API src

Found 257 results.

Zur stochastischen Modellierung von Turbulenz in stabilen atmosphärischen Grenzschichten

Stabil geschichtete atmosphärische Strömungen sind typischerweise durch schwache, intermittierende und anisotrope Turbulenzen, Gravitationswellen, Low-Level-Jets und Kelvin-Helmholtz-Instabilitäten gekennzeichnet. Diese Phänomene erschweren maßgeblich sowohl zuverlässige numerische Simulationen als auch Messungen stabiler Grenzschichten (SBL). Auch wird die Physik der Intermittenz von Turbulenz nicht ausreichend verstanden. Das führt unter anderem zu speziellen Problemen in der Darstellung der stabilen atmosphärischen Grenzschicht in Wetter- oder Klimamodellen. Es ist das Ziel des Projekts, das physikalische Verständnis der Intermittenz von Turbulenz unter sehr stabilen Bedingungen zu verbessern. Dazu sollen neue statistische Methoden zur Analyse von existierenden Datensätzen mit stabil geschichtetem Hintergrund nebst neuen stochastischen Parametrisierungen für die SBL entwickelt und in Wetter- oder Klimamodellen genutzt werden. Die Identifikation spezifischer physikalischer Mechanismen intermittierender Turbulenz wird durch eine Vielzahl nichtturbulenter Bewegungen in stabil geschichteten atmosphärischen Strömungen erschwert. Letztere können beispielsweise Sägezahn-Konvektionsmuster, Wellen oder Mikrofronten aufweisen. Es gibt Hinweise darauf, dass solche Bewegungen Auslöser für Intermittenz von Turbulenz sein können, jedoch fehlen Kenntnisse über die Art der Bewegungen und in welchem Ausmaß sie turbulentes Mischen beeinflussen. Einige Fallstudien deuten darauf hin, dass es ein Wechselspiel zwischen großskaligen atmosphärischen Strömungsmerkmalen (auf sogenannten Submesoskalen) und dem Einsetzen von Turbulenz gibt. Um unterschiedliche physikalische Mechanismen turbulenten Mischens zu untersuchen, werden wir mit statistischen Methoden geeignete stochastische Parametrisierungen entwickeln. Ansätze wie Hidden-Markov-Modelle und nichtstationäre, multivariate, autoregressive Faktormodelle (VARX) sollen die Interaktion zwischen niederfrequenten und turbulenten Bewegungen bestimmen. Statistische Methoden erlauben eine Datentrennung in Hinblick auf metastabile Zustände, wie etwa ruhige und turbulente Perioden in einer geschichteten Atmosphäre. Unsere spezifischen Zielsetzungen sind:1. Neuartige Anwendung meteorologischer Zeitreihenanalysetechniken auf existierende Datensätze mit dem Ziel, die Nichtstationarität der Interaktion zwischen nichtturbulenten Bewegungen und Turbulenz in der sehr stabilen Grenzschicht zu untersuchen.2. Identifikation von Interaktions-Regimen zwischen verschiedenen Bewegungsskalen nebst Charakterisierung turbulenter Transporteigenschaften in verschiedenen Regimes.3. Entwicklung stochastischer Modelle für sehr stabile intermittierende Turbulenz. Hier sollen bisherige Erkenntnisse über physikalische Abhängigkeiten der Intermittenz verwendet werden.4. Verwendung der stochastischen Modelle zur Erzeugung realistischer Einströmungen als Eingabe von Large-Eddy-Simulationen mit dem Ziel intermittierende Turbulenz zu generieren.

Dynamische und chemische Entwicklung Mars- und Venus-ähnlicher Planeten

2D- und 3D-Modelle der Konvektion und Schmelzprozesse in Mars, Venus und ähnlichen Einplattenplaneten werden mit Modellen der Mineralogie und thermoelastischen Eigenschaften des Mantels kombiniert, um die Entwicklung dieser Planeten seit der Erstarrung des Mantels vor 4.4-4.5 Mrd. Jahren zu simulieren und gewisse geologische Strukturen auf ihrer Oberfläche zu erklären. Von besonderem Interesse sind die Stabilität ihrer Lithosphären, die verschiedenen vulkanischen Strukturen auf der Venus und die Bildung zweier anscheinend langlebiger vulkanischer Zentren auf dem Mars. Zentrale Aspekte sind der Einfluss von Phasenübergängen von Mantelmineralen auf globale Konvektionsmuster und die Dynamik von Mantelplumes sowie der Einfluss von Spurenkomponenten (Radionuklide und flüchtige Bestandteile) und ihre Umverteilung durch Konvektion, Schmelzen und Vulkanismus. Angesichts der begrenzten Kenntnis der Zusammensetzung und des Mantel-Kern-Verhältnisses werden gewisse Modellparameter wie die Dicke des Mantels, das Verhältnis von Magnesium und Eisen und der Radionuklid- und Wassergehalt variiert. Desweiteren werden die Bedeutung der Oberflächentemperatur und, im Fall von Mars, der Effekt lateraler Temperatur- und Dickevariationen in der Lithosphäre wie sie z.B. von der Krustendichotomie verursacht werden sowie die Rolle alter chemischer Heterogenitäten erkundet. Dabei sollen auch Parameterkombinationen einbezogen werden, die nicht für Mars oder Venus relevant, aber von allgemeinem Interesse z.B. im Hinblick auf Exoplaneten sind. Die Modelle werden geophysikalische und geochemische Observablen ergeben, die mit realen Beobachtungen verglichen werden können.

Transportwege von Feuchte und Wasserdampfisotopologe

Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.

Modelluntersuchungen zu turbulenten Strukturbildungsprozessen in Raumluftströmungen mittels Experimenten an komprimiertem Schwefelhexafluorid in einem weiten Kennzahlbereich

Die genaue Vorhersage der räumlichen Verteilung von Temperatur und Strömungsgeschwindigkeit im Inneren von Gebäuden sowie in Passagierkabinen von Flugzeugen, Bahnen, Reisebussen und Personenkraftwagen ist für die Gesundheit und das Wohlbefinden von Menschen sowie für den sparsamen Einsatz von Energie zum Heizen und Klimatisieren von entscheidender Bedeutung. Obwohl die Strömungsmechanik bei der Erforschung dieser Strömungen - den sogenannten Raumluftströmungen - sowohl in experimenteller als auch in numerischer Hinsicht in den vergangenen zehn Jahren große Fortschritte erzielt hat, ist es bis heute noch nicht möglich, Strukturbildungsprozesse in diesen Strömungen auf räumlichen Skalen von mehreren Metern und auf zeitlichen Skalen von mehreren Stunden mit hinreichender Genauigkeit vorherzusagen. Die physikalische Ursache für diese Schwierigkeit liegt darin begründet, dass es sich hierbei um eine Überlagerung von erzwungener und natürlicher thermischer turbulenter Konvektion handelt, die als gemischte Konvektion oder Mischkonvektion bezeichnet wird. Dieser Strömungstyp ist im Gegensatz zu rein erzwungener oder rein thermischer Konvektion notorisch schwer vorherzusagen. Das Ziel des vorliegenden Projektes besteht darin, den Mangel an Wissen über Strukturbildungsprozesse in gemischter turbulenter Konvektion zu überwinden, wobei sich die untersuchte Geometrie an Fragestellungen der Raumluftströmung orientiert. Nachdem der Antragsteller im Rahmen des von 2007 bis 2012 laufenden DFG- Antrages Strukturbildung turbulenter Mischkonvektion in Räumen und Passagierkabinen erstmalig die Machbarkeit einer realitätsgetreuen Nachbildung von Raumluftströmungen in einem verkleinerten Modellmaßstab von 1 zu 10 durch Verwendung des Gases Schwefelhexafluorid bei 5 bar nachgewiesen hat, steht die im Paketantrag errichtete Versuchsanlage SCALEX nunmehr für umfassende experimentelle Untersuchungen zur Verfügung. Aufbauend auf den im Paketantrag geleisteten Vorarbeiten besteht das spezielle Ziel des vorliegenden Projektes in der experimentellen Analyse dreier Strukturbildungsaspekte turbulenter Mischkonvektion für eine bislang in keinem Laborexperiment erreichte Breite des Parameterbereiches von Reynolds- und Rayleighzahlen. Hierzu sollen in einem ersten Schritt räumliche Symmetriebrechungsprozesse, in einem zweiten Schritt Hystereseprozesse und in einem dritten Schritt zeitabhängige Strukturwandlungen erforscht werden. Obwohl das Projekt erkenntnisorientiert ist und nicht der Lösung konkreter Raumluftströmungsprobleme dient, ist die untersuchte Geometrie der Passagierkabine eines Verkehrsflugzeuges nachempfunden. Somit kommen die zu gewinnenden grundlegenden Erkenntnisse langfristig der Luftfahrt- sowie der Schinen- und Straßenfahrzeugforschung zugute.

Forschergruppe (FOR) 1740: Ein neuer Ansatz für verbesserte Abschätzungen des atlantischen Frischwasserhaushalts und von Frischwassertransporten als Teil des globalen Wasserkreislaufs, Variation of the fresh water in the western Nordic Seas

The goal of this project is to capture and analyse fluctuations of the fresh water in the western Nordic Seas and to understand the related processes. The East Greenland Current in the Nordic Seas constitutes an important conduit for fresh water exiting the Arctic Ocean towards the North Atlantic. The Arctic Ocean receives huge amounts of fresh water by continental runoff and by import from the Pacific Ocean. Within the Arctic Ocean fresh water is concentrated at the surface through sea ice formation. The East Greenland Current carries this fresh water in variable fractions as sea ice and in liquid form; part of it enters the central Nordic Seas, via branching of the current and through eddies. It controls the intensity of deep water formation and dilutes the water masses which result from convection. The last decades showed significant changes of the fresh water yield and distribution in the Nordic Seas and such anomalies were found to circulate through the North Atlantic. In this project the fresh water inventory, its spatial distribution and its pathways between the East Greenland Current and the interior Greenland and Icelandic seas shall be captured by autonomous glider missions. The new measurements and existing data will, in combination with the modeling work of the research group, serve as basis for understanding the causes of the fresh water variability and their consequences for the North Atlantic circulation and deep water formation.

Turbulenzinteraktionen in der atmosphärischen Grenzschicht: Ein skalenübergreifender Ansatz zur Aufklärung oberflächennaher Austauschprozesse

Die Atmosphäre und die Vegetation der Erdoberfläche beeinflussen sich gegenseitig durch bidirektionale Austauschprozesse. Modelle zur Wetter- und Klimavorhersage basieren auf einem mechanistischen Verständnis dieser Interaktionen. Die Vorhersagen und die grundlegenden Theorien funktionieren allerdings nur im Falle einer gut durchmischten (turbulenten) atmosphärischen Grenzschicht. Wenn jedoch stabile atmosphärische Bedingungen vorherrschen, wie typischerweise nachts der Fall, dann sind die bisherigen Theorien nicht ausreichend, um zuverlässige Vorhersagen zu treffen. Um oberflächennahe turbulente Austauschprozesse während stabiler atmosphärischer Schichtung mechanistisch zu verstehen und neue Theorien zu entwickeln, sind zunächst neuartige Mess- und Analyse-Methoden notwendig. Ziel dieses Projekts ist die Beobachtung und Charakterisierung von oberflächennahen Prozessen in der stabilen atmosphärischen Grenzschicht durch eine neuartige Kombination von Mess- und Analysemethoden. Mit einem hochauflösenden in-situ Messkubus (20x20x5m), der sich innerhalb eines größeren mittels Fernerkundung überwachten Raumes (500x500x1000m) befindet, können Bewegung und Strukturen von Temperatur gleichzeitig in Raum und Zeit erfasst werden. Dieser skalenübergreifende Ansatz erlaubt es, nicht-periodische, nicht gut gemischte und räumlich heterogene Bewegungen der Luft nahe der Erdoberfläche zu erfassen. Die gewonnenen Daten werden mittels neuester stochastischer Auswerteverfahren analysiert, um die (nicht-)turbulenten Bedingungen und deren Durchmischung zu charakterisieren. Der wissenschaftliche Gewinn des Projektes liegt in einem wegweisenden innovativen Ansatz, um Modelle in den Bereichen Strömungsmechanik und Erd-System Wissenschaften zu validieren, und so zu einem verbesserten Verständnis unseres Lebensraums, der Schnittstelle zwischen Land und Atmosphäre, zu führen.

Wechselwirkung von Schwerewellen und Madden Julian Oszillation

Die Madden-Julian Oszillation (MJO) (Madden & Julian 1971, 1972) ist der dominante Teil der intrasessionalen Variabilität der tropischen Atmosphäre. Sie äußert sich vor allem in ostwärts wandernden Gebieten tiefer Konvektion und erhöhten Niederschlages. Weiterhin beeinflusst die MJO durch dynamische Kopplung das lokale Wetter des Indischen Ozeans und der Pazifischen Inseln. Außerdem spielt die durch vertikale Kopplung vermittelte Interaktion mit anderen wiederkehrenden dynamischen Phänomenen, wie zum Beispiel der Quasizweijahresschwingung der inneren Tropen (Quasi-biennial Oscillation, QBO), eine wichtige Rolle für das Verständnis tropischer Winde. Obwohl die Datenbasis über die MJO, der tiefen tropischen Konvektion und des Niederschlag in den Tropen im Verlauf der letzten Jahrzehnte eine deutliche Verbesserung erfuhr, verbleibt die Modellierung und Simulation der MJO als ein ernstes Problem heutiger atmosphärischer Modelle. Aus diesem Grunde beschäftigt sich das hier vorgeschlagene Projekt mit wichtigen Fragestellungen bezüglich dieser Modellierungsprobleme. Dabei wird auf Methoden, welche während der Anfertigung meiner Doktorarbeit zur Modellierung konvektiver Schwerewellen entstanden, zurückgegriffen. Das Projekt gliedert sich hierbei folgendermaßen in zwei wesentliche wissenschaftliche Fragestellungen:Wie beeinflusst die MJO die Ausbreitung und Dissipation konvektiv angeregter Schwerewellen?Wie wirken diese konvektiven Schwerewellen zurück auf die MJO und deren Konvektion?Das zur Beantwortung dieser Fragen notwendige Werkzeug ist ein gekoppeltes Modell konvektiv angeregter Schwerewellen und ihrer Ausbreitung, welches ich bereits sehr erfolgreich für Studien meiner Dissertation nutzte. Zusätzlich wird die Anwendung des WRF (Weather Research and Forecasting) Modells die numerische Modellierung auf der Mesoskala unterstützen. Einen weiteren Fokus setzt das Projekt auf Impulsflussspektren der Schwerewellen und ihrer durch die MJO induzierten Variabilität. Es wird außerdem untersucht, ob diese MJO induzierte Variabilität von Satelliteninstrumenten aus beobachtet werden kann. Dies wird Einsichten in den durch flache und tiefe Konvektion emittierten Schwerewellenimpulsfluss eröffnen. Im Falle der Feedbackmechanismen wird der Schwerpunkt auf den Einfluss des Schwerewellendrag auf die sekundäre Zirkulation der MJO gelegt.

Entwicklung von tropischer hochreichender Konvektion abgeleitet aus bodengebundenen abbildenden Spektroradiometermessungen

Im Rahmen des Projekts soll aus bodengebundenen Wolkenseitenmessungen der reflektierten Strahlung mittels eines abbildenden Spektrometersystems von tropischer hochreichender Konvektion auf das Vertikalprofil der mikrophysikalischen Eigenschaften der Wolke geschlossen werden. Damit soll die vertikale Entwicklung von hochreichender Konvektion, die eine wesentliche klimarelevante Rolle spielt, unter Berücksichtigung des Einflusses von Aerosolpartikeln und von thermodynamischen Bedingungen auf das Tropfenwachstum charakterisiert werden. Die geplanten Messungen sollen auf einem 320 m hohen Messturm (ATTO: Amazonian Tall Tower Observatory), der kürzlich im brasilianischen Regenwald errichtet wurde, stattfinden. ATTO ist mit Messgeräten ausgestattet, die meteorologische, chemische und Aerosolparameter liefern. Die Messregion bietet ideale Beobachtungsbedingungen mit klar definierten Jahreszeiten (Regen- und Trockenzeit), täglicher Konvektion und variablen Aerosolbedingungen. Aus den Messungen eines neuen abbildenden Spektrometersystems, SPIRAS (SPectral Imaging Radiation System) sollen Vertikalprofile der thermodynamischen Phase und der Partikelgröße mit hoher zeitlicher und räumlicher Auflösung und mit Hilfe von adaptierten Verfahren unter Verwendung von dreidimensionalen Strahlungstransportsimulationen abgeleitet werden. Damit sollen vertikale Bereiche, die das Tropfenwachstum beschreiben (Diffusion, Koaleszenz, Mischphasenbereich und Vereisung), identifiziert werden. Zusätzliche Messungen einer Infrarotkamera und eines scannenden Depolarisations-Lidars werden für die Höhen- und Temperaturbestimmung der beobachteten Wolkenelemente herangezogen. Zusätzlich werden die Polarisationsmessungen des Lidars zur Bestimmung der thermodynamischen Phase verwendet, um den wichtigen Phasenübergang zu identifizieren. Mit Hilfe der gewonnenen Daten werden außerdem Annahmen (Effektivradius als konservative Wolkeneigenschaft) wie sie von Ableitungsverfahren zur Bestimmung von mikrophysikalischen Wolkenprofilen aus Satellitenmessungen gemacht werden, überprüft.

Untersuchungen des Tagesgangs verschiedener Spurengase mit Hilfe der solaren Absorptionsspektroskopie im infraroten Spektralbereich im tropischen Westpazifik (TROPAC)

Der Ozean im Westpazifik ist mit Temperaturen von ganzjährig 30°C der wärmste Ozean der Welt. Im tropischen Westpazifik ist die Lufttemperatur der Grenzschicht weltweit am höchsten und die Ozonkonzentration am niedrigsten. Aufgrund der allgemeinen Advektion der Luftmassen in der unteren und mittleren Troposphäre aus dem Osten durch die Walker-Zirkulation über den Pazifik befindet sich die Luft über dem tropischen Westpazifik für längere Zeit in einer sauberen, warmen und feuchten Umgebung. Der Abbau von reaktiven Sauerstoff- und Ozonvorläufern wie NOx findet daher länger als anderswo in den Tropen, was zu sehr niedrigen Ozonkonzentrationen führte. Dies erhöht die Lebensdauer von kurzlebigen biogenen und anthropogenen Spurengasen. Darüber hinaus begünstigen hohe Meeresoberflächentemperaturen eine starke Konvektion im tropischen Westpazifik, was zu niedrigen Ozonmischungsverhältnissen in den konvektiven Ausflussgebieten in der oberen Troposphäre führen kann. Der Warmpool im Westpazifik ist auch eine wichtige Quellregion für stratosphärische Luft. Daher fallen die Region, in der die Lebensdauer kurzlebiger Spurengase erhöht ist, und die Quellregion der stratosphärischen Luft zusammen. Somit bestimmt die Zusammensetzung der troposphärischen Atmosphäre in dieser Region in hohem Maße auch die globale stratosphärische Zusammensetzung.Ozon ist aufgrund von Rückkopplungsprozessen zwischen Temperatur, Dynamik und Ozon ein wichtiges Spurengas in der Klimaforschung. Da der Warmpool im Westpazifik die Hauptquellenregion für stratosphärische Luft ist, ist die Kenntnis von Ozon und anderen kurzlebigen Spurengasen auch wichtig, um den Transport von Spurengasen in die Stratosphäre zu verstehen.Ziel unseres Projektes ist die Messung des Tagesgangs von Ozon und anderen Spurengasen mit Hilfe der hochauflösenden solaren Absorptions-FTIR-Spektroskopie. Die Messungen liefern die Gesamtsäulendichten von bis zu 20 Spurengasen. Für einige Spurengase erlaubt die Analyse der Spektrallinienform die Ableitung der Konzentrationsprofile in bis zu etwa vier atmosphärischen Höhenschichten. Ergänzt werden die Beobachtungen durch Ozonballonsondierungen, kontinuierliche Messungen der UV-Strahlung, und Modellrechnungen mit einem Chemie-Transport-Modell. Die Messungen sind für den Zeitraum August bis Oktober 2022 geplant, die Auswertung und Interpretation von November 2022 bis Januar 2023.

Forschergruppe (FOR) 2416: Space-Time Dynamics of Extreme Floods (SPATE), Teilprojekt: Atmosphärische Ursachen extremer Hochwasserereignisse

Die Ziele dieses Teilprojektes sind das bessere Verständnis der Ursachen extremere Hochwasserereignisse, die Einschätzung möglicher zukünftiger Hochwasserextremereignisse und die Untersuchung der Vorhersagbarkeit dieser Ereignisse. Dies soll aus der Perspektive der Vielzahl beteiligter atmosphärischer Prozesse und ihrer Skalenvielfalt durchgeführt werden. Daher wird dieses Teilprojekt wichtige Beiträge in der Forschergruppe SPATE liefern. Unter diesen generellen Zielen wollen wir folgende Forschungsfragen adressieren: 1. Was sind die großskaligen atmosphärischen Vorbedingungen für extreme Hochwasserereignisse? 2. Welche Prozesse verstärken den Niederschlag und die Niederschlagswirkung regional/lokal und verursachen dadurch extreme Hochwasserereignisse? 3. Was sind die raumzeitliche Variabilität und die Klimazukunft dieser atmosphärischen Faktoren und was sind ihre Antriebsfaktoren im Klimasystem? Die beiden ersten Fragen sollen in der ersten Phase (PH1, Monate 1 bis 36) der Forschergruppe SPATE bearbeitet werden. Die dritte Frage soll in Phase 2 bearbeitet werden. Zusätzlich sollen atmosphärische Felder, wie beispielsweise Niederschlag, und abgeleitete Indikatorzeitserien für andere Teilprojekte auf Basis einer über 100jährigen Reanalyse, meteorologischer Beobachtungen und Klimasimulation bereitgestellt werden. Der Forschungsplan der ersten Phase besteht aus drei Arbeitspaketen. Bevor die meteorologischen Ursachen extremer Hochwasserereignisse systematisch untersucht werden können, ist die Erstellung einer langzeitlichen (hier über 100-jährigen) vier-dimensionalen meteorologischen Referenz notwendig (Arbeitspaket 0). Die Referenz basiert auf aufbereiteten Niederschlagsdaten, raumzeitlich (mit dem Modell COSMO-CLM) verfeinerten (auf 12 km Gitterdistanz) Reanalysen (ERA-20C ab 1901, NOAA/NCEP 20 CR für den Zeitraum 1851 bis 1900). Diese Referenz erlaubt eine robuste Statistik der Hochwasser-Wetterlagen-Beziehungen und des Verfolgens der Feuchte im atmosphärischen System (Arbeitspaket 1). Regionale und lokale den Niederschlag verstärkende Faktoren (wie Bodenfeuchte-Niederschlagswechselwirkung, frontale/orographische Hebung mit/ohne konvektive Aktivität) werden in Arbeitspaket 2 mit konvektionserlaubenden Simulationen (Gitterdistanzen kleiner als 2 km) mit COSMO-CLM untersucht. In der zweiten Projektphase planen wir zwei Arbeitspakete. Ein Paket wird die klimatologischen Antriebsfaktoren und die multi-skalige Vorhersagbarkeit bearbeiten. In einem weiteren Arbeitspaket wird die Entwicklung von Hochwasserereignissen aus meteorologischer Perspektive bis in das Jahr 2100 betrachtet. Dieses Teilprojekt wird extreme Hochwasserereignisse und deren Eigenschaften den multiskaligen atmosphärischen Prozessen zuordnen und wird außerdem die Zuordnung hydrologischer Prozesse in der Forschergruppe SPATE unterstützen.

1 2 3 4 524 25 26