Teilprojekt C05 hat zum Ziel, den wichtigen Eintragsweg für Kunststoffe, in Form von Mikroplastik, in die Umwelt aus technischen Anlagen (MP) mechanistisch aufzuklären. Gleichzeitig sollen neue Ansätze verfolgt werden, die zur Vermeidung bzw. Reduktion von MP aus Standardkunststoffen maßgeblich beitragen sollen. Zu diesem Zweck sollen Polyethylen, Polypropylen, Polystyrol, Nylon, Polyethylenterephthalat, Polyisopren und Polyvinylchlorid durch Beschleuniger (in situ) in ihren Oberflächeneigenschaften für die Biofilmbildung modifiziert und dadurch unter Prozessbedingungen biologisch angreifbar und abbaubar gemacht werden. So können auch Standardkunststoffe umweltverträglicher bezüglich der MP-Partikel Bildung werden. Damit geht TP C05 weit über die bislang üblichen eher deskriptiven Studien zu MP in technischen Anlagen und der Umwelt hinaus. Folgende zentrale Fragen sollen in TP C05 in Hinblick MP-Partikel in technischen Anlagen der Abfall- und Abwasserwirtschaft beantwortet werden: 1. Kommt es in den Anlagen zu spezifischen (biologischen) Abbau- und Degradationsvorgängen? 2. Wie hängen die zu beobachtenden Prozesse von MP-Charakteristika (Materialsorte, Zusammensetzung, Größe, Morphologie, Beschichtung) ab, ? 3. Lassen sich die Vorgänge ('Bioabbaubarkeit') durch gezielte Modifikation der Partikeloberfläche vor oder in den Anlagen beschleunigen? 4. Welche ökologischen Konsequenzen einer Ausbringung der (modifizierten) Partikel in die Umwelt und hier vor allem in den Boden lassen sich postulieren?
Fällt ein Regentropfen auf eine Wasseroberfläche oder platzt dort eine Gasblase, so wird in einem komplizierten strömungsmechanischen Prozess eine Vielzahl kleinster Tröpfchen produziert und in die Luft geschleudert. Diese Tröpfchen können ursprünglich im Wasser vorhandene Mikroplastikpartikel in die Luft übertragen. Da sowohl Regen als auch platzende Gasblasen in natürlichen und technischen Systemen wie Ozeanen, Pfützen oder Kläranlagen extrem häufige Ereignisse sind, liegt hier ein potenziell hochrelevanter Migrationspfad von Mikroplastik aus der Hydro- in die Atmosphäre vor. Dieser Prozess soll im vorliegenden Projekt durch eine Kombination aus Modell-Experimenten und Computersimulationen im Detail untersucht und verstanden werden.
Im Projekt A02 sollen die Auswirkungen der Ingestion von Mikroplastik (MP) -Partikeln an zwei terrestrischen Modellorganismen, dem im Boden lebenden und Substrat-fressenden Kompostwurm Eisenia fetida sowie der Boden-nistenden omnivoren Ameisenart Camponotus floridanus, untersucht werden. Ziel ist es eine systematische Untersuchung der Effekte von MP der am weitesten verbreiteten und damit umweltrelevanten Kunststoffsorten mit unterschiedlichen Morphologien, Größe und Konzentration der Partikel mit zwei terrestrischen Modellorganismen durchzuführen, um die Wirkmechanismen besser verstehen zu können. Sowohl für E. fetida als auch C. floridanus soll untersucht werden, inwieweit sich diese Modell-MP-Partikel mit ihren unterschiedlichen physikalisch-chemischen Eigenschaften auf die Fitness der Modellorganismen auswirken, und zwar sowohl auf phänotypischer Ebene (Mortalitätsrate, Anzahl Nachkommen) als auch auf Transkriptom-, und Proteomebene untersucht werden, um sublethale Stress- oder Immunreaktionen charakterisieren zu können. Zudem sollen mögliche Effekte von MP auf die Aktivität und Diversität des Darmmikrobioms und der Bereitstellung mikrobiell produzierter Gärungsprodukte und anderer Metabolite für den Wirt untersucht werden, denn solche Veränderungen könnten den Wirt indirekt beeinflussen. Wir erwarten, dass die Wirkmechanismen und biologischen Effekte von den chemisch-physikalischen Eigenschaften sowie der Morphologie der MP-Partikel abhängen.
Die Verwendung von Pikrinsäure (2,4,6-Trinitrophenol) als Sprengstoff hat zu bedeutenden Umweltbelastungen geführt. Die Toxizität der Pikrinsäure (PA) und dessen mutagenes Reduktionsprodukt 2-Amino-4,6-Dinitrophenol schafft ein wirtschaftliches Interesse, die großen Mengen an PA in Altlasten und Abwasserströmen mikrobiologisch zu entfernen. Die Basis für die geplanten Arbeiten sind Bakterien der Gattungen Nocardioides und Rhodococcus, die über Reduktion des aromatischen Ringes und Bildung eines Hydrid-Meisenheimer (H-Pikrat) Komplexes PA als alleinige Stickstoffquelle verwenden. Zwei Enzyme aus Nocardioides simplex übertragen H von NADPH auf PA unter Bildung des H-Pikrat Komplexes. Teile der für den PA-Abbau vermeintlichen genetischen Information aus Rhodococcus opacus HL PM-1 wurden mit der Differential-Display-Technik gefunden. Ziel ist es, die Gene und Genfunktionen des gesamten PA-Abbauweges zu identifizieren und zu charakterisieren, sowie die biochemischen Kenntnisse zu vertiefen. Dies ist entscheidend für die Entwicklung von Systemen zur Entfernung von PA und für die Erschließung von neuartigen Degradationssystemen für TNT.
Bisher ist nur unzureichend verstanden, ob Effekte durch MP-Partikel bereits während der Darmpassage oder erst nach Aufnahme ins Gewebe auftreten. Außerdem ist nicht geklärt, welche Charakteristika der MP-Partikel diese Effekte bedingen. In diesem Projekt sollen daher erstmals lokale histologische und molekulare Veränderungen im Gewebe direkt mit einzelnen MP-Partikeln korreliert werden. Dazu dient eine Kombination von bildgebenden Analyse-Verfahren (FTIR, Raman, Massenspektrometrie) und klassischer Histologie. Die Untersuchungen werden mit MP-Partikeln unterschiedlicher Zusammensetzung und Morphologie (sphärische Partikel, Fragmente, Fasern) an aquatischen und terrestrischen Modellorganismen durchgeführt. Durch Analyse desselben Gewebeschnitts mit komplementären Methoden können molekulare und histologische Veränderungen im Gewebe direkt auf einzelne (spezifizierte) MP-Partikel zurückgeführt werden und dadurch neue Erkenntnisse über die Wirkmechanismen erhalten werden.
Die Flusssysteme Amazonas und Rio Pará tragen das größte Volumen an Süßwasser in den Ozean ein und bilden eine wichtige Schnittstelle für den Eintrag von Spurenmetallen und gelösten organischen Stoffen (DOM) vom Land in den Ozean. Neben der Bedeutung des Amazonas für den globalen Spurenmetallhaushalt des Ozeans hat sein Mikronährstoff-Eintrag auch einen großen Einfluss auf die biologische Produktivität der Küsten- und Schelfregion und darüber hinaus. Das Hauptziel des vorgeschlagenen Projekts ist es, die Rolle der chemischen Speziation und der physiko-chemischen Größenfraktionierung von Spurenmetallen im Mischungskontinuum dieser Flüsse zum Atlantik zu verstehen. Wir werden die Wechselwirkungen von Spurenmetallen mit DOM und Kolloiden in der Wassersäule und den Oberflächensedimenten der Amazonas- und Pará-Mündung und der damit verbundenen Mischungsfahne sowie des Mangrovengürtels mit Grundwassereintrag südöstlich des Rio Pará untersuchen. Basierend auf Proben, die während der Forschungsfahrt M147 in der Hochwasserperiode 2018 genommen wurden, und vorläufigen Daten, die in unserem Labor erzeugt wurden, werden wir Veränderungen der Spurenmetallverteilungen und -speziationen in der Amazonas-Region entlang der Salzgradienten untersuchen. Um zu beurteilen, was die chemische und physikalische Speziation und den Transport von Spurenmetallen im Ästuar und in der Abflussfahne kontrolliert, werden wir uns auf drei verschiedene Prozesse konzentrieren: • Größenfraktionierung, Sorption und Entfernung von Spurenmetallen: Sorption von Spurenmetallen an Flusspartikeln und Ausfällung durch Koagulation von Kolloiden und Größenfraktionierung; wie verändert sich die Assoziation von Spurenmetallen mit verschiedenen löslichen, kolloidalen und partikulären Fraktionen entlang des Salzgehaltsgradienten?• Lösungskomplexierung: Bildung von löslichen metall-organischen Komplexen; wie verstärkt dieser Prozess den Metalltransport durch Konkurrenz mit Sorption an Kolloiden und Ausfällung? • Akkumulation von Spurenmetallen in Sedimenten: wie wirken die Sedimente als Senke und Quelle von Spurenmetallen, und können Oberflächensediment und Porenwasser zu den Spurenmetallflüssen in der Region beitragen? Zusätzlich zu den voltammetrischen und ICP-MS-Analysen der M147-Proben werden wir eine systematische Untersuchung des Mischungsverhaltens verschiedener Elementgruppen (konservativ, partikel-reaktiv und organisch-komplexiert) durchführen, indem wir Labor-Mischungsexperimente mit Meer- und Flusswasser-Endgliedern durchführen, die während der anstehenden Fahrt M174 im Amazonasgebiet genommen werden. Damit erwarten wir, ein ganzheitliches Bild der komplexen Prozesse der Spurenmetall-Biogeochemie und der Elementflüsse in diesem größten Mündungssystem der Welt zu erhalten. Dieses Wissen wird auch wichtig sein, um mögliche Auswirkungen in diesem Gebiet aufgrund der anhaltenden anthropogenen Einflüsse in dieser Region und der sich ändernden klimatischen Bedingungen vorherzusehen.
Spurenmetalle (TMs), definiert als weniger als 1 mg kg-1, sind entweder wichtige essentielle Nährstoffe (Fe, Mn, Co, Cu, Ni, Zn) für das mikrobielle Wachstum oder toxisch (Cu, Pb, Cd) bei erhöhten Konzentrationen im Meerwasser. Der Ozean ist derzeit von Sauerstoffmangel, Versauerung, Schichtung und Erwärmung betroffen, was zu Veränderungen in der chemischen Speziation von TMs führt, die von den physikalisch-chemischen Bedingungen (z. B. pH-Wert, Temperatur und Salzgehalt) abhängig sind. Während die Kenntnis der gelösten und partikulären Metalle Informationen über die Gesamtbestände liefert und die Identifizierung wichtiger Quellen von TM in der Meeresumwelt ermöglicht, ist die Kenntnis der chemischen Speziation für das Verständnis der Biogeochemie und der Bioverfügbarkeit oder Toxizität von TM von wesentlicher Bedeutung. So haben frühere Arbeiten gezeigt, dass anorganisches Fe in sauerstoffhaltigem Meerwasser schlecht löslich ist, die Konzentrationen von gelöstem Fe jedoch aufgrund der Komplexbildung durch organische Stoffe höher sind als erwartet. Das derzeitige Wissen über die Speziation von TMs wird jedoch für eine bestimmte Probe unter Laborbedingungen beobachtet (z. B. pH=8,0 auf der NBS-Skala), und daher fehlt eine mechanistische Verbindung zu den intrinsischen physikalisch-chemischen Eigenschaften des Meerwassers und deren Einfluss auf die Metallbindung an organisches Material. Hier entwickle ich neuartige Analyse- und Modellierungswerkzeuge und nutze die Wechselwirkungen zwischen Metallen, Resinen und organischen Stoffen, um die Speziation von TM mittels ICP-MS über einen weiten Bereich von pH-Werten genau zu bestimmen. Ich kombiniere diese Messungen mit einem Modell für Ionenpaarung und organische Stoffe (NICA-Donnan), um eine mechanistische Beschreibung der Wechselwirkungen zu entwickeln und dadurch unser Verständnis der Rolle von z. B. pH-Wert, Temperatur und Ionenstärke für den TM-Zyklus im Meer zu verbessern. Sobald diese Methodik erreicht ist, wird sie es uns ermöglichen, zum ersten Mal die TM-Speziation für mehrere Metalle gleichzeitig zu bestimmen, einschließlich der bisher häufig untersuchten Metalle und der TMs, bei denen neuere Hinweise aus der Isotopenhäufigkeit auf eine wichtige Rolle der Bindung an organisches Material hinweisen. Die abgeleiteten thermodynamischen Konstanten werden auch in regionale biogeochemische Modelle einfließen, um Vorhersagen über den biogeochemischen Kreislauf der TM auf mechanistischer Ebene unter zukünftigen Ozeanszenarien zu erhalten.
Obwohl die meisten Kunststoffe sehr biostabil sind, gibt es klare Belege dafür, dass Mikroben diese Materialien enzymatisch abbauen können. Durch die Kombination verschiedener biochemischer und experimenteller Techniken mit Computersimulationen wollen wir verstehen, welche Eigenschaften ein Enzym haben muss, um Kunststoffe effizient angreifen und abbauen zu können. In dieser Hinsicht wird das kürzlich entdeckte Enzym PETase, das PET abbauen kann, als Modellsystem dienen. Dieses Enzym ist besonders interessant, da es strukturell und funktionell eng mit der Enzymegruppe der Cutinasen verwandt ist, von denen einige Vertreter auch PET angreifen können, wenn auch weniger effizient. Andere Cutinasen sind dazu jedoch nicht in der Lage. Darüber hinaus wollen wir nach neuen Enzymen suchen, die Kunststoffe wie zum Beispiel Polystyrol abbauen.
In diesem Projekt soll die wichtige Thematik der Entfernung von NOM (Natural Organic Matter) aus Trinkwasser im Aufbereitungsprozess aus der grundlegenden Sicht der Kolloidwissenschaften untersucht werden. Dieses Thema ist eine zentrale Frage der menschlichen Gesundheit und bei Oberflächenwasser wird meist ein Polykation (cPE) zur Bindung und Präzipitation der negativ geladenen NOM Moleküle eingesetzt. Trotz der hohen Bedeutung dieser Fragestellung gibt es nur wenige fundamentale, kolloidchemische Arbeiten zu dieser Thematik. Dieser ist Ansatz dieses Projekts, in dem wir aufgereinigte Huminsäure (HA, Hauptbestandteil von NOM) als Modellsystem nehmen und seine Komplexierung mit unterschiedlich modifiziertem kationischen (quaternisierten) Chitosan (q-Chit) untersuchen wollen. Tests mit australischen Partnern haben bereits vielversprechende Resultate bei der NOM Abtrennung mit q-Chit gezeigt. Seine Hauptvorteile sind Biokompatibilität und Variabilität des molekularen Aufbaus aufgrund einfacher chemischer Modifikation. q-Chit wird hier maßgeschneidert synthetisiert, wobei Parameter wie Ladungsdichte, Mw und Hydrophobizität systematisch variiert werden. Das Phasenverhalten soll als Funktion des Mischungsverhältnisses untersucht werden, inklusive einer quantitativen Bestimmung der im Zweiphasengleichgewicht in Lösung verbleibenden Menge an HA. Dies wird ergänzt durch umfangreiche thermodynamische Untersuchungen (ITC) und der Bestimmung der mesoskopischen Struktur der gebildeten Komplexe mit Hilfe von Licht, Röntgen- und Neutronenstreuung. Wichtig ist auch die zeitliche Entwicklung der Systeme, die durch kinetische Strukturmessungen verfolgt wird. Diese umfassende thermodynamische, strukturelle und kinetische Charakterisierung soll systematische Korrelationen zwischen den cPEs und der Stärke ihrer Wechselwirkungen mit HA liefern. Hieraus soll abgeleitet werden welche molekularen Motive wichtig sind, um die Entfernung von HA aus Wasser zu optimieren. Diese Motive werden in einer optimierten Synthese entsprechend verwendet. q-Chit ist im Fokus, aber später soll auch quaternisiertes verzweigtes Polyethylenimin (PEI) eingesetzt werden, bei dem es sich um kompaktes globuläres Polykation mit hoher Ladungsdichte handelt. Sein Einfluss auf Phasenverhalten und Struktur in Mischungen mit HA soll untersucht werden, mit dem Fokus auf Mischungen in denen auch (lineares) q-Chit enthalten ist, da man einen ausgeprägten Synergismus bei der Wechselwirkung mit den sehr unterschiedlichen anionischen Molekülen der HA erwarten kann. Auf dieser Basis einer umfassenden physiko-chemischen Charakterisierung wollen wir ein solides grundlegendes Verständnis der in Mischungen aus cPE und HA vorliegenden Wechselwirkungen generieren. Dieses soll die Grundlage sein für systematische Verbesserungen bei der Entfernung von NOM aus Trinkwasser, einer der zentralen aktuellen technologischen Herausforderungen der Menschheit.
| Origin | Count |
|---|---|
| Bund | 160 |
| Type | Count |
|---|---|
| Förderprogramm | 160 |
| License | Count |
|---|---|
| offen | 160 |
| Language | Count |
|---|---|
| Deutsch | 153 |
| Englisch | 28 |
| Resource type | Count |
|---|---|
| Keine | 104 |
| Webseite | 56 |
| Topic | Count |
|---|---|
| Boden | 101 |
| Lebewesen und Lebensräume | 117 |
| Luft | 84 |
| Mensch und Umwelt | 160 |
| Wasser | 96 |
| Weitere | 160 |