API src

Found 67 results.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm, Teilprojekt: Ursachen und Folgen von Klimaschwankung und hydrologischem Wandel in den nördlichen Neotropen während des letzten Glazial-/Interglazialzykluses

Die lakustrinen Ablagerungen an den beiden ICDP Sites Chalco (Zentralmexiko) und Petén Itzá (nördliches Guatemala) eröffnen die Gelegenheit Ursachen und Folgen eines sich veränderten kontinentalen Klimas in den nördlichen Neotropen während des letzten Glazial-/Interglazialzyklus zu rekonstruieren. Trotz ihrer vergleichsweise nahen geographischen Lage, zeigen beide Archive deutliche Unterschiede hinsichtlich ihrer klimatischen Entwicklung, insbesondere während des Zeitintervalls zwischen 85 und 50 tausend Jahren, der letzten Vereisungsphase und der Kältephase des Heinrich Stadials (HS) 1. Um die zeitliche und räumliche Entwicklung des Klimas und dessen Effekt auf aquatische und terrestrische Ökosysteme in den nördlichen Neotropen, einer Region von zentraler Bedeutung für globale Klimadynamiken zu rekonstruieren, planen wir beide ICDP Sites mit einem Multiproxyansatz zusammen mit Paläoklimamodellierung in hoher Auflösung zu untersuchen.Unser Ansatz umfasst Untersuchungen beider sedimentärer Archive mit Hilfe von bulk-geochemischen Methoden, Biomarkern und organischen Temperaturproxies mit Paläobioindikatoren und Paläoklimasimulationen über den Zeitraum des letzten Glazial-/Interglazialzyklus (ca. 135 Tausend Jahre) um den (1) Effekt von Klimaveränderungen auf aquatische und terrestrische Ökosysteme (z.B. während der HS 1 bis 6) zu bestimmen und (2) den Einfluss von sich veränderten Ozeanströmungsmustern, wie der Atlantic Meridional Overturning Circulation und der Pacific Ocean Circulation, insbesondere während ausgezeichneter Kalt- und Warmphasen, auf das regionale Klima und das Ökosystem der nördlichen Neotropen festzulegen. Um die proxybasierten Klimarekonstruktionen der Chalco und Petén Itzá Ablagerungen in einen transregionalen Kontext zu stellen, werden wir unsere Ergebnisse mit denen von anderen kontinentalen und marinen Klimaarchiven aus den Neotropen vergleichen. Potentielle 'climate forcing mechanisms' werden mit Hilfe von hoch-aufgelösten Paläoklimasimulationen unter der Verwendung des 'Community Earth System Model (CESM 1)' für Zeitintervalle, die durch kontrastierenden Klimabedingungen zwischen beiden Lokationen ausgezeichnet sind, bestimmt. Ziel der Untersuchungen ist die detaillierte Rekonstruktion der räumlichen und zeitlichen Entwicklung der Klimageschichte der nördlichen Neotropen in Abhängigkeit von sich verändernden Ozeanzirkulationsmustern über die letzten 135 tausend Jahre zu verstehen und zu untersuchen wie und in welcher Geschwindigkeit sich aquatische und terrestrische Ökosysteme an beiden ICDP Lokationen an sich ändernde Umweltbedingungen angepasst haben. Dies ist von entscheidender Bedeutung um vorherzusagen, wie sich die sensiblen Ökosysteme der Neotropen unter einem sich zu erwartendem trockeneren und wärmeren Klima entwickeln werden.

Oberflächengewässer Berlins

Berlin ist eine Wasserstadt im Sinne des Wortes. Nimmt man alle Flächen, die das Wasser innerhalb der Stadt bildet, zusammen, dann sind es immerhin 6,6 % der Berliner Gesamtfläche mit beachtlichen 58,9 km². Über 600 Brücken überspannen die Gewässer. Die Wasserlandschaft Berlins und seiner unmittelbaren Umgebung ist gekennzeichnet durch mehrere große und viele kleine Fließgewässer, meist natürlichen Ursprungs, jedoch auch künstlicher Natur sowie zahlreiche Seen, Teiche, Pfuhle und Weiher. Unter den größeren Seen gibt es wiederum etliche, die als Flussseen von Spree, Dahme und Havel durchzogen werden. Innerhalb der Stadtgrenzen durchfließen Spree, Dahme und Havel eine Strecke von 89 km, die Kanäle bringen es auf eine Gesamtlänge von 67 km. Die kleineren Nebenwasserläufe wie Panke, Fredersdorfer Fließ, Tegeler Fließ und Nordgraben, ohne die Aufzählung vollständig zu gestalten, weisen eine Länge von ca. 75 km auf. Daneben gibt es weitere kleine und kleinste Gräben, die hauptsächlich noch aus der Zeit des Rieselfeldbetriebes stammen, mit einem Hauptanteil von rund 330 km. Der größte See Berlins ist der Große Müggelsee mit rd. 7,6 km² Wasseroberfläche, der tiefste der Flughafensee mit rd. 34 m. Die notwendige Regulierung der Wasserstände und Abflüsse erfolgt über mehrere Schleusen und Wehre. Trotz des Gewässerreichtums in und um Berlin ist die Region insgesamt als wasserarm einzustufen. Das Wasservolumen, das über Spree und Dahme sowie Oder-Spree-Kanal von Südosten der Stadt zufließt bzw. über die Oberhavel von Norden, liegt im Mittel der Jahresreihe 2001/2005 bei 34,7 m³/s. Im Verhältnis zum Rhein oder zur Elbe ist das sehr bescheiden, dort liegen die Vergleichswerte für den mittleren Abfluss bei 2.430 m³/s (Pegel Rees) bzw. 699 m³/s (Pegel Neu Darchau). Die Ursachen für diesen Unterschied sind neben der Einzugsgebietsgröße von Spree und Havel die Lage im Nord-Ostdeutschen Tiefland, welches bereits deutlich vom trockenen Kontinentalklima mit seinen spürbar geringeren Niederschlägen und wärmeren Sommern beeinflusst wird sowie die starke anthropogene Nutzung im Oberlauf der Spree. Wasserportal Berlin Das Portal informiert über hydrologische Messwerte, Wassertemperatur und kontinuierlich gemessene Wasserqualitätsparameter der Berliner Flüsse und Seen. Weitere Informationen Bauliche Anlagen Bauliche Anlagen sind grundsätzlich alle Bauwerke, die sich im, über, unter und am Gewässer befinden. In jedem Fall muss geprüft werden, ob sie einer Genehmigung bedürfen. Weitere Informationen Biologische Gewässergüte Anhand der mittleren Chlorophyll-a-Gehalte wurde eine Einstufung der Berliner Hauptfließgewässer in Güteklassen vorgenommen Weitere Informationen EU-Badegewässer Hier wird die EU-Badegewässerliste veröffentlicht. Weitere Informationen Chemisch-physikalische Gewässergüte Hier wird die Wasserbeschaffenheit der Berliner Fließgewässer anhand ausgewählter chemisch-physikalischer Parameter dargestellt und die Entwicklung dokumentiert. Weitere Informationen Gefahrenabwehr Sind wassergefährdende Stoffe in ein oberirdisches Gewässer, ins Grundwasser oder eine Entwässerungsleitung gelangt, muss unverzüglich reagiert werden, um Verunreinigungen des Wassers zu verhindern. Weitere Informationen Gewässerstrukturgütekarte Die Karte dokumentiert den Ist-Zustand der Gewässerstruktur und stellt somit eine Grundlage für die Gewässerentwicklungs- und Pflegeplanung. Weitere Informationen Monitoring Oberflächenwassergüte Seit über 50 Jahren werden die Oberflächengewässer umfangreich und regelmäßig untersucht. Alle Messdaten fließen automatisiert in das Wasserwirtschaftliche Informationssystem Berlin. Weitere Informationen Planfeststellungsverfahren Alle Planfeststellungsverfahren, die den Aus- und Umbau von Gewässern betreffen, werden hier veröffentlicht. Weitere Informationen Der Rummelsburger See Die historische industrielle Nutzung hat zu einer starken Belastung des Sees geführt. Das aktuelle Ausmaß der Sedimentbelastung wurde inzwischen umfangreich untersucht. Weitere Informationen Sondernutzungen Oberirdische Gewässer dürfen von jedem für den Gemeingebrauch genutzt werden. Darüber hinaus ist eine Sondernutzungserlaubnis nötig. Weitere Informationen Wasserstände und Abflüsse Die Kenntnis von Wasserständen und Durchflüssen in den oberirdischen Gewässern ist eine Grundlage für wasserwirtschaftliche und wasserbauliche Planungen und Maßnahmen. Weitere Informationen Kontakte und Zuständigkeiten Die Zuständigleiten sind nach der Einstufung der Gewässer aufgeteilt. Hier finden Sie die entsprechenden Auskunftsstellen. Weitere Informationen Gewässer­übersicht

LSG Gröster Berge Gebietsbeschreibung Landschafts- und Nutzungsgeschichte Geologische Entstehung, Boden, Hydrographie, Klima Pflanzen- und Tierwelt Entwicklungsziele Exkursionsvorschläge

Als „Gröster Berge“ wird eine Hügelkette südlich und östlich der Leihaniederung bezeichnet. Der Kuhberg bei Gröst ist die markanteste Erhebung dieser Reihe. Er erhebt sich mit einer maximalen Höhe von 176,5 m über NN zirka 40-45 m über die Niederung. Das LSG wird westlich und südlich von der Kreisgrenze zum Burgenlandkreis begrenzt. Im Osten erstreckt es sich bis zum Ortsrand Braunsbedra und im Norden bis nach Krumpa. Die Ost-West-Ausdehnung beträgt zirka 7 km, die Nord-Süd-Ausdehnung etwa 5 km. Nach der naturräumlichen Gliederung liegt das LSG im südlichen Teil der Landschaftseinheit Querfurter Platte. Der welligen, nach Nordosten geringfügig abfallenden Muschelkalktafel der Querfurter Platte sind südlich und östlich des Leiha-Tales mit Kuhberg, Galgenberg, Hutberg und Bedraer Berg kettenartig angeordnete Muschelkalkkuppen aufgesetzt. Für das LSG besonders prägend und geomorphologisch reich gegliedert sind die bis zu 60 m abfallenden Muschelkalkhänge östlich der Linie Schleberoda-Branderoda. Im Kontrast dazu stehen die weiträumigen, kaum gegliederten Offenlandschaften der Lößackerebene. Das Landschaftsschutzgebiet wird von welligen bis hügeligen Verhältnissen beherrscht. Zahlreiche kerb- und kerbsohlenförmige Trockentäler gliedern die ansonsten ebene Muschelkalkhochfläche. Dabei überwiegen mittel bis stark geneigte Hänge. In den Tälern und Tälchen werden die anfallenden Niederschlags- und Schmelzwasser aufgenommen und zum Teil über Flutgräben der Leiha zugeführt, zum Beispiel bei Gröst. Das markanteste dieser Täler ist das sich über 3 km in Ost-West-Richtung erstreckende Grüntal. Neben den natürlich entstandenen Reliefformen hat die jahrhundertelange Einwirkung des Menschen vor allem in den kleinmorphologischen Verhältnissen deutliche Spuren hinterlassen. Zu diesen kulturhistorisch bedeutsamen, das Landschaftsbild bereichernden und oft mit botanisch-zoologischen Sonderstandorten verbundenen Kleinreliefformen zählen die Hangterrassen, Hangstufen und Weinterrassen am nördlichen Kuhberg und die kulturhistorisch äußerst wertvollen Trockenmauern an den Taubenbergen, von denen Reste mit stellenweise typischer Terrassierung der Weinhänge, Ackerrandstufen sowie wegbegleitende Stufen und hohlwegähnliche Strukturen erhalten geblieben sind. Die Weinhänge des Taubenberges sind intensiv bewirtschaftet. Die drei kleineren Restwaldflächen um Branderoda stellen Vorposten von Neuer und Alter Göhle dar. Der Galgenberg ist ein Denkmal mittelalterlicher und frühzeitlicher Rechtsgeschichte, dessen oberirdische Teile im 19. Jahrhundert beseitigt wurden. Hierbei wurden vorgeschichtliche Gräber angetroffen und zerstört. Mit der Seßhaftwerdung des Menschen in Mitteleuropa während der Jungsteinzeit wurden die fruchtbaren Lößlandschaften bevorzugt besiedelt. Die mächtigen, tief humosen und mäßig frischen Lößstandorte mit Ackerzahlen um 80 sind die fruchtbarsten und ertragreichsten Böden im Gebiet. Die Weidewirtschaft mit Schafen spielte eine eher untergeordnete Rolle und war vorranging an steilen Hanglagen angesiedelt, was zur Herausbildung der landschaftstypischen Trocken- und Halbtrockenrasen führte. An Hängen wurden Terrassen angelegt, die zum Teil mit Trockenmauern befestigt wurden. Wesentlicher Bestandteil der Kulturlandschaft war der Obstanbau auf Streuobstwiesen und entlang von Straßen und Feldwegen. Die kulturhistorisch äußerst wertvollen Trockenmauern an den Taubenbergen sind meist schon in mittelalterlicher Zeit, vor allem bei der Anlage von Streuobstwiesen, aber auch durch gärtnerische Nutzung entstanden. Sie bilden stellenweise eine typische Terrassierung für Weinhänge. Regionalgeologisch ist das Gebiet der Freyburger Muschelkalkmulde zuzuordnen. Im Osten, etwa entlang der Linie Braunsbedra-Roßbach, beginnt die Verbreitung des Oberen Buntsandsteins (Roßbacher Schwelle). Nördlich Braunsbedra und in einem in südlicher Richtung um Roßbach geschwungenen Bogen verläuft die Grenze der Tertiärverbreitung mit den Braunkohleflözen des Geiseltals und des Roßbacher Beckens. An den unterschiedlich einfallenden Hängen der einzelnen Rücken und Kuppen sind die Gesteine des Unteren Muschelkalkes durch eine nach außen an Mächtigkeit zunehmende Löß- und Geschiebemergeldecke verhüllt. Im Bereich der Gröster Berge sind vornehmlich die teils plattigen, teils knauerig-faserigen Wellenkalke des Unteren Muschelkalkes verbreitet, die mit den typischen Bankzonen des Unteren Muschelkalkes wechsellagern. Es sind dies die Oolith- und die Terebratelzone, die in mehreren Bänken sedimentiert sind und in zahlreichen kleineren Steinbrüchen abgebaut wurden. Das LSG gehört zum Barnstedter Lößplateau. Weit verbreitet sind Braunerde-Tschernoseme aus Löß, schwarze, tiefhumose, verbraunte Lößböden, die nach Norden, in Richtung Mücheln und Braunsbedra in Tschernoseme aus Löß übergehen. Im Raum Schleberoda-Ebersroda finden sich verbreitet Parabraunerden aus Löß, mäßig tondurchschlämmte Lößböden. Ihre Entstehung verdanken sie einmal dem leicht erhöhten Feuchtigkeitsangebot, weil sie topographisch etwas höher liegen als die Tschernoseme und zum anderen der Tatsache, daß sie einmal unter Wald waren. Auf Bergkuppen wie dem Galgenberg, Kuhberg, Hutberg und an den Hängen finden sich in großer Verbreitung Rendzinen - gerigmächtige, karbonatführende, schutthaltige Böden aus Löß oder Lehm. Im Leihatal kommt Gley-Tschernosem aus Kolluviallöß vor. Die Waldstandorte sind meist die erwähnten Rendzinen, zum Teil auch Fahlerden, fahle, in den oberen Horizonten tonverarmte Böden aus Löß oder Lehm. Das Gebiet ist nahezu frei von Oberflächengewässern. Es finden sich jedoch einige temporäre Fließgewässer, die nur bei Starkregenereignissen oberflächlich das Niederschlagswasser abführen. Das Quellgebiet der Leiha liegt zwischen den Ortschaften Leiha und Roßbach außerhalb des LSG. Die Gröster Berge liegen am Rande des mitteldeutschen Trockengebietes. Bedingt durch die Lage im Lee des Harzes beträgt die mittlere jährliche Niederschagssumme nur knapp über 500 mm, bei Roßbach 508 mm, bei Mücheln 509 mm. Die mittlere Jahrestemperatur von 8,5-9°C ist relativ hoch. Das Klima ist kontinental geprägt. Die in dem LSG erhalten gebliebenen Waldreste wie Hakenholz und Muhle, sind auf Muschelkalk stockende Traubeneichen-Hainbuchenwälder, die durch eine jahrhundertelange bäuerliche Niederwaldnutzung geprägt sind. Dadurch ist insbesondere die Haselnuß mit zahlreichen sehr alten Sträuchern vertreten. Mesophile bis schwach thermophile Gebüsche sind vor allem auf Hangkanten und Terrassenstufen anzutreffen. Nach Nutzungsaufgabe von Halbtrockenrasen bilden sie charakteristische Verbuschungsstadien innerhalb der Sukzessionsserien. In den Lücken noch nicht geschlossener Bestände halten sich zahlreiche Elemente der Halbtrockenrasen. Bei höherem Nährstoffeintrag aus benachbarten Ackerflächen treten nitrophile Stauden hinzu. Charakteristische Standorte stellen weiterhin mehrere alte Kleinsteinbrüche dar. Nicht selten sind außerdem verwilderte Obstgebüsche beziehungsweise völlig verbuschte alte Obstbaumreihen vorhanden, die sich insbesondere bei der Pflaume durch Wurzelausschläge vermehren. Große Bedeutung, insbesondere für das Landschaftsbild, besitzen die höhlenreichen Obstbaumreihen entlang der Straßen und Feldwege. Erfreulicherweise ist eine größere Zahl Obstbaumreihen und -alleen noch gut erhalten und weitgehend lückenlos. In Ermangelung von Waldflächen brüten in diesen Altobstreihen sogar Greifvögel, zum Beispiel Mäusebussard und Turmfalke. Die Grünlandbestände gehören zum Typ der Glatthaferwiesen (die frischen zum Dauco-Arrhenatheretum, die trockenen zum Salvio-Arrhenatheretum). Früher zweischürig gemäht, sind sie heute bis auf kleinere Flächen in Ortsrandlagen weitgehend ungenutzt. Die einsetzende Sukzession führt zu Staudenfluren. Die meisten Glatthaferwiesenbestände des LSG sind bereits mehr oder weniger stark ruderalisiert. Auf dem Kuhberg kommen großflächig Salbei-Glatthaferwiesen vor. Diese sehr blütenreichen Wiesen spielen für nahrungssuchende Tagschmetterlinge, Solitärbienen und Bockkäfer eine große Rolle. Im Komplex mit den Trespenrasen haben sie große Bedeutung für eine artenreiche thermophile Insektenfauna. Die Blaugrashalden und Halbtrockenrasen des Grüntales und des Kuhberges stellen sowohl floristisch als auch faunistisch die artenreichsten Biotope des LSG dar. Großflächig sind sie als Trespen-Rasen, zum Beispiel auf dem Kuhberg, entwickelt. Bemerkenswerte Arten sind unter anderem Fransen-Enzian, Gemeines Bartgras, Silber-Distel, Deutscher Enzian, Siebenbürgener Perlgras, Badener Rispengras, Steppen-Sesel, Pfriemengras und Großer Ehrenpreis. Die Trockenrasen weisen eine spezifische artenreiche thermophile Laufkäfer-, Heuschrecken-, Solitärbienen- und Spinnenfauna auf. Auf flachgründigen, scherbigen, beackerten Böden im Übergangsbereich zu den Trockenrasen des Kuhberges ist kleinflächig die Haftdolden-Gesellschaft entwickelt, die sich durch das Vorkommen einer Reihe gefährdeter Kalkackerwildkräuter auszeichnet wie Haft-Dolde, Sommer-Adonisröschen, Erdnuß-Platterbse, Gelber Günsel und Kleinfrüchtiges Kletten-Labkraut. Die im Gebiet dominierenden großen Ackerschläge dienen Greifvögeln und der Schleiereule als wichtiges Nahrungsgebiet. Erfreulicherweise kommt auch die Wachtel an mehreren Stellen im Gebiet vor. Im LSG hat sich eine kleine Restpopulation des Feldhamsters erhalten. Die Bestände dieses Charaktertieres der Schwarzerdeackerflächen sind in den letzten 25 Jahren faktisch zusammengebrochen. So wurden 1969 im Kreis Weißenfels noch 114 000 Hamsterfelle von den damals zum Teil professionell arbeitenden Hamsterfängern abgeliefert, 1974 waren es nur noch 17 000 und 1980 ganze 2 000 Felle. In Branderoda befindet sich schließlich das nördlichste bekannte Reproduktionsvorkommen der Kleinen Hufeisennase in Mitteleuropa. Es handelt sich um eine der zwei bekannten Wochenstuben in Sachsen-Anhalt. (1) weitergehende Beschreibungen Die Kalkmagerrasen des Grüntales und des Kuhberges zählen sowohl floristisch als auchfaunistisch zu den wertvollsten Lebensraumtypen des LSG. Zu den hier lebenden Heuschreckenarten zählen beispielsweise Blauflüglige Ödlandschrecke, Gemeine Sichelschrecke und Heidegrashüpfer. Häufig ist auch die Zauneidechse. Im Grüntal konnten mit Feld-Klettenkerbel, Acker-Röte und Acker-Schwarzkümmel weitere sehr selten gewordene und gefährdete Segetalarten festgestellt werden. Als Gebäudeart nutzt das Große Mausohr die halboffenen Lebensräume und den Wald westlich Branderoda als Jagdgebiet. Im Branderodaer Wald südwestlich der Ortslage leben mit Mopsfledermaus, Fransenfledermaus und Großer Bartfledermaus typische Waldfledermäuse. Der hohe Altholzanteil fördert auch das Vorkommen von Rotmilan, Schwarz- und Grünspecht sowie Hohltaube. In den Gebüschen und Heckenstreifen bei Branderoda und im Grüntal brüten beispielsweise die Sperbergrasmücke und der Neuntöter. In Streuobstbeständen sind Wendehals, Gartenrotschwanz und Feldsperling regelmäßige Brutvögel. Auch die Grauammer ist an mehreren Stellen im LSG wieder anzutreffen. Das LSG dient der Erhaltung und Entwicklung bedeutender Restwälder, der für den Landschaftsraum typischen Obstbaumalleen, Streuobstbestände, Trockenbiotope und Feldholzinseln als Lebensstätten der heimischen Pflanzen- und Tierwelt und als charakteristischer Bestandteil des Landschaftsbildes. Naturnahe Restwälder sind über historische Nutzungsformen als Mittel- und Niederwälder zu erhalten. Forste aus standortfremden Gehölzen, insbesondere Nadelbäumen, sind in eine naturnahe Bestockung umzuwandeln. Dabei ist nicht einseitig nur die Esche zu präferieren. Eine Erstaufforstung von Halbtrockenrasen und flachgründigen Ackerflächen ist zu vermeiden. Jüngere und mittelalte Aufforstungen von Xerothermstandorten sind mittelfristig wieder zu entfernen. Die Trockenrasen und Halbtrockenrasen sind zumindest im Grüntal und im Bereich Kuhberg optimal durch Schafhutung zu pflegen. Auf den Schwarzerde-Äckern sind durch zweckmäßige Schlaggestaltung, möglichst lang andauernde Vegetationsbedeckung und Windschutzgehölze die Wasser- und Winderosion zu vermindern. (1) weitergehende Beschreibungen Die Mittelwald- und Niederwaldwirtschaft solltean den entsprechenden Standorten exemplarisch wieder eingeführt werden. Die großflächigen Restbestände der Traubeneichen-Hainbuchenwälder sind zu erweitern. Der Alt- und Totholzanteil ist weiter zu erhöhen. Jüngere sowie mittelalte Aufforstungen aufwertvollen Xerothermstandorten, wie am Kuhberg, sollten schnellstmöglich wieder entfernt werden. In der Ackerlandschaft sind Wegraine und Heckenstrukturen zu fördern und zu pflegen sowie abgängige Obstbaumreihen durch gezielte Nachpflanzung zu erhalten. Die Trocken- und Halbtrockenrasen am Kuhberg, Distelberg, Hakenholz und im Grüntal sind durch extensive Schafbeweidung zu pflegen. Daneben ist die Entbuschung größerer Magerrasen als Erstpflegemaßnahme dringend erforderlich. Die bei Gröst befindlichen Weinberge sollten strukturell aufgewertet werden. Die Umstellung auf ökologischen Weinbau ist wünschenswert. Eine von Gröst ausgehende Wanderung auf die Kuppe des Kuhberges erschließt bis auf die Weinterrassen und die Niederwälder alle typischen Biotoptypen und Landschaftselemente des LSG. Von der Hügelkuppe aus ergeben sich reizvolle Rundblicke in Richtung Taubenberge und Branderoda sowie bis zur Neuen und Alten Göhle. Als Exkursionsziele eignen sich weiterhin in Branderoda die im Kern spätromanische Dorfkirche und das ehemalige Gutshaus sowie die Dorfkirchen in Gröst, Almsdorf, Roßbach, Leiha und Schortau. (1) weitergehende Beschreibungen Lohnend ist auch eine Wanderung durch das Grüntal, welches von Krumpa aus erreicht werden kann. veröffentlicht in: Die Landschaftsschutzgebiete Sachsen-Anhalts © 2000, Landesamt für Umweltschutz Sachsen-Anhalt, ISSN 3-00-006057-X (1) Die Natur- und Landschaftsschutzgebiete Sachsen-Anhalts - Ergänzungsband © 2003, Landesamt für Umweltschutz Sachsen-Anhalt, ISBN 3-00-012241-9 Letzte Aktualisierung: 18.11.2025

Ermittlung der großräumigen Sensitivität von Grundwasserressourcen gegenüber dem Klimawandel

Die Klimakrise verändert zunehmend die räumliche und zeitliche Verfügbarkeit von Grundwasser, der wichtigsten globalen Süßwasserressource. Das quantitative Verständnis der Interaktion von Grundwasser und Klima, vor allem auf nationaler und kontinentaler Skala, ist wichtig für ein optimal angepasstes Grundwassermanagement. Bisher ist das Wissen über die großskalige Sensitivität der Grundwasserressourcen auf den Klimawandel jedoch sehr limitiert. Das Ziel des hier vorgestellten Projektes ist die Erforschung der Auswirkungen des Klimawandels und der damit einhergehenden Umweltveränderungen auf den quantitativen Zustand von Grundwasserressourcen auf national-kontinentaler Skala. Etablierte prozessbasierte Modelle (PBMs) zur hydro(geo)logischen Modellierung auf großer Skala (meist „Global Hydrological Models“ - GHMs) sind starke Vereinfachungen der Realität und unterliegen daher deutlichen Limitationen und Unsicherheiten. Im Gegensatz zu anderen PBMs, weisen GHMs daher begrenzte physikalische Konsistenz und Interpretierbarkeit auf und ihre Anwendung kann zu irreführenden Schlussfolgerungen über die Verfügbarkeit von Grundwasser vor dem Hintergrund des Klimawandels führen. Vor allem die Übertragbarkeit auf datenarme Regionen ist nur eingeschränkt möglich. In den letzten Jahren haben sich Deep Learning (DL) Modelle als präziser und leicht übertragbarer alternativer Ansatz in der Modellierung von Wasserressourcen etabliert. Für die Modellierung von Oberflächengewässern wurde zudem gezeigt, dass DL auch spezialisierte PBMs übertreffen kann. Das vorgeschlagene Projekt möchte sich die gewonnenen Erkenntnisse zunutze machen und ein DL-Modell zur Untersuchung der Sensitivität von Grundwasser auf den Klimawandel auf kontinentaler Skala aufbauen. Hierfür wird ein „big data“ Ansatz gewählt, der Daten von >2200 Einzugsgebieten in Nordamerika nutzt (Erweiterung denkbar). Ein solches Modell kann lernen, Wissen über verschiedene Regionen zu transferieren, gewinnt somit stark an Generalisierungsfähigkeit (z.B. auf datenarme Regionen) und schlussendlich an Vertrauenswürdigkeit. Weiterhin soll das Problem von fehlenden, interpretierbaren und physikalisch konsistenten Modellen im nationalen Maßstab angegangen werden, indem physikalisches Wissen und Prozesse in die DL-Modelle eingebaut werden. Durch diese Ansätze soll ein plausibles, interpretierbares und vor allem vertrauenswürdiges Modell entstehen, welches sich zur Untersuchung von Klimawandelszenarien eignet. Die genannten Aspekte sind hierbei besonders kritisch, da für Zeiträume in der Zukunft keine Validierung möglich ist. Das entwickelte Modell dient anschließend der Beantwortung der übergeordneten Fragestellung, und die Auswirkungen des Klimawandels auf die Grundwasserressourcen werden anhand der Daten von Klimamodellen auf Basis von RCP bzw. SSP Szenarien untersucht. Weiterhin werden spezialisierte Untersuchungen (Szenarien) zum Einfluss einzelner Einflussfaktoren (z.B. Landnutzung) durchgeführt.

Raum-zeitliche Variabilität des Klimaeinflusses auf das Wachstumsmuster an der unteren und oberen Waldgrenze in der Gebirgswaldsteppe der Mongolei

In der Mongolei herrscht ein extrem kontinentales Klima, das durch eine große zeitliche und räumliche Variabilität gekennzeichnet ist. Diese Variabilität ergibt sich daraus, dass die Mongolei im Rand bzw. Überschneidungsbereich verschiedener Zirkulationssysteme liegt. Mit dem spärlichen meteorologischen Stationsnetz und Messreihen von maximal 40-60 Jahren kann die raum-zeitliche Klimavariabilität kaum erfasst werden. Ausgehend von dendrochronologischen Untersuchungen im Nordwesten der Mongolei sollen im Verbreitungsgebiet der Lärchenwälder in der Gebirgswaldsteppe der Mongolei mit einem weitgespannten Netzwerk von Probenstandorten an der oberen und unteren Waldgrenze in sechs Teilgebieten die regionalen Disparitäten des Klimaeinflusses erfasst und charakterisiert werden. Dafür sollen Chronologien der Jahrringbreite, maximalen Spätholzdichte, Isotopenverhältnisse und der Häufigkeit von Extremwerten berücksichtigt werden. Lange Chronologien der Jahrringbreite, der maximalen Spätholzdichte und der Isotopenverhältnisse dienen der Ermittlung der zeitlichen Variabilität der allgemeinen Wachstumsbedingungen und der Rekonstruktion der Sommertemperaturen und Niederschlagsverhältnisse. Diese Chronologien sollen auch für den überregionalen Vergleich mit angrenzenden Gebieten zur Verfügung stehen. Die räumlichen Disparitäten des Baumwachstums als Ausdruck der lokalen und regionalen Klimaeinflüsse sollen vor allem anhand von Altersklassen-Chronologien sowie mit Hilfe von Einzeljahranalysen charakterisiert werden. Mit diesem synoptischen Untersuchungsansatz wird es erstmals möglich, die raum-zeitliche Klimavariabilität im Bereich der Gebirgswaldsteppe der Mongolei zu beschreiben. Damit werden gleichzeitig bessere Voraussetzungen für die Interpretation der Chronologien von Einzelstandorten geschaffen.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm, Teilprojekt: Umweltauswirkungen von Klima und Vulkanismus während des Marinen Isotopenstadiums 5 in den Tiefländern Zentralamerikas

Der Petén-Itzá-See, gelegen in den nördlichen Neotropen Zentralamerikas, ist ein einzigartiger Ort, um den Klima- und Umweltwandel in der Vergangenheit und Gegenwart zu verstehen. Aufgrund seiner Anfälligkeit für bedeutende Klimatreiber wie die Innertropische Konvergenzzone (ITCZ) und die Atlantische Meridionale Umwälzzirkulation (AMOC) bietet der See eine ideale Umgebung zur Untersuchung der Auswirkungen klimatischer und vulkanischer Ereignisse auf die Landschaft und die Reaktion der Ökosysteme. Seine Nähe zu großen vulkanischen Zentren in West-Zentralamerika macht ihn zu einem besonderen Standort, um die Wechselwirkung von Klima und Vulkanismus im Laufe der Zeit zu erforschen und die kombinierten Auswirkungen auf terrestrische und aquatische Ökosysteme zu bewerten. Im Jahr 2006 wurden vom International Continental Scientific Drilling Program (ICDP) Sedimentkerne aus dem Petén-Itzá-See gewonnen, die eine der längsten und ältesten kontinentalen Sedimentabfolgen in den nördlichen Neotropen darstellen und etwa 400.000 Jahre umfassen. Durch jüngste Fortschritte in der Chronologie dieses Archivs ist es nun möglich, Klimasignale zu untersuchen, die älter als 80.000 Jahre sind, einschließlich des MIS5-Interglazials (Marines Isotopenstadium 5; 130-70 ka BP). Diese Periode, die als Analogon zur heutigen globalen Erwärmung betrachtet wird, ist besonders wertvoll, um die Reaktionen von Ökosystemen in einer biodiversen und dicht besiedelten Region wie den Tiefländern Zentralamerikas zu verstehen und mögliche Anwendungen für zukünftige Klimaszenarien abzuleiten. Dieses Projekt zielt darauf ab, die Auswirkungen des früheren Klimas auf terrestrische und aquatische Ökosysteme in den Tiefländern Zentralamerikas während MIS5 zu analysieren. Wir werden innovative Biomarker, darunter n-Alkane und GDGTs, anwenden, um Veränderungen in der Produktivität des Sees, der Vegetationsdecke, den Wasserspiegeln, der Sauerstoffversorgung am Grund und der atmosphärischen Temperatur zu rekonstruieren. Durch die Analyse dieser Proxys möchten wir klimatische Unterschiede und mögliche Umweltunterschiede in den Neotropen identifizieren. Das Projekt wird auch die Reaktion der Ökosysteme auf zwei bedeutende quartäre Eruptionen untersuchen, die in den Sedimenten des Petén-Itzá-Sees dokumentiert sind: L-Tephra (124 ka BP) und Los Chocoyos (75 ka BP), die in verschiedenen Klimakontexten auftraten. Wir werden dabei speziell untersuchen, ob diesen Ereignissen ein vulkanischer Winter folgte, und die Erholungszeiten von See und Landschaft analysieren. Diese Forschung wird wertvolle Erkenntnisse für die Paläoklimatologie und Vulkanologie sowie für die Untersuchung des quartären Klimas in den globalen Tropen liefern und gleichzeitig relevante Daten für die Planung der Resilienz von Ökosystemen in den Tiefländern Zentralamerikas bereitstellen.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Untersuchungen zur Reaktion von Meeresspiegel und Hydrographie in der Arktis auf Veränderungen des hydrologischen Regimes über borealen Einzugsgebieten

Der Süßwassereintrag in den Arktischen Ozean stellt einen wichtigen Antriebsmechanismus für regionale Meeresspiegeldynamik in der Arktis dar. Salzarmes Oberflächenwasser erzeugt und unterhält eine starke Schichtung im Arktischen Ozean. Diese Halokline schirmt größtenteils das kalte polare Oberflächenwasser und das Meereis von wärmerem Tiefenwasser atlantischen Ursprungs ab und verhindert so vertikale Wärmeflüsse. Veränderungen des Süßwassergehalts werden wahrscheinlich den regionalen Meeresspiegel direkt beeinflussen, aber ebenso wird eine modifizierte Ozeandynamik durch Massentransporte innerhalb der Arktis den Meeresspiegel verändern. Das hydrologische Regime des kontinentalen Abflusses unterliegt Schwankungen. Leider sind kontinuierliche Aufzeichnungen von kontinentalem Abfluss in den Arktischen Ozean zu selten, um wichtige wissenschaftliche Fragen über das Langzeitverhalten und die Entwicklung von arktischem Meeresspiegel und Klima zu bearbeiten. Neben in-situ Beobachtungen und hydrologischen Modellen eröffnen Satellitengravimetrie (GRACE) und Satellitenaltimetrie neue Möglichkeiten, die Hydrologie von großen Einzugsgebieten zu beobachten. Dies geschieht, im dem man mit diesen Fernerkundungsmethoden die Größe von Wasserspeichern in den Einzugsgebieten und Pegelstände entlang von Flüssen misst, die dann auf verschieden Arten in Abfluss umgerechnet werden können. Für Meereis-Ozeanmodelle bedeutet die Seltenheit von Abflussinformationen in der Arktis, dass der Jahresgang des Abflusses als stationär angenommen wird. In unserem Projekt werden wir diese Annahme aufheben und ein Meereis-Ozeanmodell benutzen, um den Einfluss von zeitlich variablem Abfluss auf die arktische Ozeanzirkulation und das Süßwasserbudget zu untersuchen. Das Hauptziel der Projektes ist es, die Reaktion von Meeresspiegel und Hydrographie in der Arktis auf Veränderungen des hydrologischen Regimes über borealen Einzugsgebieten abzuschätzen und zu quantifizieren. Die Projektziele tragen zur Strategie des Schwerpunktprogramms 1889 bei, indem 1)die Datensätze und Zeitreihen von hydrologischen Parametern über borealen Einzugsgebieten durch den Einsatz von geodätischen satellitengestützten Fernerkundungsmethoden (zeitliche auflösenden Gravimetrie, Satellitenaltimetrie) verbessert werden und lange und hochauflösende Zeitserien für alle großen Einzugsgebiete, die in den Arktische Ozean entleeren, erstellt werden. 2) Sensitivität von Meereis- und Ozeandynamik auf Veränderungen des Süßwasserantriebs (u.a. Abfluss) analysiert wird. 3) Modellergebnisse über Veränderungen des kontinentalen Abflusses verglichen werden mit seit 1990 beobachteter Variabilität von flüssigen Süßwassergehalt (und damit verbundenen sterischen Meeresspiegeländerungen) im Arktischen Ozean und im Nordatlantik. Nicht nur dienen diese Vergleiche der Modellbewertung, sondern sie unterstützen auch die Interpretation relativ seltener ozeangraphischer in-situ Beobachtungen.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Vergleich von Veränderungen regionaler Auswirkungen orbital gesteuerter Klimavariationen im äquatorialen Pazifik und Atlantik während des Miozän

Im Miozän, der erdgeschichtlichen Zeit von 5.33 bis 23.03 Millionen Jahren, entwickelte sich die moderne thermohaline Zirkulation in den Ozeanen. Damit einher gingen fundamentale Veränderungen in der globalen Ozeangeochemie und des kontinentalen Klimas. Wiederholte, drastische Verringerungen des Karbonatgehaltes in pelagischen Sedimenten waren die Folge, die im Bereich des äquatorialen Pazifik und westlichen äquatorialen Atlantik beschrieben wurden. Die Konzentration an Kohlendioxid in der Atmosphäre war der heutige ähnlich. Zeitweise, während des miozänen Klimaoptimum (13.9 bis 17 Ma), war diese so hoch wie es für das Jahr 2100 prognostiziert wird, vorausgesetzt die jetzigen Treibhausgasemissionen werden nicht weiter reduziert.Trotz vieler Studien zu diesem Thema ist der genaue zeitliche Ablauf der Ereignisse im Miozän zwischen äquatorialem Pazifik und Atlantik und ihre kausalen Zusammenhänge wenig verstanden. Hauptgrund für dieses Dilemma liegt darin, dass bis heute keine synchronisierten und sehr akkuraten astronomischen Altersmodelle für den äquatorialen Pazifik und Atlantik vorliegen. In diesem Projekt wollen wir dies ändern, indem wir eine hochauflösende stabile Isotopenreferenzkurve an benthischen Foraminiferenschalen mit einem hochgenauen astronomischen Altersmodell kombinieren. Für den Zeitraum von 5 bis 23 Ma soll dies an Material aus dem äquatorialen Atlantik durchgeführt werden, erbohrt auf der Ocean Drilling Program (ODP) Ausfahrt Leg 154 Ceara Rise. Danach soll eine komplementäre benthische stabile Isotopenkurve für den äquatorialen Pazifik (IODP Exp. 320/321), nachdem Datenlücken geschlossen worden sind, kompiliert und mit der Ceara Rise Kurve synchronisiert werden. Die synchronisierten Isotopenkurven in Kombination mit Röntgen-Fluoreszenz Kernscanner Daten, die für den Ceara Rise in diesem Projekt auch erstellt werden, bieten bisher unerreichte Einblicke und Details über Veränderungen in der Karbonat-Akkumulation während des gesamten Miozän im Bereich des äquatorialen Pazifik und Atlantik. Im Besonderen können die in diesem Projekt erhobenen Daten sehr dazu beitragen folgende Fragen zu lösen: Setzen drastische Veränderungen in der Karbonat-Akkumulation im äquatorialen Pazifik und Atlantik synchron ein oder gibt es zeitliche Verzögerungen zwischen äquatorialem Atlantik und Pazifik? Werden beide Regionen im Miozän gleichermaßen von orbitalen Zyklen dominiert? Gibt es einen Zusammenhang zwischen Veränderungen in der Karbonat-Akkumulationsgeschichte der beiden Regionen? Verlaufen Veränderungen in der Karbonat Kompensationstiefe im äquatorialem Pazifik und Atlantik auf Milankovitch-Zeitskalen synchron oder sind diese entgegengesetzt?

Europäische Wasserrahmenrichtline in Berlin

Berlin ist auch bekannt als grüne Stadt am Wasser, denn die ausgedehnten Gewässerlandschaften tragen wesentlich zum Charme der Stadt bei. Spree und Dahme durchfließen das Berliner Urstromtal von Südosten kommend und münden in die westlich gelegene Havel. Die Flüsse mäandrieren zum Teil stark und bilden vielerorts Flussseen aus (z.B. Zeuthener See, Langer See). Dieser wechselhafte Verlauf macht den Reiz des Berliner Gewässersystems aus. In den letzten 1.000 Jahren der Besiedlungsgeschichte unserer Stadt hatten die großflächigen Rodungen der Hainbuchen-Eichen-Mischwälder, die Trockenlegung von Erlenbrüchen, die Anlage von Wehren und Mühlenstauen und die Begradigungen der Fließgewässer sowie Klimaschwankungen maßgeblichen Einfluss auf die Gewässer. Heute gibt es kaum noch Abschnitte, die nicht von Menschenhand beeinflusst wurden. Berlin liegt im Übergangsbereich zwischen dem maritimen und dem kontinentalen Klima. Das bedeutet deutlich geringere Niederschläge als im westlichen Teil Deutschlands. Die Tendenz zu trockenen Sommermonaten und einer größeren Verdunstung aufgrund durchschnittlich höherer Temperaturen verstärkt sich in den letzten Jahren nachweisbar (vergleiche z.B. Studie “Klimawandel und Kulturlandschaft Berlin” ). Diese klimatischen und morphologischen Verhältnisse führen im Havelgebiet zu geringen natürlichen Abflussspenden und relativ geringen Hochwasserabflüssen. Als größte deutsche Stadt nimmt Berlin unter den deutschen Ballungsräumen und europäischen Metropolen in vielerlei Hinsicht eine Sonderstellung ein. So ist sie die einzige Großstadt, die als Stadtstaat innerhalb ihrer Grenzen gleichzeitig die Trinkwasserversorgung und Abwasserbeseitigung bewältigt. Das heißt, dass die Qualität der Berliner Gewässer maßgeblich von der Abwasserentsorgung mit ihren Stofffrachten beeinflusst wird. Die Belastungen des äußerst sensiblen Gewässersystems stehen dementsprechend in engem Zusammenhang mit der Einwohnerzahl. Zudem sorgt der hohe Anteil versiegelter Flächen im urbanen Raum für entsprechend hohen Regenabfluss, der ebenso wie die Abwasserableitung die Gewässer erheblich mit Stofffrachten belastet. Andererseits gewinnt Berlin sein Trinkwasser zu hohen Anteilen aus Uferfiltrat und ist somit von einer guten Qualität der Oberflächengewässer abhängig. Doch nicht nur die Trinkwasserversorgung und Abwasserentsorgung fordern die Berliner Gewässer – im hochurbanen Raum existieren vielfältigste Nutzungsansprüche eng nebeneinander; so z.B. Schifffahrt, Fischerei, Erholungsnutzung, Badespaß, Grundwasserförderung und Abwassereinleitung. Diese vielfältigen Belange sind mit ihren unterschiedlichen Anforderungen sensibel zu vereinbaren. Bild: LP + B Wasseradern unserer Stadt Hier finden Sie eine Auflistung der bekanntesten und größten Berliner Gewässer. Die kleineren Fließgewässer wurden zusätzlich mit einer kurzen Beschreibung versehen. Weitere Informationen Bild: yupiramos / Depositphotos Bürgerbeteiligung Die Beteiligung aller Interessierter bei der Umsetzung der Wasserrahmenrichtlinie ist ein wichtiger Grundgedanke (Art. 14 der WRRL), der den gesamten Prozess prägt und trägt. Um sich einzubringen, gibt es verschiedenste Möglichkeiten und Ebenen. Weitere Informationen Bild: BIUW Ingenieur GmbH Maßnahmen in Berlin Entsprechend der Bestandsaufnahme sind vor allem strukturelle Defizite der Gewässer sowie die Einflüsse der Stadtentwässerung verantwortlich für den schlechten Zustand der Berliner Oberflächengewässer. Weitere Informationen Bild: Berliner Wasserbetriebe / Joachim Donath Maßnahmen: Mischwassersystem Die Berliner Gewässer werden bei starken Regenfällen im Innenstadtbereich durch Überläufe aus der Mischwasserkanalisation belastet. Die Schäden reichen von langfristigen Wirkungen, wie Nährstoff- und Schadstoffbelastung, bis hin zu akuten Wirkungen wie Fischsterben verursacht durch Sauerstoffmangel. Weitere Informationen Bild: Georg Lamberty, Planungsbüro Zumbroich Maßnahmen: Spree- und Havel-Wasserstraßen Spree und Havel sowie die Kanäle Teltowkanal, Landwehrkanal, Neuköllner Schifffahrtskanal, Spreekanal, Berlin-Spandauer-Schifffahrtskanal, Charlottenburger Verbindungskanal und Westhafenkanal sind Wasserstraßen. Sie werden für den Gütertransport und die Fahrgast- und Freizeitschifffahrt genutzt. Weitere Informationen Bild: SenMVKU Maßnahmen: Erpe Die Erpe oder - wie sie oberhalb von Hoppegarten heißt - das Neuenhagener Mühlenfließ windet sich auf 31 km durch Brandenburg und Berlin. Brandenburg und Berlin haben mit der Erpe / dem Neuenhagener Mühlenfließ das 3. gemeinsame Projekt zur ökologischen Gewässerentwicklung in Angriff genommen. Weitere Informationen Bild: INFORMUS Maßnahmen: Panke Als erstes gemeinsames Pilotprojekt mit dem Land Brandenburg (Ministerium für ländliche Entwicklung, Umwelt und Verbraucherschutz und dem Landesumweltamt) begannen 2007 die Vorarbeiten für die Entwicklung der Panke von der Quelle bis zur Mündung. Weitere Informationen Bild: Pflanzenschutzamt Berlin Maßnahmen: Tegeler Fließ Weitgehend natürlich anmutend windet sich das Tegeler Fließ auf 27 km durch Brandenburg und Berlin. Das Fließ zählt zu den naturnäheren Fließgewässern Berlins. Das Tegeler Fließ ist gemeinsam mit Brandenburg als 2. Gewässerentwicklungsprojekt ausgewählt worden. Weitere Informationen Bild: SenMVKU Maßnahmen: Wuhle An der Wuhle sind in der Vergangenheit vielfach einzelne Renaturierungsmaßnahmen durchgeführt worden. Die größte zusammenhängende Maßnahme wurde oberhalb der Bundesstraße B 1/5 ab 2003 geplant und von 2006 bis 2008 realisiert. Weitere Informationen

LSG Müchelner Kalktäler Gebietsbeschreibung Landschafts- und Nutzungsgeschichte Geologische Entstehung, Boden, Hydrographie, Klima Pflanzen- und Tierwelt Entwicklungsziele Exkursionsvorschläge Verschiedenes

Die Kalktäler liegen im südlichen Teil des Landkreises Merseburg-Querfurt zwischen dem Geiseltal und dem Unstruttal in der Landschaftseinheit Querfurter Platte. Das Gebiet ist eine große Ebene, in die ein Trockentalsystem eingeschnitten ist. Dabei bestehen aufgrund der steilen Hänge zwischen den Tälern und der Hochfläche kaum Blickbeziehungen. Dennoch haben die Trockentäler eine sehr landschaftsprägende Wirkung. Betritt man die Täler, erlebt man einen sehr starken Wechsel des Landschaftsbildes, der einen scharfen Kontrast zu den ebenen Hochflächen vermittelt. Die markantesten landschaftsprägenden Strukturen der Hochebene sind das Müchelholz mit seinem zum Teil sehr alten Baumbestand und die südlich der Straße gelegenen Wäldchen. Sie gliedern die Hochfläche zwischen St. Micheln und Albersroda. Weitere wichtige Landschaftselemente sind die Obstbaumreihen und -alleen entlang von Straßen und Feldwegen sowie Feldholzinseln. Unmittelbar nördlich und nordöstlich der Ortslage Mücheln erstreckt sich das etwa 60 km² große Braunkohlenrevier des Geiseltales. In den Ortslagen von St. Micheln und St. Ulrich bestimmen die teils dicht bewaldeten, teils mit Trocken- und Halbtrockenrasen bewachsenen Hänge das Ortsbild. Hinzu kommt die zum großen Teil noch gut erhaltene landschaftstypische Bebauung, die durch zahlreiche Gärten mit Obstbäumen gegliedert wird. Deutlich hebt sich die Schloßanlage von St. Ulrich einschließlich des Schloßparkes von der dörflichen Siedlung ab. Das Hesseltal erstreckt sich über 3,3 km, ist vorwiegend bewaldet und grenzt an das Müchelholz. Der Nordhang wird durch aufgelassene Steinbrüche mit Halbtrockenrasen und Schuttfluren bereichert. Dicht bewaldete Hänge charakterisieren auch das Seitental am Waldhaus. Im Gegensatz hierzu stehen die trockenen Täler namens Gleinaer Grund und Spittelgraben. Typisch sind hier blütenreiche Trocken- und Halbtrockenrasen an den Hängen, kleine Waldflächen, aufgelassene Steinbrüche und Gebüsche. Ehemalige Streuobstwiesen sind teilweise stark verbuscht. Gehölzflächen sind bevorzugt auf den nordexponierten Hängen zu finden. Seit ur- und frühgeschichtlicher Zeit sind die Lößlandschaften bevorzugte Siedlungsgebiete. Daher wurde auch die fruchtbare Querfurter Platte frühzeitig besiedelt und ackerbaulich bewirtschaftet. Die eindrucksvollste Anlage innerhalb des LSG ist eine ausgedehnte Befestigung der jungsteinzeitlichen Trichterbecherkultur bei Krumpa. Als Relikte der ackerbaulichen Nutzung der fruchtbaren Lößböden existieren noch Fluren aus einer Zeit, als das Gebiet von Slawen besiedelt war. Nur an wenigen Stellen haben sich Reste von Wald erhalten. Das Müchelholz stellt das größte zusammenhängende Waldgebiet auf der Querfurter Platte dar. Der Bestand großer, ausladender, 120-160 Jahre alter Eichen geht vermutlich auf die Nutzung zur Schweinemast zurück. Auch Flächen mit Niederwaldstruktur findet man hier. Da die Weideviehwirtschaft eine untergeordnete Rolle spielte, entstand nur an den ackerbaulich nicht nutzbaren, steileren Hanglagen nach der Abholzung Grünland, welches extensiv als Schafweide genutzt wurde. So bildeten sich die landschaftstypischen Trocken- und Halbtrockenrasen. An Hängen wurden Terrassen angelegt und zum Teil mit Trockenmauern befestigt. Ein wesentlicher Bestandteil der Kulturlandschaft sind Streuobstwiesen an den Ortsrändern sowie an den Talhängen. Entlang der Wege wurden Obstbaumalleen angelegt. Die Ackerflächen des LSG werden seit der Zeit der Kollektivierung großflächig bewirtschaftet, was mit einer Beseitigung von Feldwegen und Feldgehölzen einherging. Nach der naturräumlichen Gliederung liegt das LSG Müchelner Kalktäler im südöstlichen Teil der Landschaftseinheit Querfurter Platte. Regionalgeologisch ist das Gebiet dem südöstlichen Teil der Querfurt-Freyburger Muschelkalkmulde zuzuordnen. In den Oberhangbereichen der Trockentäler Gleinaer Grund, Hesseltal und am Spittelsteingraben treten die mesozoischen Festgesteinspartien hervor. Es handelt sich dabei um Unteren Muschelkalk, der als Wechsellagerung von welligen, dünnplattigen bis festen Kalksteinen und Mergelkalken vorliegt. Bis oberhalb der Geiselquelle verläuft am Unterhang der Geiselaue die Grenze zwischen Unterem Muschelkalk und Oberem Buntsandstein (Röt). Dieser besteht in der Pelit- und Salinarrötfolge aus geklüfteten Mergelsteinen von graugrüner bis grauroter Farbe bzw. aus Ton- und Schluffsteinen, Dolomiten und Kalksteinen, Gips- und Anhydritlagen sowie untergeordnet Steinsalzen. Den oberen Abschluß des Röts bilden die Myophorienschichten aus dolomitischen Kalksteinen sowie Ton- und Mergelsteinen. Ehemalige Steinbrüche lassen die Gesteinsabfolgen sichtbar werden. Auf der Hochfläche sind Reste der saalezeitlichen Grundmoräne erhalten. Großflächig wird sie von einer über 2 m mächtigen Lößschicht überzogen. Die geologisch jüngsten, holozänen bis rezenten Ablagerungen sind im LSG auf die Hangfußflächen der Täler beschränkt. Diese bestehen aus durchschnittlich 2 m mächtigen Abspülmassen. Das Schutzgebiet liegt zwischen dem Lauchstädter Löß-Plateau und den höchstgelegenen Bereichen des Barnstädter Löß-Plateaus. Auf dem tiefer liegenden Lauchstädter Löß-Plateau herrschen Tschernoseme aus Löß vor. Auf dem Barnstädter Löß-Plateau im Westen und Süden des Schutzgebietes sind Braunerde-Tschernoseme, Parabraunerde-Tschernoseme und Lessivés aus Löß verbreitet. Auf den Talhängen sind Pararendzinen, seltener Rendzinen, aus skeletthaltigem Löß über Lehm-Fließerden und anstehendem Gestein entwickelt. In den Hangfußbereichen und auf den Talböden dominieren Kolluvisole aus umgelagertem Bodenmaterial der Tschernoseme. Grundwasser steht erst in größerer Tiefe an. Innerhalb der Sedimentgesteine kann es über bindigen Lagen zu Stauerscheinungen kommen, die besonders nach Starkniederschlägen und langen Niederschlagsperioden zu lokalen, temporären Quellhorizonten führen. Die Gewässer in den Kalktälern besitzen vorwiegend episodischen Charakter. Eine wichtige Funktion zur Abführung von Oberflächenwasser, besonders bei Starkniederschlägen, erfüllen die Gräben. Klimatisch gesehen liegt das LSG im mittel-deutschen Trockengebiet. Bedingt durch die Lage im Lee des Harzes beträgt die jährliche Niederschlagssumme weniger als 500 mm. Die mittiere Jahrestemperatur von 8,5 - 9 o C ist relativ hoch. Das Klima ist kontinental geprägt. Aufgrund der Trockenheit zahlreicher Standorte im Gebiet besteht der floristische Reichtum insbesondere im Vorkommen licht- und wärmebedürftiger, trockenheitsertragender Pflanzenarten, die entweder ihren Verbreitungsschwerpunkt in den kontinentalen Gebieten Osteuropas und Asiens oder im submediterranen Florengebiet Südeuropas haben. Die Halbtrockenrasen werden durch Aufrechte Trespe, Fieder-Zwenke und Großes Schillergras bestimmt. Pfriemengras dominiert die Trockenrasenbestände, zusammen mit Walliser Schwingel und Gemeinem Bartgras. Bemerkenswert ist auch das Kalk-Blaugras, das bevorzugt auf extremen Standorten, wie steilen, humusarmen Kalkschutthängen, anzutreffen ist. Es bildet beispielsweise die Blaugrashalden auf dem Trockenhang südlich St. Micheln. Weitere charakteristische Pflanzen der Trocken- und Halbtrockenrasen sind Wiesen-Salbei, Karthäuser-Nelke, Echtes Labkraut, Feld-Mannstreu, Knolliger Hahnenfuß, Kleiner Wiesenknopf und Flockenblumen-Arten. Floristische Besonderheiten im Gebiet sind Stengelloser Tragant, Pferde-Sesel und Liegender Ehrenpreis. Neben Pflanzenarten mit kontinentaler Verbreitung kommen zahlreiche Vertreter der submediterranen Flora im Gebiet vor. Es handelt sich zumeist um gefährdete und geschützte Arten wie zum Beispiel Silber-Distel, Deutschen und Fransen-Enzian sowie Ästige und Astlose Graslilie. Von den Orchideen trockener, offener Standorte sind Purpur-Knabenkraut sowie Braunrote Sitter mit großen Beständen anzutreffen. In wenigen Exemplaren kommt auch die Fliegen-Ragwurz vor. Das sehr häufige Gemeine Sonnenröschen ist an wenigen Stellen mit dem seltenen und gefährdeten Grauen Sonnenröschen vergesellschaftet. In dem Schutt der Steinbrüche sowie am Rand steiniger Ackerflächen wächst relativ häufig der gefährdete Schmalblättrige Hohlzahn. Auch Gehölze prägen die Landschaft und die Biotopausstattung in entscheidendem Maße. Wälder und Feldgehölze mit naturnahem Charakter werden durch Hainbuche, Stiel- und Trauben-Eiche bestimmt. Hinzu treten Sommer- und Winter-Linde, Ahorn, Berg-Ulme und selten Rot-Buche. Auch der Unterwuchs weist noch einen naturnahen Charakter auf. Haselwurz, Maiglöckchen, Waldmeister, Vielblütige Weißwurz, Türkenbund-Lilie sowie verschiedene Grasarten sind anzutreffen. Busch-Windröschen und Gelbes Windröschen bedecken im Müchelholz im Frühjahr große Flächen. Weitere Arten sind Schattenblume, Knotige Braunwurz und Ährige Teufelskralle. Auf lichten Stellen wachsen Schwalbenwurz, Ästige Graslilie und Ebensträußige Margarite. Verschiedene Orchideen-Arten sind in den Wäldern anzutreffen, unter anderem Vogel-Nestwurz, Weiße Waldhyazinthe, Großes Zweiblatt und Bleiches Waldvöglein. Auch soll das Vorkommen des geschützten Seidelbastes im Müchelholz erwähnt werden. Im LSG und seiner Umgebung wurden 80 Brutvogelarten nachgewiesen. Dies weist das Gebiet als einen artenreichen Lebensraum aus. Besonders für Arten extensiv oder nicht genutzter Offenlandstandorte und Gebüsche, aber auch für Arten der Wälder stellt es ein Refugium innerhalb der strukturarmen Agrarlandschaft dar. Zu den gefährdeten Arten zählen Rot- und Schwarzmilan sowie Habicht. Auch Grauammer und Wendehals wurden nachgewiesen. Hervorzuheben ist der Nachweis von fünf Fledermausarten, die das Gebiet als Jagdrevier nutzen. Die im LSG liegenden alten Kalkstollen werden als Winterquartiere genutzt. Die offenen, blütenreichen Rasen der steilen Hanglagen und ehemaligen Steinbrüche besitzen eine hohe Bedeutung als Habitat für Insekten, so konnten unter anderem gefährdete Arten der Heuschrecken wie die Blauflüglige Ödlandschrecke und der Feld-Heuhüpfer nachgewiesen werden. Der Bestand an wertvollen Biotopen ist durch Pflege und durch Fortsetzung der typischen Bewirtschaftung zu sichern. Zur Vermeidung von Nährstoffeintrag aus den angrenzenden intensiv bewirtschaften Bereichen wären Pufferzonen auszuweisen. Besonders entlang der Hangkanten könnte durch Ackerrandstreifen oder breite Stauden- bzw. extensiv bewirtschaftete Grünlandsäume, Gebüsch- und Baumgruppen das Landschaftsbild bereichert werden. Der Erhalt und die Entwicklung der Waldränder trägt zur Verbesserung des Bestandsklimas bei und dient der Sicherung wichtiger Lebensräume im Übergangsbereich von Wald und Offenland. Die Erweiterung extensiv bewirtschafteter Flächen sowie die Anlage von Aufforstungen und Grünlandflächen auf ehemals ackerbaulich genutzten Bereichen würde ebenfalls zur Verbesserung der Lebensraumbedingungen beitragen. Durch die Anlage von Hecken und Baumreihen entlang von Wirtschaftswegen sollten vernetzende Strukturen geschaffen und das Landschaftsbild der strukturarmen Ackerebene bereichert werden. Insgesamt wird innerhalb des LSG eine umweltschonende Land- und Forstwirtschaft, die auch den langfristigen Anforderungen an den Bodenschutz entspricht, angestrebt. Kulturhistorische Elemente, wie die durch historische Waldbewirtschaftung entstandenen Waldtypen und die Streuobstwiesen oder der Schloßpark St. Ulrich, sind als ein Teil der Identität der Landschaft zu erhalten. Eine weitere Bebauung im Außenbereich ist zu vermeiden. Naturlehrpfad Der Lehrpfad verläuft vom Park St. Ulrich entlang der Hänge nördlich St. Micheln und durch das Hesseltal bis ins Müchelholz. Darüber hinaus sind weitere Spazier- und Wanderwege durch die Täler und das Müchelholz vorhanden. Mücheln Ort und Burg Mücheln (Muchilidi) wurden erstmals Ende des 9. Jahrhundert im Hersfelder Zehntverzeichnis erwähnt. Die Lage der als Straßenschutz angelegten Burg wird im Kern der Altstadt vermutet. 1350 erhielt Mücheln Stadtrecht, bald danach wurde die Stadtmauer mit drei Toren errichtet, die nur noch in Resten vorhanden ist. Zeugen der Stadtgeschichte sind u.a. das Rathaus von 1571 sowie alte Bürgerhäuser. Kulturhistorisch bemerkenswert sind auch die 12 Apostelquellen unterhalb des Waldhauses südlich St. Micheln. Schloß St. Ulrich Das Schloß ist eine von einem Wassergraben umgebene, unregelmäßige Anlage, die vermutlich im 12. Jahrhundert gegründet wurde. Der bestehende Bau, dessen älteste Teile aus dem 15. und 16. Jahrhundert stammen, wurde mehrfach umgebaut und erneuert. Anfang des 20. Jahrhundert erfolgte ein durchgreifender Um- und Erweiterungsbau durch Paul Salinger. Zum Schloß gehört ein um 1720 in Terrassenform angelegter barocker Park mit einem klassizistischen Gartenhaus. veröffentlicht in: Die Landschaftsschutzgebiete Sachsen-Anhalts © 2000, Landesamt für Umweltschutz Sachsen-Anhalt, ISSN 3-00-006057-X Die Natur- und Landschaftsschutzgebiete Sachsen-Anhalts - Ergänzungsband © 2003, Landesamt für Umweltschutz Sachsen-Anhalt, ISBN 3-00-012241-9 Letzte Aktualisierung: 18.11.2025

1 2 3 4 5 6 7