Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).
In June 2010, the DLR Group of Systems Analysis started an investigation about innovative financing of Concentrating Solar Power Plants (CSP) in countries of the Middle East and North Africa. We found a possible strategy for the market introduction of concentrating solar power (CSP) plants in the Middle East and North Africa (MENA) that will not require considerable subsidization and will not constitute a significant burden for electricity consumers in the region. In the first section, the paper explains the need of MENA countries for sustainable supply of electricity and calculates the cost of electricity for a model case country. In the second part, the cost development of concentrating solar power plants is calculated on the basis of expectations for the expansion of CSP on a global level. After that, the challenges for the market introduction of CSP in MENA are explained. Finally, we present a strategy for the market introduction of CSP in MENA, removing the main barriers for financing and starting market introduction in the peak load and the medium load segment of power supply. The paper explains why long-term power purchase agreements (PPA) for CSP should be calculated on the basis of avoided costs, starting in the peak load segment. Such PPA are not yet available, the paper aims to convince policy makers to introduce them. The attached power point file shows some examples of time series of load and supply by CSP in the different load segments and shows the graphs used in the report. The attached Excel Sheet gives the time series of load and supply by CSP for the different load segments for a total reference year.
Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.
Zur Lösung von Fluss- und reaktiven Transportgleichungen in heterogenen Grundwassersystemen werden neue Global Random Walk (GRW) Algorithmen entwickelt und implementiert, die stabil und frei von numerischer Diffusion sind. Um das Auftreten von Interpolationsfehlern zu vermeiden, wird ein integriertes GRW-Lösungsverfahren entwickelt, das Geschwindigkeiten und Konzentrationen auf dem selben regulären Gitter berechnet. Wir nutzen grobkörnige (engl. Coarse grained) (CG) Mittelwerte in Raum und Zeit über die Trajektorien der berechneten Partikel, die die Konzentrationen der reaktiven chemischen Spezies in den GRWSimulationen beschreiben. Diese werden genutzt, um eine kontinuierliche Beschreibung der Transportprozesse zu erhalten. Nachdem die Mittelungsprozedur die Variation der simulierten Konzentrationen reduziert, genügt eine relativ kleine Anzahl von Monte Carlo - Simulationen, um die statistischen Kennzahlen zu gewinnen, und gleichzeitig der Auswirkung der Raum-Zeit-Skalen der hydrologischen Beobachtungen Rechnung zu tragen. Des weiteren können lokale Bilanzgleichungen für die CG Raum-Zeit-Mittel genutzt werden, um die hochskalierten Diffusionskoeffizienten und Reaktionsterme zu berechnen.
Atmosphärische Partikel enthalten innerhalb ihrer organischen Fraktion einen bedeutenden Anteil sogenannter 'huminähnlicher' Verbindungen (humic like substances, HULIS). Zur chemischen Zusammensetzung dieser Fraktion ist nur relativ wenig bekannt. Trenntechniken wie Umkehrphasenchromatographie oder Kapillarelektrophorese erlauben keine umfassende Trennung dieser komplex zusammengesetzten Fraktion, weshalb im vorliegenden Projekt die Anwendung einer 2-dimensionalen Trennung nach Polarität (Umkehrphasenchromatographie) und molekularer Größe (Größenausschlusschromatographie) vorgeschlagen wird. Die Kopplung der beiden Dimensionen soll offline geschehen und die erhaltenen Fraktionen gesammelt werden, um davon den Gesamtkohlenstoffgehalt (total organic carbon, TOC), die UV-VIS Absorption, sowie die Elementarzusammensetzung einzelner charakteristischer Substanzen mittels Flugzeitmassenspektrometrie zu bestimmen. Proben von verschieden geprägten Sammelorten (europäischer Hintergrund, asiatische Megacity, ländlich mit starkem Biomasseverbrennungseinfluss) sollen analysiert werden, um anschliessend Muster im zweidimensionalen Raum Polarität vs. Größe finden und vergleichen zu können. Weiterhin sollen die Ergebnisse der offline Charakterisierung mit (außerhalb des Projektes) gewonnenen Daten eines online-Aerosolmassenspektrometers verglichen werden. Die Ergebnisse sollen ein besseres Verständnis zu Konzentration, Zusammensetzung und möglichen Quellen der wichtigen HULIS-Fraktion atmosphärischer Partikel ermöglichen.
Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.
Diese Studie soll die Rolle der Kohlenwasserstoffseen bei astronomisch angetriebenen Klimavariationen auf dem Saturnmond Titan näher beleuchten. Seen auf Titan sind stark auf die nördliche Polarregion konzentriert, während die Becken in der südlichen Polarregion größtenteils nicht mit Flüssigkeiten gefüllt sind. Diese Beobachtung führte zu kontroversen Diskussionen darüber, ob die polaren Seen Gegenstücke zu den irdischen Eisschilden darstellen, die mit dem Croll-Milankovitch-Zyklus wachsen und schrumpfen. Ein regionales und globales numerisches Modell der Methanhydrologie soll benutzt werden, um den Einfluss der Orbitalparametervariationen auf die Seen und deren Rückkopplung auf das Klima zu untersuchen. Die Hauptarbeitshypothese der Studie ist, dass sich der mittlere Seespiegel aufgrund der Variation des Niederschlags, der Verdunstung und des globalen Methantransportes in der Atmosphäre in Zeitskalen der Apsidendrehung von Saturn ändert. Auf regionaler Ebene wird ein dreidimensionales Ozeanzirkulationsmodell der Titan-Seen angewandt, um den orbitalen Einfluss auf die Zirkulation und Schichtung in den Seen zu untersuchen. Diese beinhalten die insbesondere die windgetriebene und dichtegetriebene Zirkulation, die für die Variationen der Seeoberflächentemperatur, -zusammensetzung und Verdunstung wichtig sind. Die langjährige Seespiegelveränderung wird durch Extrapolation der jährlichen Seespiegelveränderungen berechnet, die durch eine Serie von Simulationen unter den Orbitalparametern ausgewählter Epochen in der Vergangenheit prognostiziert werden. Auf globaler Ebene wird ein dreidimensionales atmosphärisches Zirkulationsmodell mit einem eingebauten atmosphärischen Hydrologie-Modul und vereinfachten Ozeanmodell angewandt, um die langjährige Veränderung der globalen Seeverteilung zu simulieren. Das globale Modell beschäftigt sich insbesondere mit der Frage, ob polare Seen in einer Hemisphäre auf Kosten der Seen in der anderen Hemisphäre innerhalb eines Orbitalzyklus anwachsen können oder ob es aus geographischen oder astronomischen Gründen eine Neigung zur Anhäufung der Seen in einer der beiden Hemisphären geben könnte. Ferner soll die Rückkopplung der variablen oder nicht variablen Seeverteilung auf den atmosphärischen Teil des Klimas untersucht werden indem die Simulationsergebnisse mit denen der Kontrollsimulation ohne Seen verglichen werden.
Im letzten Jahrzehnt war der grönländische Eisschild mehreren Extremereignissen ausgesetzt, mit teils unerwartet starken Auswirkungen auf die Oberflächenmassebilanz und den Eisfluss, insbesondere in den Jahren 2010, 2012 und 2015. Einige dieser Schmelzereignisse prägten sich eher lokal aus (wie in 2015), während andere fast die gesamte Eisfläche bedeckten (wie in 2010).Mit fortschreitendem Klimawandel ist zu erwarten, dass extreme Schmelzereignisse häufiger auftreten und sich verstärken bzw. länger anhalten. Bisherige Projektionen des Eisverlustes von Grönland basieren jedoch typischerweise auf Szenarien, die nur allmähliche Veränderungen des Klimas berücksichtigen, z.B. in den Representative Concentration Pathways (RCPs), wie sie im letzten IPCC-Bericht genutzt wurden. In aktuellen Projektionen werden extreme Schmelzereignisse im Allgemeinen unterschätzt - und welche Konsequenzen dies für den zukünftigen Meeresspiegelanstieg hat, bleibt eine offene Forschungsfrage.Ziel des vorgeschlagenen Projektes ist es, die Auswirkungen extremer Schmelzereignisse auf die zukünftige Entwicklung des grönländischen Eisschildes zu untersuchen. Dabei werden die unmittelbaren und dauerhaften Auswirkungen auf die Oberflächenmassenbilanz und die Eisdynamik bestimmt und somit die Beiträge zum Meeresspiegelanstieg quantifiziert. In dem Forschungsprojekt planen wir zudem, kritische Schwellenwerte in der Häufigkeit, Intensität sowie Dauer von Extremereignissen zu identifizieren, die - sobald sie einmal überschritten sind - eine großräumige Änderung in der Eisdynamik auslösen könnten.Zu diesem Zweck werden wir die dynamische Reaktion des grönländischen Eisschilds in einer Reihe von Klimaszenarien untersuchen, in denen extreme Schmelzereignisse mit unterschiedlicher Wahrscheinlichkeit zu bestimmten Zeitpunkten auftreten, und die Dauer und Stärke prognostisch variiert werden. Um indirekte Effekte durch verstärktes submarines Schmelzen hierbei berücksichtigen zu können, werden wir das etablierte Parallel Ice Sheet Model (PISM) mit dem Linearen Plume-Modell (LPM) koppeln. Das LPM berechnet das turbulente submarine Schmelzen aufgrund von Veränderungen der Meerestemperatur und des subglazialen Ausflusses. Es ist numerisch sehr effizient, so dass das gekoppelte PISM-LPM Modell Ensemble-Läufe mit hoher Auflösung ermöglicht. Folglich kann eine breite Palette von Modellparametern und Klimaszenarien in Zukunftsprojektionen in Betracht gezogen werden.Mit dem interaktiv gekoppelten Modell PISM-LPM werden wir den Beitrag Grönlands zum Meeresspiegelanstieg im 21. Jahrhundert bestimmen, unter Berücksichtigung regionaler Veränderungen von Niederschlag, Oberflächen- und Meerestemperaturen, und insbesondere der Auswirkungen von Extremereignissen. Ein Hauptergebnis wird eine Risikokarte sein, die aufzeigt, in welchen kritischen Regionen Grönlands zukünftige extreme Schmelzereignisse den stärksten Eisverlust zur Folge hätten.
Das mittelständische Logistikunternehmen Neumann Transporte und Sandgruben GmbH & Co. KG gehört zur Neumann Gruppe GmbH mit Sitz in Burg und ist als Dienstleister in der Entsorgungs- und Recyclingwirtschaft tätig. In Reesen (Sachsen-Anhalt) gibt es eine Schlackenassaufbereitungsanlage, in der die Asche aus Müllverbrennungsanlagen einen Nassaufbereitungsprozess durchläuft. Die Schlackenassaufbereitung ist ein sehr wasserintensiver Prozess, bei dem Abwässer mit hohen Salzfrachten entstehen. Bisher werden die prozessbedingten Abwässer aufwändig aufbereitet, per Straßentransport in eine Industriekläranlage befördert und entsorgt. Für den Aufbereitungsprozess der Schlacke werden Prozessfrischwassermengen benötigt, die aktuell dem Grundwasserreservoir entnommen werden. Um den Transportaufwand für die Abwässer zu vermeiden und die Grundwasserentnahme zu minimieren, plant das Unternehmen mittels innovativer Abwasseraufbereitung (Umkehrosmose) einen nahezu geschlossenen Stoffkreislauf zu schaffen. Gleichzeitig verbessert sich damit auch die Qualität des mineralischen Rückstandes, so dass von einer besseren Verwertbarkeit auszugehen ist. Das in der Umkehrosmose entstehende Konzentrat (Permeat) soll in einer Vakuumverdampfungsanlage am Standort des Müllheizkraftwerks Rothensee behandelt werden. Gleichzeitig können Synergien am Standort der Abfallverbrennungsanlage genutzt werden, wie bspw. die Abwärme aus der Kraft-Wärme-Kopplung, das nahezu ammoniakfreien Destillats der Verdampferanlage für technische Zwecke und das Permeat der Umkehrosmose als Kühlwassernachspeisung für den Kühlturm. Die Innovation des neuen Verfahrens besteht darin, dass mittels Kombination und Weiterentwicklung bereits bestehender Recyclingverfahren erstmalig Prozesswasser aus der Schlackeaufbereitung behandelt und der Stoffkreislauf nahezu geschlossen werden kann. Insgesamt kann der Einsatz von Frischwasser nahezu vollständig ersetzt und weitgehend auf Grundwasserentnahmen verzichtet werden. Zusätzlich können Lärmemissionen, Energieverbrauch und Deponievolumen reduziert werden. Im Übrigen können mit der Umsetzung des Projekts jährlich 1.728 Tonnen CO2-Äquivalente, also etwa 86 Prozent, eingespart werden.
Goals: A laboratory method for detection of enteropathogenic Viruses (e.g. Adenovirus) from surface (bathing) waters was established and five sampling sites monitored. The project aims at finding infectious routes in epidemiological cases. ; Approaches: A glasswool filtration column was used (similar to the method used in the EU-Virobathe project) to concentrate viruses from surface waters. The column was eluated by a pH-shift. The eluate was flockulated and virusparticles further concentrated by centifugation. Afterwards a Realtime-PCR was conducted for detection.; Results: A laboratory method for detection of Adenovirus in surface waters was established. The detection limit is around 10000 Virusparticles per 10 l. Recovery rates vary strongly. They seem to depend on suspended particles and other unknown factors. A mean recovery rate of 30 Prozent was achieved.
| Origin | Count |
|---|---|
| Bund | 653 |
| Type | Count |
|---|---|
| Förderprogramm | 651 |
| unbekannt | 2 |
| License | Count |
|---|---|
| geschlossen | 2 |
| offen | 651 |
| Language | Count |
|---|---|
| Deutsch | 362 |
| Englisch | 358 |
| Resource type | Count |
|---|---|
| Keine | 448 |
| Webseite | 205 |
| Topic | Count |
|---|---|
| Boden | 512 |
| Lebewesen und Lebensräume | 498 |
| Luft | 406 |
| Mensch und Umwelt | 653 |
| Wasser | 492 |
| Weitere | 653 |