sind in der Lage, das Wachstum der Bäume durch erhöhte Aufnahme von Nährstoffen zu verbessern. Im Gegensatz zu Phosphat und Nitrat, ist nur wenig über die Bedeutung der Mykorrhiza für die Aufnahme und den Metabolismus von Schwefel bekannt, obwohl schwefelhaltige Stoffe eine wichtige Rolle bei Rhizobiumwurzel Symbiose spielen, die in vielen Aspekten ähnlich zu Mykorrhizierung ist. Ziel des Projekts ist es, Gene des Schwefelhaushalts von Wurzeln zu identifizieren, die bei der Wechselwirkung Wurzelpilz eine Rolle spielen, und deren Expression und Regulation zu analysieren. Als Modellsystem soll dabei die Pappel und der Pilz Amanita muscaria eingesetzt werden. In diesem Modellsystem soll die Hypothese überprüft werden, dass der Pilz die Sulfatversorgung der Pflanze durch eine erhöhte Aufnahme sowie einen intensiven Austausch mit der Wurzel verbessert und, in Analogie zu Rhizobien, dem Pilz von der Pflanze reduzierter Schwefel in Form von Glutathion zur Verfügung gestellt wird. In der ersten Phase wird der Einfluss der Schwefel- und Stickstoffernährung auf die Expression der Gene des Schwefel-Metabolismus in Pappel und im Pilz untersucht. Weiterhin soll der Einfluss der Modulation des Schwefelhaushalts in Pappeln durch genetische Manipulation auf die Wechselwirkung im Schwefelhaushalt zwischen Wurzel und Pilz analysiert werden.
Deutsche Mittelgebirge haben im Tourismus und Erholungswesen einen festen Platz. Sie zeichnen sich durch vielfältige Landschaftsbilder und naturräumlich bedingte klimatische Besonderheiten aus. Diese Besonderheiten sollen in ihrer Bedeutung für Menschengruppen mit eingeschränkter Bewegungsmöglichkeit untersucht werden. Nach erfolgreich abgeschlossenen Vorstudien wurden die Antragsformalitäten abgewickelt. Organisatorische Probleme, die nicht durch die FHE verschuldet wurden, führten zu erheblichen Verzögerungen. Derzeitiger Stand: - Ein positives Fachgutachten von Prof. Dr. O. Herbarth /UFZ Leipzig liegt vor. - Der Projektantrag wurde über die Geschäftsstelle des Gesamtprojektes zusammen mit vier weiteren Anträgen (darunter dem von Prof. Dr. Gather) an das BMBF weitergeleitet. - Es liegt die mündliche Mitteilung vor, dass das Fachgutachten des BMBF positiv ausgefallen ist. Ein positiver Bescheid für den Beginn des Hauptprojektes wird in Kürze erwartet.
Veranlassung Bei der ökotoxikologischen Untersuchung von Wasser- und Sedimentproben kann oftmals nur ein Anteil der beobachteten Effekte durch bekannte Schadstoffe erklärt werden. Gleichzeitig zeigen chemische Non-Target-Analysen, dass aquatische Lebensgemeinschaften einer Vielzahl unbekannter oder unzureichend charakterisierter Stoffe ausgesetzt sind. Für eine Priorisierung und Identifizierung von Stoffen werden deshalb dringend innovative Ansätze zur Kopplung moderner chemischer und ökotoxikologischer Verfahren benötigt. Im Projekt SOURCE werden Wasser- und Sedimentproben entlang der Elbe chemisch und ökotoxikologisch charakterisiert und die Ergebnisse mithilfe wirkungsorientierter Analytik und der Modellierung molekularer und adverser Effekte integriert. Unter Berücksichtigung von Kombinationseffekten, die bei Umweltmischungen unweigerlich zu erwarten sind, wird somit eine Möglichkeit zur Identifizierung und Priorisierung von Schadstoffen und ihren Quellen geschaffen. Ziele - Bestandsaufnahme von Stoff- und Wirkungsprofilen von Sedimenten und Wasserproben entlang der Elbe - Kombination von chemisch analytischen Verfahren, Modellierung toxischer Effekte und effektbasierten Biotests - Entwicklung und Anwendung von Verfahren zur Identifizierung toxischer Stoffe und ihrer Eintragsquellen in Bundeswasserstraßen Woher kommen die Schadstoffe in unseren Flüssen? Um dieser Frage nachzugehen, werden im Projekt SOURCE Methoden der chemischen Target- und Non-Target-Analytik, bioanalytische Testverfahren und Modellierungsansätze kombiniert. Die Zahl der industriell hergestellten Chemikalien hat sich in den letzten 20 Jahren mehr als verdreifacht und liegt heute bei über 350.000 Substanzen. Gewässer werden in Europa routinemäßig jedoch nur auf wenige ausgewählte Stoffe untersucht. Dadurch bleiben Identität und Wirkung vieler Stoffe, die unsere Gewässer gefährden können, unerkannt. Vor dem Hintergrund der aktuellen Aktivitäten, z.B. zum Sedimentmanagement an der Elbe, ist es für die Entwicklung nachhaltiger Maßnahmen notwendig, die für Schadwirkungen verantwortlichen Stoffe zu identifizieren. Nur auf dieser Basis können Vorschläge zur zielgerichteten Minimierung der Einträge erarbeitet werden.
| Origin | Count |
|---|---|
| Bund | 1548 |
| Land | 5 |
| Wissenschaft | 13 |
| Type | Count |
|---|---|
| Daten und Messstellen | 11 |
| Ereignis | 1 |
| Förderprogramm | 1515 |
| Kartendienst | 1 |
| Taxon | 1 |
| Text | 17 |
| unbekannt | 20 |
| License | Count |
|---|---|
| geschlossen | 33 |
| offen | 1529 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 1408 |
| Englisch | 277 |
| Resource type | Count |
|---|---|
| Archiv | 4 |
| Bild | 2 |
| Datei | 7 |
| Dokument | 12 |
| Keine | 1230 |
| Unbekannt | 1 |
| Webseite | 317 |
| Topic | Count |
|---|---|
| Boden | 1140 |
| Lebewesen und Lebensräume | 1289 |
| Luft | 992 |
| Mensch und Umwelt | 1564 |
| Wasser | 999 |
| Weitere | 1546 |