Das Projekt "Pflanzenzüchtungsforschung - Reconstruct: Aufdecken des Beitrags der Bodenbiodiversität zu Wachstum und Fitness der Nutzpflanze Mais durch die Kombination von 'omics'-basierter prädiktiver (in silico) Modellierung und Rekonstruktionsbiologie, Teilprojekt D" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften (IBG), IBG-2: Pflanzenwissenschaften.Der Ertrag der wichtigen Kulturpflanze Mais (Zea mays L.) wird durch die Interaktion mit einer erstaunlichen Vielzahl an Mikroorganismen entscheidend beeinflusst. Es zeigt sich eine direkter Zusammenhang zwischen Bodenart und Wurzelexudaten und der Zusammensetzung und dem Artenreichtum des Bodenmikrobioms. RECONSTRUCT ist ein interdisziplinäres Projekt das eine wissensbasierte Züchtung von neuen Maissorten anstrebt. Hierbei steht die Befähigung der Maispflanze zur Interaktion mit nutzbringenden Mikroben im Focus, welche eine erhöhte Fitness und einen erhöhten Ertrag auf landwirtschaftlichen Böden, mit einem minimalen externen Düngereintrag zur Folge hat. In Phase I des Projektes ist das vorrangige Ziel die Erzeugung empirischer 'omics'-Daten, um den Einfluss der Bodenfertilität und der mikrobiellen Konsortien auf die Produktivität der Maispflanze zu untersuchen. Die interdisziplinäre Arbeitsgemeinschaft wird den Einfluss langjähriger ökologischer und konventioneller Bodenbearbeitung auf die Bodeneigenschaften, mikrobiellen Gemeinschaften und den Einfluss auf das Wachstum von genetisch diversen Maislinien untersuchen. Die Projektpartner werden (1) Nährstoff-, Metabolit- und Wasser-Flüsse an der Boden-Pflanze-Grenzfläche, (2) die Biodiversität des Mikrobioms von Boden, Rhizosphäre und Wurzel, und (3) die Produktivität der Maispflanze analysieren. In Phase II des Projektes soll ein ganzheitliches Constraint-basiertes genomweites Modell entwickelt werden, bestehend aus (i) umfassenden Stoffwechsel-Modellen von Wurzel und Blatt der Maispflanze, (ii) einem Stoffwechsel-Modell der mikrobiellen Gemeinschaft, erstellt anhand der heterogenen Daten aus Phase I, und (iii) einem Modell der Interaktionen dieser Modelle mit dem Erdboden. Die Erstellung von synthetischen Böden und rekonstruierten Mikrobengemeinschaften wird es erlauben die Feldsituation zu rekonstruieren und die iterativen Modelle anzuwenden. Dies wird zeigen wie quantitative Pflanzenmerkmale, Wirt-Mikroflora-Interaktionen, genetische und metabolische Netzwerke, Ressourcenverteilung und die physikalisch-chemische Eigenschaften des Erdbodens in einer einheitlichen Theorie vereint werden können. Ein Hauptergebnis von RECONSTRUCT wird ein umfassendes mechanistisches Verständnis des Boden- Rhizosphäre-Mais-Systems in Interaktion mit seiner Microflora sein. Dies wird die Voraussetzungen dafür schaffen sich das Wurzelmikrobiom zur positiven Beeinflussung des Maiswachstums zunutze zu machen. Der Aufbau und die Nutzung einer großen mikrobiellen Kultursammlung wird es möglich machen synthetische mikrobielle Konsortien zu entwickeln und zu charakterisieren. Diese Konsortien bergen das außerordentliche Potential zur biotechnologischen Nutzung. Insbesondere die Züchtung von Maissorten im Hinblick auf ihre Befähigung mit nutzbringenden Bakterien zu interagieren ist von großem Interesse. (Text gekürzt)
Das Projekt "Pflanzenzüchtungsforschung - Reconstruct: Aufdecken des Beitrags der Bodenbiodiversität zu Wachstum und Fitness der Nutzpflanze Mais durch die Kombination von 'omics'-basierter prädiktiver (in silico) Modellierung und Rekonstruktionsbiologie, Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Köln, Biozentrum, Botanisches Institut.Der Ertrag der wichtigen Kulturpflanze Mais (Zea mays L.) wird durch die Interaktion mit einer erstaunlichen Vielzahl an Mikroorganismen entscheidend beeinflusst. Es zeigt sich eine direkter Zusammenhang zwischen Bodenart und Wurzelexudaten und der Zusammensetzung und dem Artenreichtum des Bodenmikrobioms. RECONSTRUCT ist ein interdisziplinäres Projekt das eine wissensbasierte Züchtung von neuen Maissorten anstrebt. Hierbei steht die Befähigung der Maispflanze zur Interaktion mit nutzbringenden Mikroben im Focus, welche eine erhöhte Fitness und einen erhöhten Ertrag auf landwirtschaftlichen Böden, mit einem minimalen externen Düngereintrag zur Folge hat. In Phase I des Projektes ist das vorrangige Ziel die Erzeugung empirischer 'omics'-Daten, um den Einfluss der Bodenfertilität und der mikrobiellen Konsortien auf die Produktivität der Maispflanze zu untersuchen. Die interdisziplinäre Arbeitsgemeinschaft wird den Einfluss langjähriger ökologischer und konventioneller Bodenbearbeitung auf die Bodeneigenschaften, mikrobiellen Gemeinschaften und den Einfluss auf das Wachstum von genetisch diversen Maislinien untersuchen. Die Projektpartner werden (1) Nährstoff-, Metabolit- und Wasser-Flüsse an der Boden-Pflanze-Grenzfläche, (2) die Biodiversität des Mikrobioms von Boden, Rhizosphäre und Wurzel, und (3) die Produktivität der Maispflanze analysieren. In Phase II des Projektes soll ein ganzheitliches Constraint-basiertes genomweites Modell entwickelt werden, bestehend aus (i) umfassenden Stoffwechsel-Modellen von Wurzel und Blatt der Maispflanze, (ii) einem Stoffwechsel-Modell der mikrobiellen Gemeinschaft, erstellt anhand der heterogenen Daten aus Phase I, und (iii) einem Modell der Interaktionen dieser Modelle mit dem Erdboden. Die Erstellung von synthetischen Böden und rekonstruierten Mikrobengemeinschaften wird es erlauben die Feldsituation zu rekonstruieren und die iterativen Modelle anzuwenden. Dies wird zeigen wie quantitative Pflanzenmerkmale, Wirt-Mikroflora-Interaktionen, genetische und metabolische Netzwerke, Ressourcenverteilung und die physikalisch-chemische Eigenschaften des Erdbodens in einer einheitlichen Theorie vereint werden können. Ein Hauptergebnis von RECONSTRUCT wird ein umfassendes mechanistisches Verständnis des Boden- Rhizosphäre-Mais-Systems in Interaktion mit seiner Microflora sein. Dies wird die Voraussetzungen dafür schaffen sich das Wurzelmikrobiom zur positiven Beeinflussung des Maiswachstums zunutze zu machen. Der Aufbau und die Nutzung einer großen mikrobiellen Kultursammlung wird es möglich machen synthetische mikrobielle Konsortien zu entwickeln und zu charakterisieren. Diese Konsortien bergen das außerordentliche Potential zur biotechnologischen Nutzung. Insbesondere die Züchtung von Maissorten im Hinblick auf ihre Befähigung mit nutzbringenden Bakterien zu interagieren ist von großem Interesse. (Text gekürzt)
Das Projekt "Pflanzenzüchtungsforschung - Reconstruct: Aufdecken des Beitrags der Bodenbiodiversität zu Wachstum und Fitness der Nutzpflanze Mais durch die Kombination von 'omics'-basierter prädiktiver (in silico) Modellierung und Rekonstruktionsbiologie, Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Pflanzenzüchtungsforschung.Der Ertrag der wichtigen Kulturpflanze Mais (Zea mays L.) wird durch die Interaktion mit einer erstaunlichen Vielzahl an Mikroorganismen entscheidend beeinflusst. Es zeigt sich eine direkter Zusammenhang zwischen Bodenart und Wurzelexudaten und der Zusammensetzung und dem Artenreichtum des Bodenmikrobioms. RECONSTRUCT ist ein interdisziplinäres Projekt das eine wissensbasierte Züchtung von neuen Maissorten anstrebt. Hierbei steht die Befähigung der Maispflanze zur Interaktion mit nutzbringenden Mikroben im Focus, welche eine erhöhte Fitness und einen erhöhten Ertrag auf landwirtschaftlichen Böden, mit einem minimalen externen Düngereintrag zur Folge hat. In Phase I des Projektes ist das vorrangige Ziel die Erzeugung empirischer 'omics'-Daten, um den Einfluss der Bodenfertilität und der mikrobiellen Konsortien auf die Produktivität der Maispflanze zu untersuchen. Die interdisziplinäre Arbeitsgemeinschaft wird den Einfluss langjähriger ökologischer und konventioneller Bodenbearbeitung auf die Bodeneigenschaften, mikrobiellen Gemeinschaften und den Einfluss auf das Wachstum von genetisch diversen Maislinien untersuchen. Die Projektpartner werden (1) Nährstoff-, Metabolit- und Wasser-Flüsse an der Boden-Pflanze-Grenzfläche, (2) die Biodiversität des Mikrobioms von Boden, Rhizosphäre und Wurzel, und (3) die Produktivität der Maispflanze analysieren. In Phase II des Projektes soll ein ganzheitliches Constraint-basiertes genomweites Modell entwickelt werden, bestehend aus (i) umfassenden Stoffwechsel-Modellen von Wurzel und Blatt der Maispflanze, (ii) einem Stoffwechsel-Modell der mikrobiellen Gemeinschaft, erstellt anhand der heterogenen Daten aus Phase I, und (iii) einem Modell der Interaktionen dieser Modelle mit dem Erdboden. Die Erstellung von synthetischen Böden und rekonstruierten Mikrobengemeinschaften wird es erlauben die Feldsituation zu rekonstruieren und die iterativen Modelle anzuwenden. Dies wird zeigen wie quantitative Pflanzenmerkmale, Wirt-Mikroflora-Interaktionen, genetische und metabolische Netzwerke, Ressourcenverteilung und die physikalisch-chemische Eigenschaften des Erdbodens in einer einheitlichen Theorie vereint werden können. Ein Hauptergebnis von RECONSTRUCT wird ein umfassendes mechanistisches Verständnis des Boden- Rhizosphäre-Mais-Systems in Interaktion mit seiner Microflora sein. Dies wird die Voraussetzungen dafür schaffen sich das Wurzelmikrobiom zur positiven Beeinflussung des Maiswachstums zunutze zu machen. Der Aufbau und die Nutzung einer großen mikrobiellen Kultursammlung wird es möglich machen synthetische mikrobielle Konsortien zu entwickeln und zu charakterisieren. Diese Konsortien bergen das außerordentliche Potential zur biotechnologischen Nutzung. Insbesondere die Züchtung von Maissorten im Hinblick auf ihre Befähigung mit nutzbringenden Bakterien zu interagieren ist von großem Interesse. (Text gekürzt)
Das Projekt "Pflanzenzüchtungsforschung - Reconstruct: Aufdecken des Beitrags der Bodenbiodiversität zu Wachstum und Fitness der Nutzpflanze Mais durch die Kombination von 'omics'-basierter prädiktiver (in silico) Modellierung und Rekonstruktionsbiologie, Teilprojekt B" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, Lehrstuhl für Biochemie.Der Ertrag der wichtigen Kulturpflanze Mais (Zea mays L.) wird durch die Interaktion mit einer erstaunlichen Vielzahl an Mikroorganismen entscheidend beeinflusst. Es zeigt sich eine direkter Zusammenhang zwischen Bodenart und Wurzelexudaten und der Zusammensetzung und dem Artenreichtum des Bodenmikrobioms. RECONSTRUCT ist ein interdisziplinäres Projekt das eine wissensbasierte Züchtung von neuen Maissorten anstrebt. Hierbei steht die Befähigung der Maispflanze zur Interaktion mit nutzbringenden Mikroben im Focus, welche eine erhöhte Fitness und einen erhöhten Ertrag auf landwirtschaftlichen Böden, mit einem minimalen externen Düngereintrag zur Folge hat. In Phase I des Projektes ist das vorrangige Ziel die Erzeugung empirischer 'omics'-Daten, um den Einfluss der Bodenfertilität und der mikrobiellen Konsortien auf die Produktivität der Maispflanze zu untersuchen. Die interdisziplinäre Arbeitsgemeinschaft wird den Einfluss langjähriger ökologischer und konventioneller Bodenbearbeitung auf die Bodeneigenschaften, mikrobiellen Gemeinschaften und den Einfluss auf das Wachstum von genetisch diversen Maislinien untersuchen. Die Projektpartner werden (1) Nährstoff-, Metabolit- und Wasser-Flüsse an der Boden-Pflanze-Grenzfläche, (2) die Biodiversität des Mikrobioms von Boden, Rhizosphäre und Wurzel, und (3) die Produktivität der Maispflanze analysieren. In Phase II des Projektes soll ein ganzheitliches Constraint-basiertes genomweites Modell entwickelt werden, bestehend aus (i) umfassenden Stoffwechsel-Modellen von Wurzel und Blatt der Maispflanze, (ii) einem Stoffwechsel-Modell der mikrobiellen Gemeinschaft, erstellt anhand der heterogenen Daten aus Phase I, und (iii) einem Modell der Interaktionen dieser Modelle mit dem Erdboden. Die Erstellung von synthetischen Böden und rekonstruierten Mikrobengemeinschaften wird es erlauben die Feldsituation zu rekonstruieren und die iterativen Modelle anzuwenden. Dies wird zeigen wie quantitative Pflanzenmerkmale, Wirt-Mikroflora-Interaktionen, genetische und metabolische Netzwerke, Ressourcenverteilung und die physikalisch-chemische Eigenschaften des Erdbodens in einer einheitlichen Theorie vereint werden können. Ein Hauptergebnis von RECONSTRUCT wird ein umfassendes mechanistisches Verständnis des Boden- Rhizosphäre-Mais-Systems in Interaktion mit seiner Microflora sein. Dies wird die Voraussetzungen dafür schaffen sich das Wurzelmikrobiom zur positiven Beeinflussung des Maiswachstums zunutze zu machen. Der Aufbau und die Nutzung einer großen mikrobiellen Kultursammlung wird es möglich machen synthetische mikrobielle Konsortien zu entwickeln und zu charakterisieren. Diese Konsortien bergen das außerordentliche Potential zur biotechnologischen Nutzung. Insbesondere die Züchtung von Maissorten im Hinblick auf ihre Befähigung mit nutzbringenden Bakterien zu interagieren ist von großem Interesse. (Text gekürzt)
Das Projekt "Pflanzenzüchtungsforschung - Reconstruct: Aufdecken des Beitrags der Bodenbiodiversität zu Wachstum und Fitness der Nutzpflanze Mais durch die Kombination von 'omics'-basierter prädiktiver (in silico) Modellierung und Rekonstruktionsbiologie, Teilprojekt E" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Max-Planck-Institut für molekulare Pflanzenphysiologie.Der Ertrag der wichtigen Kulturpflanze Mais (Zea mays L.) wird durch die Interaktion mit einer erstaunlichen Vielzahl an Mikroorganismen entscheidend beeinflusst. Es zeigt sich eine direkter Zusammenhang zwischen Bodenart und Wurzelexudaten und der Zusammensetzung und dem Artenreichtum des Bodenmikrobioms. RECONSTRUCT ist ein interdisziplinäres Projekt das eine wissensbasierte Züchtung von neuen Maissorten anstrebt. Hierbei steht die Befähigung der Maispflanze zur Interaktion mit nutzbringenden Mikroben im Focus, welche eine erhöhte Fitness und einen erhöhten Ertrag auf landwirtschaftlichen Böden, mit einem minimalen externen Düngereintrag zur Folge hat. In Phase I des Projektes ist das vorrangige Ziel die Erzeugung empirischer 'omics'-Daten, um den Einfluss der Bodenfertilität und der mikrobiellen Konsortien auf die Produktivität der Maispflanze zu untersuchen. Die interdisziplinäre Arbeitsgemeinschaft wird den Einfluss langjähriger ökologischer und konventioneller Bodenbearbeitung auf die Bodeneigenschaften, mikrobiellen Gemeinschaften und den Einfluss auf das Wachstum von genetisch diversen Maislinien untersuchen. Die Projektpartner werden (1) Nährstoff-, Metabolit- und Wasser-Flüsse an der Boden-Pflanze-Grenzfläche, (2) die Biodiversität des Mikrobioms von Boden, Rhizosphäre und Wurzel, und (3) die Produktivität der Maispflanze analysieren. In Phase II des Projektes soll ein ganzheitliches Constraint-basiertes genomweites Modell entwickelt werden, bestehend aus (i) umfassenden Stoffwechsel-Modellen von Wurzel und Blatt der Maispflanze, (ii) einem Stoffwechsel-Modell der mikrobiellen Gemeinschaft, erstellt anhand der heterogenen Daten aus Phase I, und (iii) einem Modell der Interaktionen dieser Modelle mit dem Erdboden. Die Erstellung von synthetischen Böden und rekonstruierten Mikrobengemeinschaften wird es erlauben die Feldsituation zu rekonstruieren und die iterativen Modelle anzuwenden. Dies wird zeigen wie quantitative Pflanzenmerkmale, Wirt-Mikroflora-Interaktionen, genetische und metabolische Netzwerke, Ressourcenverteilung und die physikalisch-chemische Eigenschaften des Erdbodens in einer einheitlichen Theorie vereint werden können. Ein Hauptergebnis von RECONSTRUCT wird ein umfassendes mechanistisches Verständnis des Boden- Rhizosphäre-Mais-Systems in Interaktion mit seiner Microflora sein. Dies wird die Voraussetzungen dafür schaffen sich das Wurzelmikrobiom zur positiven Beeinflussung des Maiswachstums zunutze zu machen. Der Aufbau und die Nutzung einer großen mikrobiellen Kultursammlung wird es möglich machen synthetische mikrobielle Konsortien zu entwickeln und zu charakterisieren. Diese Konsortien bergen das außerordentliche Potential zur biotechnologischen Nutzung. Insbesondere die Züchtung von Maissorten im Hinblick auf ihre Befähigung mit nutzbringenden Bakterien zu interagieren ist von großem Interesse. (Text gekürzt)
Das Projekt "Wirkung vereinfachter Verfahren der N-Düngung im Vergleich zur konventionellen geteilten N-Düngung auf die Ertragsbildung von Winterweizen und das Auswaschungsrisiko" wird/wurde gefördert durch: Ministerium für Ländlichen Raum, Ernährung und Verbraucherschutz Baden-Württemberg. Es wird/wurde ausgeführt durch: Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Düngung und Bodenstoffhaushalt (340i).Die Aufteilung der N-Düngung bei Getreide, speziell Weizen, auf mehrere Gaben zur gezielten Bestandesführung ist ein gängiges Verfahren. Aus der landwirtschaftlichen Praxis kommt zunehmend die Forderung, pflanzenbauliche Maßnahmen zu vereinfachen. Eine Möglichkeit könnte die einmalige Verabreichung von Mineraldünger-N zu Winterweizen darstellen. Dem gegenüber stehen Bedenken seitens des Wasserschutzes, dass eine einmalige N-Gabe das N-Auswaschungsrisiko erhöhen könnte.
Das Projekt "Entwicklung einer biologisch abbaubaren, sprühfähigen Mulchfolie aus NaWaRos zur Steigerung der Nachhaltigkeit beim integrierten Pflanzenschutz von intensiven gartenbaulichen Freilandkulturen, Teilvorhaben 1: Optimierung der optischen Eigenschaften, Parzellenversuche" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Gottfried Wilhelm Leibniz Universität Hannover, Institut für Gartenbauliche Produktionssysteme, Abteilung Phytomedizin.Ziel des Vorhabens ist die Entwicklung einer optisch aktiven und biologisch abbaubaren, sprühfähigen Mulchfolie aus NaWaRos als innovative Komponente eines Integrierten Pflanzenschutzkonzepts in der Produktion von Eissalat (Lactuca sativa) als Modell für eine intensive hochwertige Freilandkultur, mit dessen Hilfe die Nachhaltigkeit der Produktion verbessert und insbesondere die Belastung mit Insektiziden reduziert werden soll. Hauptinstrument im nachhaltigen Konzept soll (1.) eine neuartige sprühfähige Mulchfolie aus NaWaRos mit optisch aktiven (insektenrepellent) Eigenschaften sein, kombiniert mit (2.) offenen Nützlingszuchten zur biologischen Kontrolle der Schädlinge durch im Bestand angereicherte Antagonisten. Im ersten Schritt werden die Folien technisch entwickelt und die optischen Eigenschaften (repellente Wirkung) in Labor- und Klimakammerversuchen hinsichtlich ihrer grundsätzlichen Interferenz mit dem visuell gesteuerten Verhalten der relevanten Schädlings- und Nützlingsarten untersucht. Parallel wird in ersten Freilandversuchen die optimale Etablierung von Nützlingspopulationen (offene Zuchten) erarbeitet. Im zweiten Schritt werden in Kleinparzellenversuchen mit der Möglichkeit randomisierter multipler Varianten Folien und Nützlinge im Freiland kombiniert. Im dritten und abschließenden Schritt werden in größeren Freilandversuchen die optimalen Varianten unter Praxisbedingungen an unabhängigen (Entwicklungsphase) Datensätzen validiert. Insgesamt soll ein hochwertigeres Produkt (vor allem Qualität, Rückstandsfreiheit) nachhaltiger, d.h. schonender für die Umwelt und mit verringertem Einsatz von nicht erneuerbaren Ressourcen (Insektizide, Herbizide, Wasser) produziert werden. Als weitere Zielgröße wird auch eine der konventionellen Produktion vergleichbare Kosten-Nutzen Bilanz angestrebt, um die effiziente Nutzung von Ressourcen (Input-Output-Vergleich) aufzuzeigen und das Verfahren für die Praxis attraktiv zu machen.
Das Projekt "IPAS: Innovative Pflanzenzüchtung im Anbausystem - NoViSys: Neue Anbausysteme für einen nachhaltigen Weinbau^Teilprojekt E, Teilprojekt D" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Julius Kühn-Institut Bundesforschungsinstitut für Kulturpflanzen (JKI), Institut für Pflanzenschutz Obst- und Weinbau, Außenstelle Geilweilerhof.Pilzwiderstandsfähige Neuzüchtungen sind die Innovation der Rebenzüchtung. Sie liefern Weine mit hochwertiger Qualität und besitzen gleichzeitig eine hohe Widerstandsfähigkeit gegenüber den beiden bedeutendsten Schaderregern im Weinbau. Echter & Falscher Mehltau wurden im 19. Jahrhundert nach Europa eingeschleppt und erfordern seitdem intensive Pflanzenschutzmaßnahmen im Weinbau. Eine Ausweitung der Anpflanzung pilzwiderstandsfähiger Rebsorten wäre die beste Strategie, um den Pflanzenschutzaufwand im Weinbau nachhaltig zu reduzieren. Der Anbau pilzwiderstandsfähiger Rebsorten in einem neuen Anbausystem, dem Minimalschnitt im Spalier (MSS) erlaubt die Kombination einer umweltfreundlichen und gleichzeitig wirtschaftlich vorteilhaften, sowie dem Klimawandel angepassten Produktion. Der Anbau von pilzwiderstandsfähigen Rebsorten in einem solch neuartigen Produktionssystem soll untersucht werden. Hierfür sollen Merkmale (z.B. Wüchsigkeit, Ertrag) möglichst präzise und sensorbasiert erfasst, Managementstrategien (inkl. Anwendungstechnik) für den Weinbau erarbeitet, die biologische Vielfalt im Weinberg sowie die Qualität ausgebauter Weine vergleichend zum verbreiteten Spalieranabau objektiv bewertet werden. Die Ursache der Reifeverzögerung im MSS Anbausystem soll untersucht und die technologische Basis für eine breite Einführung des neuen Anbausystems in die Weinbaupraxis weiterentwickelt werden. Darüber hinaus soll eine fundierte Marketingstrategie entwickelt werden, um die wirtschaftlichen Vorteile des neuen Anbausystems mit pilzwiderstandsfähigen Sorten in der Weinbaupraxis zu verdeutlichen und um die Verbraucherakzeptanz gegenüber neuen Rebsorten zu verbessern. Das Vorhaben hat sich zum Ziel gesetzt durch die geplanten Forschungsarbeiten pilzwiderstandsfähige Rebsorten als innovative Errungenschaften der Rebenzüchtung stärker in den Anbau zu bringen und dies mit den vielen Vorteilen des MSS als eine neue, arbeitseffiziente Anbauform zu kombinieren. Die Fusion beider Systeme mit ihren jeweiligen Vorteilen birgt für die weinbauliche Praxis ein enormes ökologisches und ökonomisches Potential und hilft den Auswirkungen des Klimawandels zu begegnen.
Das Projekt "IPAS - Innovative Pflanzenzüchtung im Anbausystem: Mischanbau mit neuartigen Genotypen für eine verbesserte nachhaltige Landnutzung in Ackerbau, Grünland und Forst (IMPAC hoch 3), Teilprojekt E" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Deutsche Saatveredelung AG.IMPAC3 verbindet innovative Pflanzenzüchtung mit der Verbesserung der Diversität in der Agrarlandschaft. Eine erhöhte Diversität der angebauten Kulturpflanzen hat das Potenzial, Erträge zu erhöhen und die Ausnutzung der Ressourcen zu verbessern. Dazu entwickelt ein Konsortium aus Wissenschaftlern und Unternehmen der Pflanzenzüchtung ein Feldexperiment mit assoziierten Versuchs- und Demonstrationsflächen für eine detaillierte Kausal-Analyse zum Mehrertrag von Mischkulturen. Für die drei Landnutzungen Ackerland, Grünland und Gehölzkulturen werden unterschiedliche Genotypen im Rein- und Mischanbau kultiviert. Die zentrale Hypothese von IMPAC3 besagt, dass der Erfolg von Mischanbausystemen von bestimmten Eigenschaften der verwendeten Genotypen abhängt und dass eine ideale Kombination der Mischungspartner die Produktivität und Stabilität der Produktionssysteme verbessert. Die Forschungsthemen befassen sich mit der pflanzenbaulichen Analyse verschiedener Genotypen und ihrer Eigenschaften im Rein- und Mischanbau sowie der zugrundeliegenden Prozesse. Auf dieser Basis erfolgt eine Modellierung der Pflanzenbestände und es werden Auswertungen über die drei Landnutzungen hinweg angestellt, die eine Systematisierung der Analyse ermöglichen. Agrarökologische Untersuchungen bewerten die Ökosystem-Dienstleistungen der Mischanbausysteme. Inwieweit diese Leistungen auch gesellschaftlich und betriebswirtschaftlich In-Wert gesetzt werden können, zeigen sozioökonomische Studien.
Das Projekt "IPAS - Innovative Pflanzenzüchtung im Anbausystem: Mischanbau mit neuartigen Genotypen für eine verbesserte nachhaltige Landnutzung in Ackerbau, Grünland und Forst (IMPAC hoch 3)^Teilprojekt E, Teilprojekt D" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Norddeutsche Pflanzenzucht Hans Georg Lembke KG.IMPAC3 verbindet innovative Pflanzenzüchtung mit der Verbesserung der Diversität in der Agrarlandschaft. Eine erhöhte Diversität der angebauten Kulturpflanzen hat das Potenzial, Erträge zu erhöhen und die Ausnutzung der Ressourcen zu verbessern. Dazu entwickelt ein Konsortium aus Wissenschaftlern und Unternehmen der Pflanzenzüchtung ein Feldexperiment mit assoziierten Versuchs- und Demonstrationsflächen für eine detaillierte Kausal-Analyse zum Mehrertrag von Mischkulturen. Für die drei Landnutzungen Ackerland, Grünland und Gehölzkulturen werden unterschiedliche Genotypen im Rein- und Mischanbau kultiviert. Die zentrale Hypothese von IMPAC3 besagt, dass der Erfolg von Mischanbausystemen von bestimmten Eigenschaften der verwendeten Genotypen abhängt und dass eine ideale Kombination der Mischungspartner die Produktivität und Stabilität der Produktionssysteme verbessert. Die Forschungsthemen befassen sich mit der pflanzenbaulichen Analyse verschiedener Genotypen und ihrer Eigenschaften im Rein- und Mischanbau sowie der zugrundeliegenden Prozesse. Auf dieser Basis erfolgt eine Modellierung der Pflanzenbestände und es werden Auswertungen über die drei Landnutzungen hinweg angestellt, die eine Systematisierung der Analyse ermöglichen. Agrarökologische Untersuchungen bewerten die Ökosystem-Dienstleistungen der Mischanbausysteme. Inwieweit diese Leistungen auch gesellschaftlich und betriebswirtschaftlich In-Wert gesetzt werden können, zeigen sozioökonomische Studien.
Origin | Count |
---|---|
Bund | 43 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 42 |
License | Count |
---|---|
offen | 43 |
Language | Count |
---|---|
Deutsch | 43 |
Englisch | 2 |
Resource type | Count |
---|---|
Datei | 1 |
Keine | 21 |
Webseite | 22 |
Topic | Count |
---|---|
Boden | 37 |
Lebewesen & Lebensräume | 43 |
Luft | 23 |
Mensch & Umwelt | 43 |
Wasser | 24 |
Weitere | 43 |