API src

Found 4147 results.

Related terms

Aufgabenträger der öffentlichen Abwasserbeseitigung (Sachsen)

Aufgabenträger der öffentlichen Abwasserbeseitigung: - Abwasserbeseitigungspflichtige Zweckverbände - Teilzweckverbände - Gemeinden

Kommunales Informationssystem Holzbau - Modell zur Quantifizierung und Darstellung von Treibhausgas-Einsparpotenzialen durch stoffliche Holzverwendung in Kommunen, Teilvorhaben 1: Methodische Entwicklung

Die Bundesregierung hat hohe Ziele für den Klimaschutz bis 2045 beschlossen. Der Gebäudebestand verursacht etwa 30% aller Treibhausgase und soll daher bis 2045 klimaneutral werden. Aufgrund der langjährigen Nutzungsdauer der Gebäude stellen sich Effekte nur langsam ein und deshalb müssen Anpassungen ab sofort in die Planungsprozesse eingespeist werden. Die Umsetzung von Klimaschutzstrategien und Klimaschutzmaßnahmen auf kommunaler Ebene im Gebäudebestand muss zukünftig in enger Abstimmung mit den Zielen der kommunalen Bauleitplanung erfolgen. Dies stellt die Kommunen vor große Herausforderungen. Das hier dargestellte Klimaschutzprojekt 'Kommunales Informationssystem Holzbau (Holzbau-KIS)' hat als Ziel, das Potenzial einer stofflichen Nutzung von Holzprodukten im Bauwesen als zusätzliche Klimaschutzmaßnahme für Kommunen darzustellen und praktisch handhabbar zu machen. In verschiedenen Szenarien werden realisierbare Potenziale für THG-Einsparungen durch Bauen und Sanieren mit Holz projiziert. Bereits existierende Ansätze für Neubau und Sanierung sollen um weitere Szenarien ergänzt und auf ausgewählte Nichtwohngebäude ausgeweitet werden. Die Ergebnisse zeigen sowohl die Kohlenstoffspeicherung im Holzwerkstoff als auch das Substitutionspotenzial durch den Ersatz von Bauteilen in mineralischer Bauweise durch Holzkonstruktionen. Das Holzbau-KIS soll ein praxisnahes, webbasiertes Planungs- und Kommunikationstool werden, das es den Kommunen in Selbstverwaltung ermöglicht, die THG-Einsparungen durch den Einsatz von Holz als Baumaterial in kommunale Klimaschutzkonzepte zu integrieren. Das Teilvorhaben der RUB befasst sich mit der methodischen Erweiterung und der fachlichen thematischen Ergänzung der bestehenden Konzepte für die drei kommunalen Pilotanwendungen. Außerdem soll die Erstellung eines Transferkonzepts zur Übertragung auf weitere Kommunen begleitet werden und bspw. methodische, aber auch organisatorische Aspekte eines Betriebs des Tools bei einer Kommune beleuchten.

Netzwerk erneuerbare Energien, Konkrete Einbeziehung erneuerbarer Energiequellen in die Energieversorgung von Kommunen

Umsetzungsstrategien fuer erneuerbare Energien in sechs europaeischen Staedten: Ziel dieses Forschungsprojektes war es, die nutzbaren Potentiale von erneuerbaren Energien auf kommunaler Ebene zu analysieren und konkrete Handlungsvorschlaege und Anlagenkonzepte zu deren verstaerkten Integration zu entwickeln. Die Untersuchung erstreckte sich auf sechs Staedte/ Stadtwerke in drei EU-Laendern (Deutschland: Pforzheim, Ettlingen; Frankreich: Besancon, Rochefort; Portugal: Funchal, Braganca). Fuer jede Stadt wurde ein umfassendes integratives Konzept zur maximalen Nutzung der erneuerbaren Energiequellen bis zum Jahre 2010 entwickelt. Darin wurde das konkrete Ziel gesetzt, bis zum Jahre 2010 15 Prozent des dann zu erwartenden Primaerenergiebedarfes durch erneuerbare Energien bereitzustellen. Besonderes Augenmerk lag auf dem lokalen Energiemarkt und den 'Makro-Akteuren', die bei der Foerderung der erneuerbaren Energien eine wichtige Rolle spielen. Diese Akteure wurden gezielt angesprochen und in die Entwicklung des Konzeptes einbezogen, um die Umsetzungschancen zu verbessern.

Stickstoff-Flächenbilanzsalden aus der Landwirtschaft auf Gemeindeebene – Basis-Emissionsmonitoring 2023 (WMS Dienst)

Stickstoff-Flächenbilanzsalden (N-Bilanzen) sind ein Instrument, um die Stickstoffemissionen (Stickstoffüberschüsse) aus der Landwirtschaft zu quantifizieren. Sie sind ein Indikator für die Effizienz des Stickstoffeinsatzes landwirtschaftlicher Betriebe. Zur Berechnung der N-Bilanzen wird die N-Zufuhr auf die landwirtschaftlich genutzte Fläche der N-Abfuhr über die Ernte gegenübergestellt: N-Zufuhr – N-Abfuhr = N-Flächenbilanzsaldo Das Ergebnis sind Stickstoff-Flächenbilanzsalden auf Gemeindeebene, sie werden in kg N pro Hektar und Jahr bezogen auf die landwirtschaftlich genutzte Fläche ausgegeben. Da sämtliche Daten nach dem Betriebssitzprinzip erhoben wurden, liegen für die gemeindefreien Gebiete keine N-Bilanzen vor. Die hier dargestellten N-Flächenbilanzsalden beziehen sich auf das Kalenderjahr 2023. Sie sind eine wichtige Grundlage zur Berechnung der potenziellen Nitratkonzentration im Sickerwasser. Die potenzielle Nitratkonzentration dient der Abschätzung der Sickerwassergüte an der Untergrenze des Wurzelraumes in ca. 2 m Tiefe. Detaillierte Methodenbeschreibung siehe: Erläuterung_Basisemissionsmonitoring_LBEG_2023.pdf

Kohlendioxid-Emissionen: Kommunale CO2 Bilanzen Stadt Konstanz

<p>Die Angaben über CO2-Emissionen nach Sektoren beruhen auf den Energiebilanzen für Baden-Württemberg, die zunächst nur auf Landesebene vorliegen. Bei der Berechnung der Emissionswerte auf Kreis- und Gemeindeebene wird notwendigerweise auf modellhafte und damit in den verschiedenen Sektoren zum Teil verallgemeinernde Annahmen zurückgegriffen. Insbesondere wird aufgrund fehlender primärstatistischer Angaben im Sektor Haushalte, Gewerbe, Handel, Dienstleistungen und übrige Verbraucher mit einem durchschnittlichen Energieverbrauch je Wohnung bzw. je sozialversicherungspflichtig Beschäftigtem gerechnet. Regionale Minderungsmaßnahmen in diesem Sektor werden deshalb in der Modellrechnung nicht vollständig berücksichtigt.</p> <p><strong>Jahr:</strong></p> <p>Die Jahreszahl 2011a bezieht sich auf Bevölkerungsstand zum 31.12., Fortschreibung des Zensus 1987 (VZ1987)</p> <p>Die Jahreszahl 2011b auf Bevölkerungsstand zum 31.12., Fortschreibung des Zensus 2011 (VZ2011)</p> <p><strong>Gemeindekennung: </strong>335043, Konstanz</p> <p><strong>Private Haushalte, GHD und übrige Verbraucher</strong>: damit sind Gewerbe, Handel, Dienstleistungen (GHD) und übrige Verbraucher wie öffentliche Einrichtungen, Landwirtschaft und militärische Einrichtungen gemeint.</p> <p><strong>Verkehr</strong>: bezeichnet den Straßenverkehr und sonstiger Verkehr wie Schienen-, nationaler Luftverkehr, Binnenschifffahrt und Off-Road-Verkehr (landwirtschaftl. Zugmaschinen, Baumaschinen, Militär, Industriegeräte,Garten/Hobby).</p> <p><strong>Wohnbevölkerung</strong>:</p> <p>-Bevölkerungsstand zum 31.12., Fortschreibung der Volkszählung 2011 (VZ2011).</p> <p>-Bevölkerungsstand zum 31.12., Fortschreibung der Volkszählung 1987 (VZ1987).</p> <p><strong>Tonnen</strong>: Menge an CO2 Emissionen in Tonnen nach Sektoren</p> <p><strong>EW</strong>: Einwohnerzahl im jeweiligen Jahr</p> <p><strong>Tonnen Je Einwohner</strong>: Menge der CO2 Emissionen in Tonnen je Einwohner nach Sektoren</p> <p><strong>Mengenanteile der Sektoren in %:</strong> CO2 Emissionen nach Sektoren in Prozenten.</p> <p><strong>Methodische Hinweise</strong>: Änderungen Allgemein/ Methodisch CO2-Berechnung regional/ Revision ab Herbst 2019:</p> <p>- Umstellung auf die endgültige Energiebilanz 2016</p> <p>- Die Emissionsfaktoren für feuerungsbedingte CO2-Emissionen ab dem Berichtsjahr 2016 wurden mit den Daten des Umweltbundesamtes gemäß NIR 2019 aktualisiert.</p> <p>- Die bundesweiten Anteile Nationalflug an Gesamtflug wurden seitens des Umweltbundesamtes in NIR 2019 ab 1990 um durchschnittlich 10 % gesenkt. Dadurch Ändern sich alle Emissionen des nationalen Luftverkehrs und somit die Emissionen des Sektors Verkehr.</p> <p>- Die Regionalisierungsdaten aus weiteren amtlichen und nichtamtlichen Quellen wurden hinsichtlich Datenverfügbarkeit zum jeweiligen Berichtsjahr überprüft und aktualisiert, sowie die Detailberechnungen methodisch vereinheitlicht.</p> <p>- Die den regionalen Straßenverkehrsemissionen zugrundeliegenden Jahresfahrleistungen wurden ab dem Jahr 2010 einer grundlegenden Revision unterzogen. Das Verkehrszählungsjahr 2010, das die Basis für die Fortschreibung der Jahre 2011 bis 2014 bildet, greift auf deutlich veränderte Zählergebnisse nach dem neuen Verkehrsmonitoring zurück. Die Verkehrszählung 2015 bildet bis zur nächsten Zählung die Basis für künftige Fortschreibungen ab 2016. Details hierzu finden Sie im Glossar des Internetauftritts des Statistischen Landesamtes unter dem Thema "Verkehr", Unterthema "KFZ und Verkehrsbelastung", Jahresfahrleistungen im Straßenverkehr (<a href="https://www.statistik-bw.de/Glossar/456">https://www.statistik-bw.de/Glossar/456</a>)</p> <p>- Aus methodischen Gründen werden die regionalen Straßenverkehrsemissionen aus Strom erst ab Berichtsjahr 2016 ausgewiesen.</p> <p>-Die Vergleichbarkeit der Ergebnisse mit früheren Berechnungsjahren sind eingeschränkt.</p> <p>[statistisches Landesamt Baden-Württemberg]: <a href="https://www.statistik-bw.de/">https://www.statistik-bw.de/</a></p> <p><strong>Quelle der Daten</strong>: <a href="https://www.statistik-bw.de/">Statistisches Landesamt Baden-Württemberg</a></p>

Aufgabenträger der öffentlichen Wasserversorgung (Sachsen)

Aufgabenträger der öffentlichen Wasserversorgung: - Zweckverbände - Teilzweckverband - Gemeinden

Stadtklimaanalyse Hamburg 2023

Die Stadtklimaanalyse Hamburg 2023 basiert auf einer modellgestützten Analyse zu den klimaökologischen Funktionen für das Hamburger Stadtgebiet. Die Berechnung mit FITNAH 3D erfolgte in einer hohen räumlichen Auflösung (10 m x 10 m Raster) und liefert Daten und Aussagen zur Temperatur und Kaltluftentstehung in Hamburg. Die Untersuchung wurde auf der Annahme einer besonders belastenden Sommerwetterlage für Mensch und Umwelt mit geringer Luftbewegung und hoher Temperaturbelastung erstellt. Als Grundlage für die flächenbezogenen Bewertungen und deren räumliche Abgrenzungen diente der ALKIS-Datensatz „Bodennutzung“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Weitere Informationen zur Stadtklimaanalyse Hamburg 2023 sind unter folgendem Link abrufbar: https://www.hamburg.de/politik-und-verwaltung/behoerden/bukea/themen/hamburgs-gruen/landschaftsprogramm/stadtklimaanalyse-hamburg-896054 Dort stehen der Erläuterungsbericht, die Analyse- und Bewertungskarten sowie eine Erläuterungstabelle für den Datensatz, der als Grundlage für die Ebenen 11 bis 14 dient, zum Download zur Verfügung. Die Ebenen des Geodatensatzes „Stadtklimaanalyse Hamburg 2023“ werden wie folgt präzisiert: 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung) Die bodennahe Temperaturverteilung bedingt horizontale Luftdruckunterschiede, die wiederum Auslöser für lokale thermische Windsysteme sind. Ausgangspunkt dieses Prozesses sind die nächtlichen Temperaturunterschiede, die sich zwischen Siedlungsräumen und vegetationsgeprägten Freiflächen einstellen. An den geneigten Flächen setzt sich abgekühlte und damit schwerere Luft in Richtung zur tiefsten Stelle des Geländes als Kaltluftabfluss in Bewegung. Das sich zum nächtlichen Analysezeitpunkt 4 Uhr ausgeprägte Kaltluftströmungsfeld wird über Vektoren abgebildet, die für eine übersichtlichere Darstellung auf 100 m x 100 m Kantenlänge aggregiert werden. 02 Flurwinde und Kaltluftabflüsse Bei den nächtlichen Windsystemen werden Flurwinde von Kaltluftabflüssen unterschieden. Flurwinde werden durch den horizontalen Temperaturunterschied zwischen kühlen Grünflächen und warmer Bebauung ausgelöst. Kaltluftabflüsse bilden sich über Oberflächen mit Hangneigungen von mehr als 1 ° aus. 03 Bereiche mit besonderer Funktion für den Luftaustausch Diese Durchlüftungszonen verbinden Kaltluftentstehungsgebiete (Ausgleichsräume) und Belastungsbereiche (Wirkungsräume) miteinander und sind aufgrund ihrer Klimafunktion elementarer Bestandteil des Luftaustausches. Es handelt sich i.d.R. um gering überbaute und grüngeprägte Strukturen, die linear auf die jeweiligen Wirkungsräume ausgerichtet sind und insbesondere am Stadtrand das Einwirken von Kaltluft aus den Kaltluftentstehungsgebieten des Umlandes begünstigen. 04 Kaltlufteinwirkbereich innerhalb von Bebauung und Verkehrsflächen Hierzu zählen Siedlungs- und Verkehrsflächen, die sich im „Einwirkbereich“ eines klimaökologisch wirksamen Kaltluftstroms mit einem Wert von mehr als 5 m³/(s*m) befinden. Hier ist sowohl im bodennahen Bereich als auch darüber hinaus eine entsprechende Durchlüftung vorhanden. Die Eindringtiefe der Kaltluft beträgt, abhängig von der Bebauungsstruktur, zwischen ca. 100 m und bis zu 700 m. Darüber hinaus spielt auch die Hinderniswirkung des angrenzenden Bebauungstyps eine wesentliche Rolle. 05 Gebäude (Bestand und Planung) Mithilfe der Gebäudegrenzen werden Effekte auf das Mikroklima sowie insbesondere das Strömungsfeld berücksichtigt. Als Grundlage dient der ALKIS-Datensatz „Gebäude“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Dieser Datensatz wurde anhand ausgewählter, zum Zeitpunkt der Bearbeitung im Verfahren sowie in Planung befindlicher Bebauungspläne und Großprojekte modifiziert. 06 Windgeschwindigkeit um 4 Uhr Siehe Hinweise zur Ebene 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung). Die Rasterzellen stellen ergänzend zu den Windvektoren die Windgeschwindigkeit flächenhaft in 10 m x 10 m Auflösung dar. 07 Kaltluftvolumenstromdichte um 4 Uhr Der Kaltluftvolumenstrom beschreibt diejenige Menge an Kaltluft in der Einheit m³, die in jeder Sekunde durch den Querschnitt beispielsweise eines Hanges oder einer Kaltluftleitbahn fließt. Der Volumenstrom ist ein Maß für den Zustrom von Kaltluft und bestimmt neben der Strömungsgeschwindigkeit die Größenordnung des Durchlüftungspotenzials. Zum Zeitpunkt 4 Uhr morgens ist die Intensität der Kaltluftströme voll ausgeprägt. 07a Kaltluftvolumenstromdichte um 4 Uhr in den Grün- und Freiflächen Reduzierung der Ebene 07 Kaltluftvolumenstromdichte um 4 Uhr auf die Grün- und Freiflächen. 08 Lufttemperatur um 4 Uhr Der Tagesgang der Lufttemperatur ist direkt an die Strahlungsbilanz eines Standortes gekoppelt und zeigt daher i.d.R. einen ausgeprägten Abfall während der Abend- und Nachtstunden. Dieser erreicht kurz vor Sonnenaufgang des nächsten Tages ein Maximum. Das Ausmaß der Abkühlung kann je nach meteorologischen Verhältnissen, Lage des Standorts und landnutzungsabhängigen physikalischen Boden- bzw. Oberflächeneigenschaften große Unterschiede aufweisen. Besonders auffällig ist das thermische Sonderklima der Siedlungsräume mit seinen gegenüber dem Umland modifizierten klimatischen Verhältnissen. 08a Lufttemperatur um 4 Uhr im Siedlungsraum Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Siedlungsflächen. 08b Lufttemperatur um 4 Uhr in den Verkehrsflächen Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Verkehrsflächen. 09 Lufttemperatur um 14 Uhr Die Lufttemperatur am Tage ist im Wesentlichen durch die großräumige Temperatur der Luftmasse in einer Region geprägt und wird weniger stark durch Verschattung beeinflusst, wie es bei der PET der Fall ist (Erläuterung „PET“ siehe Ebene 10 und 13). Daher weist die für die Tagsituation modellierte Lufttemperatur eine homogenere Ausprägung auf. 10 Physiologisch Äquivalente Temperatur (PET) um 14 Uhr Meteorologische Parameter wirken nicht unabhängig voneinander, sondern in biometeorologischen Wirkungskomplexen auf das Wohlbefinden des Menschen ein. Zur Bewertung werden Indizes verwendet (Kenngrößen), die Aussagen zur Lufttemperatur und Luftfeuchte, zur Windgeschwindigkeit sowie zu kurz- und langwelligen Strahlungsflüssen kombinieren. Wärmehaushaltsmodelle berechnen den Wärmeaustausch einer „Norm-Person“ mit seiner Umgebung und können so die Wärmebelastung eines Menschen abschätzen. Die hier genutzte Kenngröße PET (Physiologisch Äquivalente Temperatur, VDI 3787, Blatt 9) bezieht sich auf außenklimatische Bedingungen und zeigt eine starke Abhängigkeit von der Strahlungstemperatur. Mit Blick auf die Wärmebelastung ist sie damit vor allem für die Bewertung des Aufenthalts im Freien am Tage sinnvoll einsetzbar. 11 Bewertung nachts Siedlungs- und Verkehrsflächen: mittlere Lufttemperatur um 4 Uhr Zur Bewertung der bioklimatischen Situation wird die nächtliche Überwärmung in den Nachtstunden (4 Uhr morgens) herangezogen und räumlich differenziert betrachtet. Der nächtliche Wärmeinseleffekt wird anhand der Differenz zwischen der durchschnittlichen Lufttemperatur einer Siedlungs- oder Verkehrsfläche und der gesamtstädtischen Durchschnittstemperatur von etwa 17,1 °C bewertet. Die mittlere Überwärmung pro Blockfläche wird in fünf Bewertungsstufen untergliedert und reicht von sehr günstig (≥ 15,8 °C) bis sehr ungünstig (>= 20 °C). 12 Bewertung nachts Grün- und Freiflächen: bioklimatische Bedeutung Bei der Bewertung der bioklimatischen Bedeutung von grünbestimmten Flächen ist insbesondere die Lage der Grün- und Freiflächen zu Leitbahnen sowie zu bioklimatisch ungünstig oder weniger günstig bewerteten Siedlungsflächen entscheidend. Es handelt sich um eine anthropozentrisch ausgerichtete Wertung, die die Ausgleichsfunktionen der Flächen für den derzeitigen Siedlungsraum berücksichtigt. Die klimaökologischen Charakteristika der Grün- und Freiflächen werden anhand einer vierstufigen Skala (sehr hohe bioklimatische Bedeutung bis geringe bioklimatische Bedeutung) bewertet. 13 Bewertung tags Siedlungs- und Verkehrsflächen: bioklimatische Bedeutung (PET 14 Uhr) Zur Bewertung der Tagsituation wird der humanbioklimatische Index PET um 14:00 Uhr herangezogen. Für die PET existiert in der VDI-Richtlinie 3787, Blatt 9 eine absolute Bewertungsskala, die das thermische Empfinden und die physiologischen Belastungsstufen quantifiziert. Die Bewertung der thermischen Belastung im Stadtgebiet Hamburg orientiert sich daran und reicht auf einer fünfstufigen Skala von extrem belastet (> 41 °C) bis schwach belastet ( 41 °C) zu einer sehr geringen Aufenthaltsqualität führt. 14 Bewertung tags Grün- und Freiflächen: Aufenthaltsqualität (PET 14 Uhr) Die Zuweisung der Aufenthaltsqualität von Grün- und Freiflächen in der Bewertungskarte beruht auf der jeweiligen physiologischen Belastungsstufe. Es werden vier Bewertungsstufen unterschieden. Eine hohe Aufenthaltsqualität ergibt sich aus einer schwachen oder nicht vorhandenen Wärmebelastung (PET 41 °C) zu einer sehr geringen Aufenthaltsqualität führt.

Bundesweite Phosphoreintragsmodellierung (MoRE) –Phosphoreintrag über kommunale Kläranlagen bis 2.000 Einwohnerwerten (EW) (Datensatz)

Der deutschlandweite Datensatz enthält Informationen zum mittleren Phosphoreintrag in Gewässer (2016-2018) über kommunale Kläranlagen zwischen > 50 bis < 2.000 Einwohnerwerten behandelter Abwasserlast (in kg/a). Grundlage für die Berechnung sind statistische Daten auf Gemeindeebene. Der Datensatz liegt vor: Auflösung: MoRE-Modellgebiete (Analysegebiete) Eine grundsätzliche Beschreibung des methodischen Vorgehens und der genutzten Modelleingangsdaten findet sich in (Fuchs, S.; Brecht, K.; Gebel, M.; Bürger, S.; Uhlig, M.; Halbfaß, S. (2022): Phosphoreinträge in die Gewässer bundesweit modellieren – Neue Ansätze und aktualisierte Ergebnisse von MoRE-DE. UBA Texte | 142/2022 (Link siehe INFO-LINKS)). Die simulierten Daten sind keine absolut gültigen Ergebnisse, sondern stehen im Kontext erforderlicher methodischer Annahmen bei der Erstellung und Verarbeitung. Sie sind u.a. von im angewandten Modell geltenden Annahmen, der Modellstruktur, der Parameterschätzung, der Kalibrierungsstrategie und der Qualität der Antriebsdaten abhängig.

Bundesweite Phosphoreintragsmodellierung (MoRE) –Phosphoreintrag über Kleinkläranlagen (Datensatz)

Der deutschlandweite Datensatz enthält Informationen zum mittleren (2016-2018) Phosphoreintrag über Kleinkläranlagen in Gewässer (in kg/a). Zu den Kleinkläranlagen zählen alle individuellen Abwasserbehandlungssysteme mit einer Ausbaugröße ≤ 50 Einwohnerwerten. Grundlage für die Berechnung sind statistische Daten zu an Kleinkläranlagen angeschlossenen Einwohnern auf Gemeindeebene. Der Datensatz liegt vor: Auflösung: MoRE-Modellgebiete (Analysegebiete) Eine grundsätzliche Beschreibung des methodischen Vorgehens und der genutzten Modelleingangsdaten findet sich in (Fuchs, S.; Brecht, K.; Gebel, M.; Bürger, S.; Uhlig, M.; Halbfaß, S. (2022): Phosphoreinträge in die Gewässer bundesweit modellieren – Neue Ansätze und aktualisierte Ergebnisse von MoRE-DE. UBA Texte | 142/2022 (Link siehe INFO-LINKS)). Die simulierten Daten sind keine absolut gültigen Ergebnisse, sondern stehen im Kontext erforderlicher methodischer Annahmen bei der Erstellung und Verarbeitung. Sie sind u.a. von im angewandten Modell geltenden Annahmen, der Modellstruktur, der Parameterschätzung, der Kalibrierungsstrategie und der Qualität der Antriebsdaten abhängig.

Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum, landesweit bewertet

Der sogenannte S-Wert ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Nährstoffhaltes und wird über die Nährstoffverfügbarkeit bewertet. Der S-Wert ist die Menge an Nährstoffen (Kationen, nicht z. B. Nitrat), die ein Boden austauschbar an Ton-, Humusteilchen, Oxiden und Hydroxiden binden bzw. sorbieren kann (Kationenaustauschkapazität). Der S-Wert ist somit gut geeignet, die Nährstoffverfügbarkeit zu beschreiben. Ähnlich wie bei der Feldkapazität im effektiven Wurzelraum (FKwe) bedingen hohe Gehalte an Ton, Humus, sowie ein großer effektiver Wurzelraum einen hohen S-Wert und umgekehrt. Auch der pH-Wert hat einen großen Einfluss auf den S-Wert. Der pH-Wert kann in Abhängigkeit von der Nutzung in einem weiten Bereich schwanken. Je höher der S-Wert, desto mehr Nährstoffe kann der Boden an Austauschern binden. Nährstoffeinträge über Luft oder Düngung werden so vor einem Austrag mit dem Sickerwasser geschützt. Gleichzeitig wird dadurch eine gleichmäßigere Nährstoffversorgung der Pflanzen sichergestellt. Mit dem S-Wert wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium ist die Nährstoffverfügbarkeit mit dem Kennwert S-Wert. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der S-Wert landesweit einheitlich klassifiziert. Unter dem Titel "Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum (SWE), regionalspezifisch bewertet" gibt es noch eine naturraumbezogene Klassifikation des S-Wertes, die den S-Wert regional differenzierter darstellt.

1 2 3 4 5413 414 415