API src

Found 946 results.

Related terms

GcBÜK400 - Cadmium im Oberboden

Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.

GcBÜK400 - Blei im Oberboden

Blei ist ein toxisches Schwermetall und infolge seiner vielfältigen industriellen Verwendung allgegenwärtig in der Umwelt verbreitet. Die Eintragsquellen sind nicht nur auf den Bereich von Erzvorkommen beschränkt (vor allem Bleisulfid sowie dessen Oxidationsminerale). Blei wird ebenfalls anthropogen über die Verhüttung von Blei-, Kupfer- und Zinkerzen, die weiträumige Abgasbelastung des Kraftfahrzeugverkehrs (bis zur Einführung von bleifreiem Benzin bis zu 60 % der atmosphärischen Belastung), Recyclinganlagen von Bleischrott, die Verwendung schwermetallhaltiger Klärschlämme und Komposte sowie durch Kohleverbrennungsanlagen in den Boden eingetragen . Für unbelastete Böden wird in Abhängigkeit vom Ausgangsgestein ein Pb-Gehalt von 2 bis 60 mg/kg angegeben. Die durchschnittliche Pb-Konzentration der oberen kontinentalen Erdkruste (Clarkewert) beträgt 17 mg/kg, der flächenbezogene mittlere Pb-Gehalt für die sächsischen Hauptgesteinstypen liegt bei 20 mg/kg. Die Gesteine Sachsens weisen keine bzw. nur eine geringe geochemische Spezialisierung hinsichtlich des Bleis auf. Im nördlichen bzw. nordöstlichen Teil Sachsens treten in den Oberböden über den Lockersedimenten des Känozoikums (periglaziäre Sande, Kiese, Lehme, Löss) und den Granodioriten der Lausitz relativ niedrige Pb-Gehalte auf. Bei den Lockersedimenten steigt der Pb-Gehalt mit zunehmendem Tongehalt leicht an. Die Verwitterungsböden über den Festgesteinen des Erzgebirges, Vogtlandes und z. T. der Elbezone haben meist deutlich höhere Bleigehalte, die durch eine relative Anreicherung in den Bodenausgangsgesteinen verursacht werden. Das am höchsten mit Blei belastete Gebiet in Sachsen ist der Freiberger Raum. Durch die ökonomisch bedeutenden polymetallischen Vererzungen (Pb-Zn-Ag), die auch flächenhaft relativ weit verbreitet sind, kam es zu einer besonders starken Pb-Anreicherung in den Nebengesteinen und folglich auch bei der Bildung der Böden über den Gneisen. Zusätzlich entstanden enorme anthropoge Belastungen durch die Jahrhunderte währende Verhüttung der Primärerze und in jüngerer Zeit beim Recycling von Bleibatterien. Besonders hohe Pb-Gehalte treten dabei in unmittelbarer Nähe der Hüttenstandorte einschließlich der Hauptwindrichtungen, im Zentralteil der Quarz-Sulfid-Mineralisationen und in den Flussauen auf. Weitere Gebiete mit großflächig erhöhten Pb-Gehalten liegen vor allem im Osterzgebirge, in einem Bereich, der sich von Freiberg in südöstliche Richtung bis an die Landesgrenze im Raum Altenberg erstreckt und in den Erzrevieren des Mittel- und Westerzgebirges, so um Seiffen, Marienberg - Pobershau, Annaberg, Schneeberg, Schwarzenberg und Pöhla. Der Anteil von Pb-Mineralen in den Erzen dieser Regionen ist jedoch deutlich geringer. Durch häufige Vergesellschaftung von Pb und As in den Mineralisationen ist das Verbreitungsgebiet der erhöhten Pb-Gehalte im Osterzgebirge und untergeordnet im Westerzgebirge sowie in den Auen der Freiberger und Vereinigten Mulde der des Arsens ähnlich. Die Auenböden der Freiberger Mulde führen ab dem Freiberger Lagerstättenrevier extrem hohe Bleigehalte, die sich bis in die Auenböden der Vereinigten Mulde in Nordwestsachen fortsetzen. Die Auen der Elbe und der Zwickauer Mulde weisen durch geogene bzw. anthropogene Quellen (Lagerstätten, Industrie) im Einzugsgebiet ebenfalls Bereiche mit höheren Bleigehalten auf. Die Bleigehalte der Böden im Raum Freiberg und in den Auenböden der Freiberger und Vereinigten Mulde überschreiten z. T. flächenhaft die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV)

Planung von Dachbegruenungen

Zur Verminderung der Hitzeeinwirkung auf Daecher, zur Stabilisierung des staedtischen Klimas durch Wasserverdampfung sowie durch Verhinderung zu hoher Abwassermengen, in welchen sich Schadstoffe aus der Luft befinden und zu dessen biologischem Abbau sind Baustoffe nach neuen Gesichtspunkten entwickelt worden, insbesondere Wand- und Kaminanschluesse. Eine grosse Anzahl von Pflanzen wurden in Dachversuchsstaenden seit 5 Jahren angesetzt und gemessen, ob und welcher biologische Abbau der verschiedenen Schadstoffe aus der Luft erfolgt. Die Untersuchungsmethoden wurden nach bekannten DIN- und Astm-Spezifikationen durchgefuehrt, die Pflanzenuntersuchungen nach chemischen Gesichtspunkten.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Vorkommen und Auswirkungen von Mikroplastik auf Bodenpilze und Prozesse entlang von Landnutzungsgradienten

Plastik wurde in einer Vielzahl von Umweltkompartimenten nachgewiesen, überwiegend als Mikroplastik, d.h. Kunststoffteile kleiner als 5 mm. Erste Untersuchungen wurden in marinen und aquatischen Systemen durchgeführt; Böden sind hingegen erst kürzlich in Bezug auf Mikroplastik in den Fokus gerückt, wobei Daten zeigen, dass es sich um eine verbreitete Kontamination der Böden handelt, mit potenziellen Folgen für bodenphysikalische, -chemische und -biologische Parameter. Angesichts der Vielzahl von Eintragspfaden, zu denen Plastikmüll, Kompost, Ablagerung aus der Luft und Straßen gehören, ist davon auszugehen, dass Mikroplastik in Böden der Biodiversitäts-Exploratorien vorhanden ist. Unsere Forschung hat zwei Ziele: Erstens wollen wir wissen, ob Mikroplastik (Vorhandensein und/oder Typ) die Intensität der Landnutzung widerspiegeln kann. Dafür werden wir Böden aus allen 150 EPs im Grünland beproben und mit Extraktions- und Identifikationsmethoden (Fourier-Transform-Infrarot-Spektroskopie-Mikroskopie) auf Mikroplastikgehalt, -art und -zusammensetzung untersuchen. Wir können diese Daten dann mit Komponenten der Landnutzungsintensität (LUI) sowie mit Bodeneigenschaften verknüpfen. Zweitens wollen wir die Auswirkungen einer experimentellen Mikroplastik-Zugabe im Feld entlang des Landnutzungsgradienten testen. Wir werden dies mit dem Einsatz und der Wiederentnahme (nach einem Jahr) von kleinen Mesh-Beuteln mit Mikroplastik-kontaminiertem Boden angehen, die in allen VPs im Grünland vergraben werden (mit dem Boden der jeweiligen VPs). Wir verwende hierfür Polyesterfasern, von denen wir bereits wissen, dass sie klare und konsistente Auswirkungen auf bodenphysikalische Eigenschaften und Bodenprozesse haben. Unsere Messvariablen umfassen pilzbezogene Bodenprozesse (Zersetzung, Bodenaggregation) und Pilz-Lebensgemeinschaften, die mittels Illumina MiSeq Hochdurchsatzsequenzierung erfasst werden. Mit unserem Feldversuch wollen wir testen, wie sich Mikroplastik-Effekte zwischen Bodenart und Umweltkontext sowie der Intensität der Landnutzung unterscheiden. Alle experimentellen Objekte werden anschließend aus dem Feld entfernt, um sicherzustellen, dass es keine dauerhafte Kontamination der Exploratorien-Böden gibt. Da wir in diesem Bereich nur einen Mikroplastik-Typ verwenden werden und die Mikroplastik-Verschmutzung aber ein vielschichtiges Thema ist, werden wir auch ein komplementäres Laborexperiment durchführen, bei dem wir nur einen Bodentyp pro Exploratorium verwenden, aber zusätzlich zu den Mikrofasern eine Reihe von verschiedenen Mikroplastik-Typen testen. Insgesamt wird dieses Projekt Einblicke in die Verbreitung und Wirkung von Mikroplastik in Böden liefern, indem sie die einzigartige Fülle der für die Exploratorien verfügbaren Informationen nutzt und gleichzeitig eine neue Variable bietet, die für andere Forscher (z.B. in Syntheseprojekten), aber auch für Stakeholder von Interesse sein kann.

Lebensmittelverschwendung vermeiden

<p>Umweltbewusst im Alltag: Lebensmittelverschwendung vermeiden</p><p>Was Sie gegen Lebensmittelverschwendung tun können</p><p><ul><li>Prüfen Sie Ihre Vorräte vor dem Einkauf: Kaufen Sie mit Einkaufszettel ein, nicht nach Gefühl und vermeiden Sie großzügige Vorratshaltung.</li><li>Lassen Sie sich bei Obst und Gemüse nicht von kosmetischen Makeln leiten und wählen sie bewusst Ware ohne Klassenangaben oder der Klasse II.</li><li>Kaufen Sie, wenn möglich, Gemüse wie Kohlrabi, Möhren und Radieschen ohne Blattgrün.</li><li>Prüfen Sie nach Ablauf des Mindesthaltbarkeitsdatums, ob die Lebensmittel noch genießbar sind (Ausnahme: verderbliche tierische Produkte).</li><li>Stellen Sie Reste kühl oder frieren Sie diese ein.</li><li>Entsorgen Sie Essensreste über die Biotonne.</li></ul></p><p>Gewusst wie</p><p>Im Schnitt wirft jeder Bundesbürger pro Jahr rund 78 Kilogramm Lebensmittel weg. Hinzu kommen Lebensmittel, die bereits in der Landwirtschaft oder vom Handel entsorgt werden, da sie beispielsweise optischen Vorgaben nicht entsprechen. Die Lebensmittel wurden sozusagen für die Mülltonne hergestellt, verursachten aber trotzdem Umweltbelastungen wie andere Lebensmittel auch (z.B. Klimagase, Energieverbrauch, Gewässer- und Bodenbelastungen).</p><p><strong>Überblick bewahren:</strong>Verschaffen Sie sich vor dem Einkaufen und dem Kochen einen Überblick darüber, welche Lebensmittel noch vorrätig sind. Lagern Sie Ihre Lebensmittel übersichtlich, damit diese nicht in Vergessenheit geraten und verderben. Räumen Sie neue Ware nach hinten, ältere nach vorne. Beschriften Sie Eingemachtes und Eingefrorenes mit dem Datum, an dem es hergestellt beziehungsweise eingefroren wurde. Die meisten Lebensmittel lassen sich sechs bis zwölf Monate ohne Bedenken einfrieren.</p><p><strong>Planvoll einkaufen:</strong>Supermärkte sind Könner der Verführung. Wer sich hier zu stark von seinen spontanen Gelüsten leiten lässt, kauft schnell zu viel ein. Stellen Sie sich deshalb zum Beispiel einen wöchentlichen Speiseplan zusammen. Notieren Sie sich die benötigten Lebensmittel für den Speiseplan und gleichen Sie diesen mit Ihren Vorräten ab. Der Einkaufszettel hilft Ihnen dabei, nur das einzukaufen, was Sie auch essen können.</p><p><strong>Ausschuss im Supermarkt vermeiden:</strong>Ob Gemüse und Obst gesund und lecker sind, ist unabhängig von kleinen kosmetischen Makeln, einer großen Größe oder schönen grünen Blättern. Die hohen optischen Anforderungen des Handels können allerdings häufig nur mit zusätzlichem Einsatz an Dünger und Pflanzenschutzmitteln und mit einem hohen Entsorgungsanteil an verzehrfähigen und gesunden Produkten gewährleistet werden. Lassen Sie sich beim Kauf von Obst und Gemüse also nicht von kosmetischen Makeln leiten und bevorzugen Sie Kohlrabi, Möhren und Co ohne Blattgrün. Mit einem bewussten Einkauf machen sie im Supermarkt und Discounter auch deutlich, dass das makellose Aussehen der Produkte nicht das entscheidende Kriterium für ihren Einkauf ist. Dies ist ein wichtiger Schritt, um die Handelsketten zu bewegen ihr Angebot umweltfreundlicher und ressourcenschonender zu gestalten.</p><p><strong>Vorräte beschränken:</strong>Jeder schöpft gerne aus dem Vollen. Doch die zu gut gemeinte Vorratshaltung ist ein wesentlicher Grund für anfallende Lebensmittelabfälle. Nutzen Sie deshalb die gut gefüllten Vorratslager der Lebensmittelmärkte und halten Sie die persönlichen Vorräte bei verderblichen Lebensmitteln klein. Greifen Sie eher zu kleinen Packungen. Mit "Sonderpreis" beworbene Großpackungen sind letztlich teurer, wenn man am Ende die Hälfte wegschmeißen muss.</p><p><strong>Mindesthaltbarkeits- und Verbrauchsdatum:</strong>Mit Ablauf des Mindesthaltbarkeitsdatums ist ein Lebensmittel nicht automatisch schlecht. Vielmehr sollte jetzt die Qualität des Lebensmittels vor Verzehr genauer geprüft werden. Vertrauen Sie auf Ihren eigenen Geruchs- und Geschmackssinn und entscheiden Sie selbst. Bei leicht verderblichen tierischen Produkten dagegen, wie zum Beispiel Fleisch und Fisch, gilt es, das Verbrauchsdatum zu beachten. Ist dieses überschritten, müssen die Produkte weggeworfen werden, sonst besteht die Gefahr einer Lebensmittelvergiftung.</p><p><strong>Richtig entsorgen:</strong>Ungenießbare Essensreste kommen - unabhängig von ihrem Verarbeitungszustand - ohne Verpackung in die<a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/garten-freizeit/bioabfaelle">Biotonne</a>. Aus hygienischen Gründen und wegen der vor Ort verfügbaren Kompostierungs- oder Vergärungstechnik sind Essensreste nicht überall für die Entsorgung in der Biotonne zugelassen. Was vor Ort gilt, kann in den Abfallsatzungen der Städte und Landkreise oder in den Getrenntsammelvorschriften der örtlichen Abfallwirtschaftsbetriebe nachgelesen werden.<br>Auf den heimischenKompostsollten tierische und gekochte Essensreste nicht geworfen werden, da diese Wildtiere wie Ratten anlocken.&nbsp;Essensreste dürfen auf keinen Fall über Toiletten oder Abwasser entsorgt werden. Grobe Abfälle können die Abwasserrohre verstopfen und sind ein gefundenes Fressen für Ratten. Außerdem machen Essensreste die Abwasserreinigung aufwendiger und damit teurer. Die meisten Kommunen haben daher in ihren Abwassersatzungen das Entsorgen fester Stoffe wie Lebensmittelabfälle, auch in zerkleinerter Form, explizit verboten.<p><strong>Was Sie noch tun können:</strong></p><p>Hintergrund</p><p><strong>Im Handel</strong></p><p><strong>Umweltsituation:</strong>Kohlrabi, Radieschen und Bundmöhren werden fast immer mit Blättern angeboten, weil diese als Frischemerkmal für Kund*innen dienen. Verzehrt werden sie selten. Allerdings müssen diese Blätter häufig mit Pflanzenschutzmitteln behandelt und zusätzlich gedüngt werden, damit sie makellos, grün und hochstehend sind. Produkte deren Blätter dann trotzdem beschädigt oder gelb und welk sind, werden vom Handel nicht abgenommen und müssen entsorgt werden, was beispielsweise direkt durch Unterpflügen auf dem Feld geschieht. Zusätzlich verdunsten die großen Blätter an den Knollen und Wurzeln Wasser und lassen so das Gemüse schneller welk werden.</p><p>Einheitliche Größenvorgaben des Handels, z.B. bei Kohlrabi oder Blumenkohl, führen dazu, dass Gemüse, das besonders groß oder klein ist, nicht in den Handel gelangt. Unterschiedliche Größen im Gemüseregal sind aber nicht nur vorteilhaft für die Umwelt, sondern auch wünschenswert für die Konsument*innen, denn ein bedarfsgerechter Einkauf ist nur möglich, wenn 1- und Mehrpersonenhaushalte die passenden Mengen einkaufen können.</p><p>Die Produkte, die den Anforderungen nicht entsprechen, werden den Betrieben nicht abgekauft und müssen entsorgt oder einer Zweitverwertung, zum Beispiel als Futter oder Saft, zugeführt werden. Die Produktionsressourcen, die für die Erfüllung der hohen Anforderungen eingesetzt wurden, sind dann verschwendet worden und belasten unnötigerweise Umwelt und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠. Das Ausmaß und die genauen Folgen solcher umwelt- und klimabelastenden Anforderungen sind bisher wenig erforscht (Ebert et al. 2020). Fachleute schätzen aber, dass in Deutschland jährlich zwischen 10 und 30 Prozent des erzeugten Gemüses auf den Feldern verbleibt, wobei hohe Anforderungen des Handels ein wesentlicher Grund dafür sind (Haenel et al. 2020). Zu ähnlichen Ergebnissen kommt auch eine Studie aus Nordrhein-Westfalen, die zeigt, dass durchschnittliche Lebensmittelverluste von 20 Prozent und mehr für Obst, Gemüse und Kartoffeln von der Ernte bis zur Lieferung an den Einzelhandel normal sind (LANUV 2018). Bei Kartoffeln werden aufgrund optischer Anforderungen und Größenvorgaben rund 30 bis 35 Prozent der ökologisch angebauten und rund 16 Prozent der konventionell angebauten Kartoffeln aussortiert (Brendel 2017). Andere Wissenschaftlerinnen und Wissenschaftler kommen zu dem Schluss, dass hohe kosmetische Anforderungen an frisches Obst und Gemüse dazu führen, dass europaweit zwischen 4 und 37 Prozent der Ernte nicht in den Handel gelangt (Porter at al. 2018).</p><p><strong>Gesetzliche Aspekte:</strong>Das Lebensmittelrecht (LFGB) und die EU-Vermarktungsnormen (EU-VO 543/2011 und EU-VO 1308/2013) stellen sicher, dass das in Deutschland verkaufte Obst und Gemüse gesund und von hoher Qualität ist. Darüber hinaus stellt der Handel zusätzliche unternehmensspezifische Anforderungen an Größe, Gewicht und das Aussehen.<strong><br></p><p>Weitere Informationen finden Sie unter:</p><p></p><p><strong>Im Haushalt</strong></p><p><strong>Umweltsituation:</strong>Fast 11 Millionen Tonnen Lebensmittel werden in Deutschland jährlich als Abfall entsorgt, davon entfallen etwa 6,5 Millionen Tonnen auf die Privathaushalte. Im Schnitt wirft jeder Bundesbürger 78 Kilogramm Lebensmittel pro Jahr weg. Dies ergab eine<a href="https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/Abfallwirtschaft/Tabellen/lebensmittelabfaelle.html">Datenerhebung des Statistischen Bundesamtes für das Jahr 2020</a>(siehe auch<a href="https://www.bmuv.de/pressemitteilung/in-deutschland-entstehen-jaehrlich-11-millionen-tonnen-lebensmittelabfaelle">Pressemitteilung des BMUV</a>). Hierdurch geht zum einen der Nährwert der Lebensmittel verloren, zum anderen werden wertvolle Ressourcen (z.B. Wasser, Energie) verschwendet. Werden Lebensmittelabfälle nicht ordnungsgemäß entsorgt, gehen zudem die enthaltenen Mineralstoffe verloren. Vor etwa 20 Jahren wurde in Deutschland begonnen, biogene Abfälle getrennt zu sammeln. Diese werden kompostiert oder in Biogasanlagen vergoren und anschließend kompostiert. Aus Bioabfällen entstehen nicht nur wertvolle Komposte, sondern sie tragen auch zur regenerativen Energieproduktion durch Biogas bei.</p><p><strong>Gesetzliche Aspekte:</strong>Gemäß Kreislaufwirtschaftsgesetz (KrWG) ist Abfallvermeidung prioritäres Ziel. Die Regelungen zur Verwertung von Bioabfällen finden sich in der Bioabfallverordnung und im Kreislaufwirtschaftsgesetz. Mit dem 1.1.2015 wurde eine flächendeckende getrennte Erfassung von Bioabfällen in Deutschland eingeführt. Die Bestimmungen zum Mindesthaltbarkeits- und Verbrauchsdatum finden sich in der Lebensmittel-Kennzeichnungsverordnung (LMKV).</p><p><strong>Marktbeobachtung:</strong>In den letzten Jahren ist ein genereller Trend zur verstärkten Abfalltrennung und damit zu einer Abnahme des Restmüllaufkommens zu beobachten. Dies ist nicht zuletzt auf die zunehmende Verbreitung der Biotonne zurückzuführen. Leider nutzen noch nicht alle Haushalte eine Biotonne.</p><p>Weitere Informationen finden Sie unter:</p>

GcBÜK400 - Blei im Oberboden

Blei ist ein toxisches Schwermetall und infolge seiner vielfältigen industriellen Verwendung allgegenwärtig in der Umwelt verbreitet. Die Eintragsquellen sind nicht nur auf den Bereich von Erzvorkommen beschränkt (vor allem Bleisulfid sowie dessen Oxidationsminerale). Blei wird ebenfalls anthropogen über die Verhüttung von Blei-, Kupfer- und Zinkerzen, die weiträumige Abgasbelastung des Kraftfahrzeugverkehrs (bis zur Einführung von bleifreiem Benzin bis zu 60 % der atmosphärischen Belastung), Recyclinganlagen von Bleischrott, die Verwendung schwermetallhaltiger Klärschlämme und Komposte sowie durch Kohleverbrennungsanlagen in den Boden eingetragen . Für unbelastete Böden wird in Abhängigkeit vom Ausgangsgestein ein Pb-Gehalt von 2 bis 60 mg/kg angegeben. Die durchschnittliche Pb-Konzentration der oberen kontinentalen Erdkruste (Clarkewert) beträgt 17 mg/kg, der flächenbezogene mittlere Pb-Gehalt für die sächsischen Hauptgesteinstypen liegt bei 20 mg/kg. Die Gesteine Sachsens weisen keine bzw. nur eine geringe geochemische Spezialisierung hinsichtlich des Bleis auf. Im nördlichen bzw. nordöstlichen Teil Sachsens treten in den Oberböden über den Lockersedimenten des Känozoikums (periglaziäre Sande, Kiese, Lehme, Löss) und den Granodioriten der Lausitz relativ niedrige Pb-Gehalte auf. Bei den Lockersedimenten steigt der Pb-Gehalt mit zunehmendem Tongehalt leicht an. Die Verwitterungsböden über den Festgesteinen des Erzgebirges, Vogtlandes und z. T. der Elbezone haben meist deutlich höhere Bleigehalte, die durch eine relative Anreicherung in den Bodenausgangsgesteinen verursacht werden. Das am höchsten mit Blei belastete Gebiet in Sachsen ist der Freiberger Raum. Durch die ökonomisch bedeutenden polymetallischen Vererzungen (Pb-Zn-Ag), die auch flächenhaft relativ weit verbreitet sind, kam es zu einer besonders starken Pb-Anreicherung in den Nebengesteinen und folglich auch bei der Bildung der Böden über den Gneisen. Zusätzlich entstanden enorme anthropoge Belastungen durch die Jahrhunderte währende Verhüttung der Primärerze und in jüngerer Zeit beim Recycling von Bleibatterien. Besonders hohe Pb-Gehalte treten dabei in unmittelbarer Nähe der Hüttenstandorte einschließlich der Hauptwindrichtungen, im Zentralteil der Quarz-Sulfid-Mineralisationen und in den Flussauen auf. Weitere Gebiete mit großflächig erhöhten Pb-Gehalten liegen vor allem im Osterzgebirge, in einem Bereich, der sich von Freiberg in südöstliche Richtung bis an die Landesgrenze im Raum Altenberg erstreckt und in den Erzrevieren des Mittel- und Westerzgebirges, so um Seiffen, Marienberg - Pobershau, Annaberg, Schneeberg, Schwarzenberg und Pöhla. Der Anteil von Pb-Mineralen in den Erzen dieser Regionen ist jedoch deutlich geringer. Durch häufige Vergesellschaftung von Pb und As in den Mineralisationen ist das Verbreitungsgebiet der erhöhten Pb-Gehalte im Osterzgebirge und untergeordnet im Westerzgebirge sowie in den Auen der Freiberger und Vereinigten Mulde der des Arsens ähnlich. Die Auenböden der Freiberger Mulde führen ab dem Freiberger Lagerstättenrevier extrem hohe Bleigehalte, die sich bis in die Auenböden der Vereinigten Mulde in Nordwestsachen fortsetzen. Die Auen der Elbe und der Zwickauer Mulde weisen durch geogene bzw. anthropogene Quellen (Lagerstätten, Industrie) im Einzugsgebiet ebenfalls Bereiche mit höheren Bleigehalten auf. Die Bleigehalte der Böden im Raum Freiberg und in den Auenböden der Freiberger und Vereinigten Mulde überschreiten z. T. flächenhaft die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV)

GcBÜK400 - Cadmium im Oberboden

Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.

GcBÜK400 - Blei im Oberboden

Blei ist ein toxisches Schwermetall und infolge seiner vielfältigen industriellen Verwendung allgegenwärtig in der Umwelt verbreitet. Die Eintragsquellen sind nicht nur auf den Bereich von Erzvorkommen beschränkt (vor allem Bleisulfid sowie dessen Oxidationsminerale). Blei wird ebenfalls anthropogen über die Verhüttung von Blei-, Kupfer- und Zinkerzen, die weiträumige Abgasbelastung des Kraftfahrzeugverkehrs (bis zur Einführung von bleifreiem Benzin bis zu 60 % der atmosphärischen Belastung), Recyclinganlagen von Bleischrott, die Verwendung schwermetallhaltiger Klärschlämme und Komposte sowie durch Kohleverbrennungsanlagen in den Boden eingetragen . Für unbelastete Böden wird in Abhängigkeit vom Ausgangsgestein ein Pb-Gehalt von 2 bis 60 mg/kg angegeben. Die durchschnittliche Pb-Konzentration der oberen kontinentalen Erdkruste (Clarkewert) beträgt 17 mg/kg, der flächenbezogene mittlere Pb-Gehalt für die sächsischen Hauptgesteinstypen liegt bei 20 mg/kg. Die Gesteine Sachsens weisen keine bzw. nur eine geringe geochemische Spezialisierung hinsichtlich des Bleis auf. Im nördlichen bzw. nordöstlichen Teil Sachsens treten in den Oberböden über den Lockersedimenten des Känozoikums (periglaziäre Sande, Kiese, Lehme, Löss) und den Granodioriten der Lausitz relativ niedrige Pb-Gehalte auf. Bei den Lockersedimenten steigt der Pb-Gehalt mit zunehmendem Tongehalt leicht an. Die Verwitterungsböden über den Festgesteinen des Erzgebirges, Vogtlandes und z. T. der Elbezone haben meist deutlich höhere Bleigehalte, die durch eine relative Anreicherung in den Bodenausgangsgesteinen verursacht werden. Das am höchsten mit Blei belastete Gebiet in Sachsen ist der Freiberger Raum. Durch die ökonomisch bedeutenden polymetallischen Vererzungen (Pb-Zn-Ag), die auch flächenhaft relativ weit verbreitet sind, kam es zu einer besonders starken Pb-Anreicherung in den Nebengesteinen und folglich auch bei der Bildung der Böden über den Gneisen. Zusätzlich entstanden enorme anthropoge Belastungen durch die Jahrhunderte währende Verhüttung der Primärerze und in jüngerer Zeit beim Recycling von Bleibatterien. Besonders hohe Pb-Gehalte treten dabei in unmittelbarer Nähe der Hüttenstandorte einschließlich der Hauptwindrichtungen, im Zentralteil der Quarz-Sulfid-Mineralisationen und in den Flussauen auf. Weitere Gebiete mit großflächig erhöhten Pb-Gehalten liegen vor allem im Osterzgebirge, in einem Bereich, der sich von Freiberg in südöstliche Richtung bis an die Landesgrenze im Raum Altenberg erstreckt und in den Erzrevieren des Mittel- und Westerzgebirges, so um Seiffen, Marienberg - Pobershau, Annaberg, Schneeberg, Schwarzenberg und Pöhla. Der Anteil von Pb-Mineralen in den Erzen dieser Regionen ist jedoch deutlich geringer. Durch häufige Vergesellschaftung von Pb und As in den Mineralisationen ist das Verbreitungsgebiet der erhöhten Pb-Gehalte im Osterzgebirge und untergeordnet im Westerzgebirge sowie in den Auen der Freiberger und Vereinigten Mulde der des Arsens ähnlich. Die Auenböden der Freiberger Mulde führen ab dem Freiberger Lagerstättenrevier extrem hohe Bleigehalte, die sich bis in die Auenböden der Vereinigten Mulde in Nordwestsachen fortsetzen. Die Auen der Elbe und der Zwickauer Mulde weisen durch geogene bzw. anthropogene Quellen (Lagerstätten, Industrie) im Einzugsgebiet ebenfalls Bereiche mit höheren Bleigehalten auf. Die Bleigehalte der Böden im Raum Freiberg und in den Auenböden der Freiberger und Vereinigten Mulde überschreiten z. T. flächenhaft die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV)

GcBÜK400 - Cadmium im Oberboden

Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.

Die Filterwirkung verschiedener Sande und Kiese bei der Duengung mit Abwasserklaerschlamm und Muellkompost

In Muelldeponien treten Sickerwaesser auf, die das Grundwasser stark verunreinigen koennen. In Lysimetern soll festgestellt werden, wie gross die Filterwirkung von Kies, Sand, Boden und Muellkompost bezueglich der Sickerwaesser ist. Muellkompost fuehrte zu einer erhoehten Verunreinigung des Sickerwassers.

1 2 3 4 593 94 95