API src

Found 653 results.

Quantification of small-scale physicochemical properties of intact macropore surfaces in structured soils

In structured soils, the interaction of percolating water and reactive solutes with the soil matrix is mostly restricted to the surfaces of preferential flow paths. Flow paths, i.e., macropores, are formed by worm burrows, decayed root channels, cracks, and inter-aggregate spaces. While biopores are covered by earthworm casts and mucilage or by root residues, aggregates and cracks are often coated by soil organic matter (SOM), oxides, and clay minerals especially in the clay illuviation horizons of Luvisols. The SOM as well as the clay mineral composition and concentration strongly determine the wettability and sorption capacity of the coatings and thus control water and solute movement as well as the mass exchange between the preferential flow paths and the soil matrix. The objective of this proposal is the quantitative description of the small-scale distribution of physicochemical properties of intact structural surfaces and flow path surfaces and of their distribution in the soil volume. Samples of Bt horizons of Luvisols from Loess will be compared with those from glacial till. At intact structural surfaces prepared from soil clods, the spatial distribution (mm-scale) of SOM and clay mineral composition will be characterized with DRIFT (Diffuse reflectance infrared Fourier transform) spectroscopy using a self-developed mapping technique. For samples manually separated from coated surfaces and biopore walls, the contents of organic carbon (Corg) and the cation exchange capacity (CEC) will be analyzed and related to the intensities of specific signals in DRIFT spectra using Partial Least Square Regression (PLSR) analysis. The signal intensities of the DRIFT mapping spectra will be used to quantify the spatial distribution of Corg and CEC at these structural surfaces. The DRIFT mapping data will also be used for qualitatively characterizing the small scale distribution of the recalcitrance, humification, and microbial activity of the SOM from structural surfaces. The clay mineral composition of defined surface regions will be characterized by combining DRIFT spectroscopic with X-ray diffractometric analysis of manually separated samples. Subsequently, the spatial distribution of the clay mineral composition at structural surfaces will be determined from the intensities of clay mineral-specific signals in the DRIFT mapping spectra and exemplarily compared to scanning electron microscopic and infrared microscopic analysis of thin sections and thin polished micro-sections. The three-dimensional spatial distribution of the total structural surfaces in the volume of the Bt horizons will be quantified using X-ray computed tomography (CT) analysis of soil cores. The active preferential flow paths will be visualized and quantified by field tracer experiments. These CT and tracer data will be used to transfer the properties of the structural surfaces characterized by DRIFT mapping onto the active preferential flow paths in the Bt horizons.

Vertical partitioning and sources of CO2 production and effects of temperature, oxygen and root location within the soil profile on C turnover

For surface soils, the mechanisms controlling soil organic C turnover have been thoroughly investigated. The database on subsoil C dynamics, however, is scarce, although greater than 50 percent of SOC stocks are stored in deeper soil horizons. The transfer of results obtained from surface soil studies to deeper soil horizons is limited, because soil organic matter (SOM) in deeper soil layers is exposed to contrasting environmental conditions (e.g. more constant temperature and moisture regime, higher CO2 and lower O2 concentrations, increasing N and P limitation to C mineralization with soil depth) and differs in composition compared to SOM of the surface layer, which in turn entails differences in its decomposition. For a quantitative analysis of subsoil SOC dynamics, it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. Since SOM is composed of various C pools which turn over on different time scales, from hours to millennia, bulk measurements do not reflect the response of specific pools to both transient and long-term change and may significantly underestimate CO2 fluxes. More detailed information can be gained from the fractionation of subsoil SOM into different functional pools in combination with the use of stable and radioactive isotopes. Additionally, soil-respired CO2 isotopic signatures can be used to understand the role of environmental factors on the rate of SOM decomposition and the magnitude and source of CO2 fluxes. The aims of this study are to (i) determine CO2 production and subsoil C mineralization in situ, (ii) investigate the vertical distribution and origin of CO2 in the soil profile using 14CO2 and 13CO2 analyses in the Grinderwald, and to (iii) determine the effect of environmental controls (temperature, oxygen) on subsoil C turnover. We hypothesize that in-situ CO2 production in subsoils is mainly controlled by root distribution and activity and that CO2 produced in deeper soil depth derives to a large part from the mineralization of fresh root derived C inputs. Further, we hypothesize that a large part of the subsoil C is potentially degradable, but is mineralized slower compared with the surface soil due to possible temperature or oxygen limitation.

Uncertainty and the bioeconomics of near-natural silviculture

Research in 'silviculture' and 'forest economics' very often takes place largely independent from each other. While silviculture predominantly focuses on ecological aspects, forest eco-nomics is sometimes very theoretic. The applied bioeconomic models often lack biological realism. Investigating mixed forests this proposal tries to improve bioeconomic modelling and optimisation under uncertainty. The hypothesis is tested whether or not bioeconomic model-ling of interacting tree species and risk integration would implicitly lead to close-to-nature forestry. In a first part, economic consequences of interdependent tree species mixed at the stand level are modelled. This part is based on published literature, an improved model of timber quality and existing data on salvage harvests. A model of survival over age is then to be developed for mixed stands. A second section then builds upon data generated in part one and concentrates on the simultaneous optimisation of species proportions and harvest-ing ages. It starts with a mean-variance optimisation as a reference solution. The obtained results are compared with data from alternative approaches as stochastic dominance, down-side risk and information-gap robustness.

Methanemissionen aus den saisonalen Überflussingsgebieten des Amazonas

Methan (CH4) ist ein wichtiges Treibhausgas, welches hauptsächlich durch anaerobe Prozesse erzeugt wird. Eine Hauptquelle für Methan sind Feuchtgebiete. Das Amazonasbecken in Südamerika beherbergt viele dieser Feuchtgebiete und ist deshalb eine Schlüsselregion für tropische CH4-Emissionen. Trotz ihrer Bedeutung für den globalen Methanhaushalt, sind die CH4 Emissionen aus dem Amazonasbecken bisher schlecht quantifiziert und die beitragenden CH4 Quellen nicht gut verstanden. Im Amazonasbecken sind die saisonal überschwemmten Wälder potentiell wichtige Regionen für Methanemissionen, aber die wenigen Messungen erlauben es momentan nicht, den Beitrag dieser Regionen ausreichend zu quantifizieren.Das übergeordnete Ziel dieses Antrags ist es, die Rolle der saisonal überschwemmten Wälder für den CH4-Haushalt im Amazonasgebiet zu verstehen. Speziell sollen Austauschflussmessungen von CH4 (und anderen Gasen) über der Baumkrone in einem saisonal überfluteten Wald im Amazonasbecken über den Zeitraum von mindestens einem Jahr durchgeführt werden. Derartige Messungen existieren derzeit in saisonal überfuteten Wäldern im Amazonasgebiet nicht. Die Austauschflussmessungen über der Baumkrone sollen in diesem Projekt durch direkte Messungen der Methan-Quellen und -Senken ergänzt werden. Diese Kombination von Messungen erlaubt es, die Emissionen der einzelnen Quellen und Senken mit den Messungen über der Baumkrone zu verbinden und damit den CH4-Haushalt in dem Bereich des 'Footprints' der Messungen zu verstehen. Dies ist wichtig, weil einige Quellen nicht gut verstanden sind, z.B. wurden vor kurzem hohe Emissionen aus Baumstämmen in saisonal überfluteten Regionen gemessen. Darüberhinaus liefern die CH4 Flussmessungen oberhalb der Baumkrone über einen vollen Jahreszyklus einen Datensatz, der durch 'Upscaling' mit den Austauschflüssen, die man aus der Inversion atmosphärischer Konzentrationsmessungen erhält, verglichen werden kann. Die vorgeschlagenen Messungen sollen an dem Turm K34, welcher in einem saisonal überfluteten Wald nahe Manaus (Brasilien) steht, durchgeführt werden. Wir haben die Genehmigung unsere Instrumente an diesem Turm zu installieren und für das Spektrometer steht ein klimatisierter Raum zur Verfügung. Für die Flussmessungen werden wir die Relaxed Eddy Accumulation (REA) Technik mit einem FTIR-Spektrometer koppeln. Der Aufbau dieses FTIR-REA Flussmesssystems wurde in dem EU-Projekt INGOS entwickelt und das Messsystem steht zur Verfügung. Das System ist in der Lage, die Flüsse von CH4, CO2, N2O, CO und d13CO2 gleichzeitig zu messen. Die einzelnen Emissionsquellen innerhalb des 'Footprints' der Flussmessungen werden mit einem tragbaren Analysator im Rahmen einzelner Kampagnen bestimmt.

Forschergruppe (FOR) 1740: Ein neuer Ansatz für verbesserte Abschätzungen des atlantischen Frischwasserhaushalts und von Frischwassertransporten als Teil des globalen Wasserkreislaufs, Variation of the fresh water in the western Nordic Seas

The goal of this project is to capture and analyse fluctuations of the fresh water in the western Nordic Seas and to understand the related processes. The East Greenland Current in the Nordic Seas constitutes an important conduit for fresh water exiting the Arctic Ocean towards the North Atlantic. The Arctic Ocean receives huge amounts of fresh water by continental runoff and by import from the Pacific Ocean. Within the Arctic Ocean fresh water is concentrated at the surface through sea ice formation. The East Greenland Current carries this fresh water in variable fractions as sea ice and in liquid form; part of it enters the central Nordic Seas, via branching of the current and through eddies. It controls the intensity of deep water formation and dilutes the water masses which result from convection. The last decades showed significant changes of the fresh water yield and distribution in the Nordic Seas and such anomalies were found to circulate through the North Atlantic. In this project the fresh water inventory, its spatial distribution and its pathways between the East Greenland Current and the interior Greenland and Icelandic seas shall be captured by autonomous glider missions. The new measurements and existing data will, in combination with the modeling work of the research group, serve as basis for understanding the causes of the fresh water variability and their consequences for the North Atlantic circulation and deep water formation.

Immobilisation of arsenic in paddy soil by iron(II)-oxidizing bacteria

Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.

Schwerpunktprogramm (SPP) 1315: Biogeochemische Grenzflächen in Böden; Biogeochemical Interfaces in Soil, Imaging and image simulation of organic target compound migration between different biogeochemical interfaces of a soil horizon using positron emission tomography and the lattice Boltzmann equation approach

We propose to use positron emission tomography (PET) for imaging of tracer migration in a soil horizon, to be coupled with image simulation using the lattice Boltzmann equation (LBE) modeling approach. PET enables direct visualization of inert KF or KBr solute migration at the soil horizon scale, but also reactive halogenated organic target (2,4-D and MCPA) compound migration down to nM concentrations once radiolabelling with 18F or 76Br marker is achieved. Retardation at biogeochemical interfaces with different sorption properties will thus be imaged in-situ. Theoretical image simulation for process verification will be enabled by introducing a multi-grid approach and additional kinetic boundary conditions in the parallelized LBE solver. As a boundary condition for the latter, the real pore scale and distribution of biogeochemical interfaces will be derived by X-ray computer-tomography (XCT) down to 300 nm spatial voxel resolution. The aim is to produce by both approaches velocity field movies due to heterogeneous biogeochemical retardation of the target compounds with high resolution in both the spatial and temporal scale (4D).

Soil-gas transport-processes as key factors for methane oxidation in soils

Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.

Der Einfluss der SML auf die Spurengasbiogeochemie und den Ozean-Atmosphäre-Gasaustausch

Labor- und Feldstudien zeigen, dass die Oberflächengrenzschicht des Ozeans (â€Ìsurface microlayerâ€Ì, kurz SML) die biogeochemischen Kreisläufe von klimaaktiven und atmosphärisch wichtigen Spurengasen wie Kohlenstoffdioxid (CO2), Kohlenstoffmonoxid (CO), Methan (CH4), Lachgas (N2O) und Dimethylsulfid (DMS) stark beeinflusst: (i) Jüngste Studien aus den PASSME- und SOPRAN-Projekten haben hervorgehoben, dass Anreicherungen von oberflächenaktiven Substanzen (d.h. Tensiden) einen starken (dämpfenden) Effekt sowohl auf die CO2- als auch auf die N2O-Flüsse über die SML/Atmosphären-Grenzfläche hinweg haben und (ii) Spurengase können durch (mikro)biologische oder (photo)chemische Prozesse in der SML produziert und verbraucht werden. Daher kann der oberste Teil des Ozeans, einschließlich der SML, verglichen mit dem Wasser, das in der Mischungsschicht unterhalb der SML zu finden ist, eine bedeutende Quelle oder Senke für diese Gase sein, was von sehr großer Relevanz für die Forschungseinheit BASS ist. Die Konzentrationen von CO2, N2O und anderen gelösten Gasen in der SML (oder den oberen Zentimetern des Ozeans) unterscheiden sich nachweislich von ihren Konzentrationen unterhalb der SML. Typischerweise werden die Nettoquellen und -senken wichtiger atmosphärischer Spurengase mit Konzentrationen berechnet, die in der Mischungsschicht gemessen wurden und mit Gasaustauschgeschwindigkeiten, die die SML nicht berücksichtigen. Diese Diskrepanzen führen zu falsch berechneten Austauschflüssen, die in der Folge zu großen Unsicherheiten in den Berechnungen der Klima-Antrieben und der Luftqualität in Erdsystemmodellen führen können. Durch die Verknüpfung unserer Spurengasmessungen mit Messungen von (i) der Dynamik und den molekularen Eigenschaften der organischen Materie und speziell des organischen Kohlenstoffs (SP1.1; SP1.5), (ii) der biologischen Diversität und der Stoffwechselaktivität (SP1.2), (iii) den optischen Eigenschaften der organischen Materie (SP1.3), (iv) der photochemischen Umwandlung der organischen Materie (SP1.4) und (v) den physikalischen Transportprozessen (SP2.3) werden wir ein umfassendes Verständnis darüber erlangen, wie die SML die Variabilität der Spurengasflüsse beeinflusst.

Ecotoxicology of Organotin compounds

Organotin and especially butyltin compounds are used for a variety of applications, e.g. as biocides, stabilizers, catalysts and intermediates in chemical syntheses. Tributyltin (TBT) compounds exhibit the greatest toxicity of all organotins and have even been characterized as one of the most toxic groups of xenobiotics ever produced and deliberately introduced into the environment. TBT is not only used as an active biocidal compound in antifouling paints, which are designed to prevent marine and freshwater biota from settlement on ship hulls, harbour and offshore installations, but also as a biocide in wood preservatives, textiles, dispersion paints and agricultural pesticides. Additionally, it occurs as a by-product of mono- (MBT) and dibutyltin (DBT) compounds, which are used as UV stabilizer in many plastics and for other applications. Triphenyltin (TPT) compounds are also used as the active biocide in antifouling paints outside Europe and furthermore as an agricultural fungicide since the early 1960s to combat a range of fungal diseases in various crops, particularly potato blight, leaf spot and powdery mildew on sugar beet, peanuts and celery, other fungi on hop, brown rust on beans, grey moulds on onions, rice blast and coffee leaf rust. Although the use of TBT and TPT was regulated in many countries world-wide from restrictions for certain applications to a total ban, these compounds are still present in the environment. In the early 1970s the impact of TBT on nontarget organisms became apparent. Among the broad variety of malformations caused by TBT in aquatic animals, molluscs have been found to be an extremely sensitive group of invertebrates and no other pathological condition produced by TBT at relative low concentrations rivals that of the imposex phenomenon in prosobranch gastropods speaking in terms of sensitivity. TBT induces imposex in marine prosobranchs at concentrations as low as 0,5 ng TBT-Sn/L. Since 1993, for the littorinid snail Littorina littorea a second virilisation phenomenon, termed intersex, is known. In female specimens affected by intersex the pallial oviduct is transformed of towards a male morphology with a final supplanting of female organs by the corresponding male formations. Imposex and intersex are morphological alterations caused by a chronic exposure to ultra-trace concentrations of TBT. A biological effect monitoring offers the possibility to determine the degree of contamination with organotin compounds in the aquatic environment and especially in coastal waters without using any expensive analytical methods. Furthermore, the biological effect monitoring allows an assessment of the existing TBT pollution on the basis of biological effects. Such results are normally more relevant for the ecosystem than pure analytical data. usw.

1 2 3 4 564 65 66