API src

Found 839 results.

Digital GreenTech 2 - KIMBA: KI-basierte Prozesssteuerung und automatisiertes Qualitätsmanagement im Recycling von Bau- und Abbruchabfällen durch sensorbasiertes Inline-Monitoring von Korngrößenverteilungen

ANK-MK: Kohlenstoffeinträge und -festlegung in Wattböden: Bewertung des Beitrags von Watten zum natürlichen Klimaschutz

Ingenieurgeologische Kartierung in Nordrhein-Westfalen - Ingenieurgeologische Karte 1 : 25 000

Die Karten sind fuer die Ballungsgebiete in Nordrhein-Westfalen konzipiert. Sie vermitteln in uebersichtlicher Form einen allgemeinen und grundsaetzlichen Kenntnisstand ueber den Baugrund bis ca. 30 m Tiefe. Zu der Hauptkarte 1 : 25 000 ueber Art und Maechtigkeit der Bodenschichten einer obersten ingenieurgeologischen Einheit mit Darstellung von Auffuellungen, humosen Ablagerungen, staerker verformbaren jungen Schluffen und locker gelagerten Sanden gehoeren ca. 5 vertikale Schnitte mit Darstellung der Schichten bis 30 m Tiefe, hohen und niedrigen Grundwasserstaenden, eine Karte der Quartaerbasis, mehrere Karten 1 : 50 000 der Grundwassergleichen fuer einen zeitlich begrenzten sehr hohen Grundwasserstand und Flurabstand des Grundwassers fuer den gleichen Zeitraum, dazu mehrere Grundwasserganglinien, welche die Aenderungen der Grundwasserstaende ueber die letzten 30 Jahre dokumentieren. Eine Bohrkarte 1 : 50 000 gibt Lage und Aufschlusstiefe aller Bohrungen an, die fuer die Kartenentwuerfe benutzt wurden. Zusaetzlich zeigt eine Graphik die Korngroessenverteilungen und eine Tabelle der bodenmechanischen Kennwerte der dargestellten Schichten. Die Karte bildet eine Grundlage fuer Bauplanungen aller Art, die mit dem Boden in Beruehrung kommen, insbesondere aber auch eine Hilfe fuer die Ausweisung von Bebauungsgebieten, Deponieflaechen, Regenrueckhaltebecken, Abgrabungsflaechen, Grundwasserschutz, Strassentrassen, Feuchtgebiete. Sie laesst die Moeglichkeit des obersten Grundwasserleiters, Flaechen mit sehr hohen und niedrigen Grundwasserstaenden vorteilhaften und unguenstigen Baugrund erkennen.

EasyGSH-DB: Sedimentologie [csv] (1996, 2006, 2016)

Masseprozentuale Kornfraktionierung (¼-ϕ-Intervalle) Definition: Eine Summenkurve ist eine kontinuierliche, monotone mathematische Funktion, die an jeder Stelle einen Masseanteil für die entsprechende Korngröße darstellt. Um diese Funktion menschenlesbar abspeichern zu können, wird sie in vorgegebenen Intervallen diskretisiert, hier in der ϕ-skalierten Summenkurve in ¼-ϕ-Schritten. Datenerzeugung: Die Basis für sedimentologische Auswertungen bilden Oberflächensedimentproben, die im Rahmen des Projektes EasyGSH mittels anisotroper Interpolationsverfahren und unter Berücksichtigung hydrodynamischer Faktoren und Erosions- und Sedimentationsprozesse von Einzelproben verschiedener Jahre auf ein für ein Jahr gültiges Raster interpoliert wurden. An jedem dieser Rasterknoten liegt die Sedimentverteilung daher als Summenkurve vor. Für die Deutsche Bucht liegt dieses Basisprodukt für die Jahre 1996, 2006 und 2016 im 100 m Raster, für die Ausschließliche Wirtschaftszone Deutschlands für das Jahr 1996 im 250 m Raster vor. Aus diesen Summenkurven wird im Wertebereich ϕ = -10 bis ϕ = 10 in ¼-ϕ-Schritten der aufsummierte Masseanteil des jeweiligen Intervalls errechnet und tabellarisch hinterlegt. Produkt: 100 m Raster der Deutschen Bucht (1996, 2006, 2016) beziehungsweise 250 m Raster der Ausschließlichen Wirtschaftszone (1996), an denen für jeden Rasterknoten folgende Informationen bereitgestellt werden: • Information zum Datenersteller (durch Interpolation und Rasterung smile consult GmbH) • Probenbezeichnung (durch Interpolation und Rasterung laufende Nummer) • Gültigkeitsdatum der Kornverteilung • Lage der Kornverteilung • Höhe der Kornverteilung • Koordinatensystem • Median-Korndurchmesser d50 • Tabellarische Auflistung der ¼-ϕ-Intervalle mit ihren Masseanteilen Das Produkt wird im CSV-Format bereitgestellt. Zitat für diesen Datensatz (Daten DOI): Sievers, J., Rubel, M., Milbradt, P. (2020): EasyGSH-DB: Themengebiet - Sedimentologie. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.7000.0005 English Download: The data for download can be found under References ("Weitere Verweise"), where the data can be downloaded directly or via the web page redirection to the EasyGSH-DB portal.

Field based and laboratory data of sediment cores from the Lower Havel Inner Delta near Lake Gülpe, Brandenburg (Germany)

Sediment cores were recovered using a hand-held Cobra Pro (Atlas Copco) core drilling system with a 60 mm diameter open corer. One-meter segments were retrieved and assessed in the field for sedimentological features, including estimations of grain size, carbonate content, humus content, and redox features (AG Boden 2005, 2024). Colour descriptions were carried out using the Munsell Soil Color Chart. The exact positions of the drilling points were recorded using a differential GPS device (TOPCON HiPer II). The cores were photographed, documented and sampled at 5–10 cm intervals for subsequent laboratory analyses. Bulk samples from five selected cores (RK1, RK3, RK13, RK15, RK17) were freeze-dried, sieved (2 mm), and weighed. Total carbon (TC), total nitrogen (TN), and total sulfur (TS) contents were measured using a CNS analyzer (Vario EL cube, Elementar). Inorganic carbon (TIC) was determined using calcimeter measurements (Scheibler method, Eijkelkamp). Organic carbon (TOC) was calculated as TOC = TC − TIC. For the grain size analyses, sediment samples were first sieved to <2 mm and subsamples of 10 g were treated with 50 ml of 35% hydrogen peroxide (H₂O₂) and gently heated to remove organic matter. Following this, 10 ml of 0.4 N sodium pyrophosphate solution (Na₄P₂O₇) was added to disperse the particles, and the suspension was subjected to ultrasonic treatment for 45 minutes. The sand fraction was analysed by dry sieving and classified into four size classes: coarse sand (2000–630 µm), medium sand (630–200 µm), fine sand (200–125 µm), and very fine sand (125–63 µm). Finer fractions were determined using X-ray granulometry (XRG) with a SediGraph III 5120 (Micromeritics). These included coarse silt (63–20 µm), medium silt (20–6.3 µm), fine silt (6.3–2.0 µm), coarse clay (2.0–0.6 µm), medium clay (0.6–0.2 µm), and fine clay (<0.2 µm).

Numerische Modellierung des Suspensionstransports zur Berücksichtigung des lateralen Sedimentaustauschs

Ziel des Projektes ist der Nachweis der numerischen Modellierbarkeit des lateralen Sedimentaustauschs von nicht-kohäsivem Material zwischen Vorland bzw. Buhnenbereich und Hauptgerinne an Binnenwasserstraßen sowie eine Verbesserung der langfristigen morphodynamischen numerischen Modellierungen durch die Berücksichtigung des Suspensionstransports. Aufgabenstellung und Ziel Sedimenttransportprozesse werden bislang in den numerischen flussbaulichen Modellen der Abteilung Wasserbau im Binnenbereich nahezu ausschließlich als Geschiebetransport abgebildet. Die Limitierungen durch diese Vereinfachung sind gering, sofern das vorrangige Interesse der Untersuchungen dem Hauptstrom gilt. Allerdings werden u. a. durch die Anforderungen aus der EU-Wasserrahmenrichtlinie in den Projekten an Binnenwasserstraßen zunehmend Fragestellungen aufgeworfen, die das Vorland und die Interaktion zwischen Vorland und Hauptgerinne betreffen (z. B. Verlandungen von Vorlandgewässern). Bei zunehmendem Strömungsangriff gerät das als Geschiebe transportierte Material in Suspension; es trägt somit nicht nur zur Sohlentwicklung im Hauptstrom bei, sondern gelangt in Abhängigkeit der Korngröße in die Buhnenfelder und auf das Vorland bzw. wird dort wieder remobilisiert und gegebenenfalls erneut in den Hauptstrom eingetragen. Der seitliche Ein- und Austrag kann somit einen nicht unerheblichen Anteil an der Sedimentbilanz haben. Fragestellungen zu Verlandungstendenzen auf dem Vorland oder zur morphologischen Entwicklung von Vorlandgewässern können nur unter der Berücksichtigung von Suspensionstransport beantwortet werden. Die Anschlüsse zwischen Hauptgerinne und Vorlandgewässer sind oft nicht sohlnah realisiert, um bewusst den Geschiebeeintrag zu verhindern. Ein Materialeintrag auf das Vorland und in die Vorlandgewässer erfolgt dabei vorwiegend in Suspension. Ziel des Projektes ist der Nachweis der numerischen Modellierbarkeit des lateralen Sedimentaustauschs von nicht-kohäsivem Material zwischen Vorland und Hauptgerinne an Binnenwasserstraßen sowie eine Verbesserung der langfristigen morphodynamischen numerischen Modellierungen durch die Berücksichtigung des Suspensionstransports. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Mithilfe von prognosefähigen hydro-morphodynamischen Modellen für Geschiebetransport und Transport in Suspension können Projekte mit zunehmend ökologisch geprägten Fragestellungen effektiv und mit belastbaren Ergebnissen bearbeitet werden. Zudem ist eine Verbesserung der langfristigen morphodynamischen Modellierungen durch die Berücksichtigung der Suspensionsvorgänge zu erwarten. Untersuchungsmethoden Neben einem intensiven Literaturstudium werden in dem Vorhaben vor allem zweidimensionale tiefengemittelte bzw. dreidimensionale numerische Modelle unter Verwendung des Programmpakets openTELEMAC eingesetzt. Zunächst soll das numerische Modell anhand von Labormodellversuchen zum lateralen Sedimentaustausch validiert werden. Dazu gehören auch Sensitivitätsuntersuchungen für eine geeignete kombinierte Suspensions- und Geschiebetransportmodellierung an Bundeswasserstraßen im Binnenbereich. Anschließend können verschiedene Fragestellungen zum lateralen Sedimentaustausch an Prinzipmodellen und spezifischen Flussabschnitten bearbeitet werden, wie z. B. Fragen zur Vermeidung von Sedimentablagerungen bei der Anbindung von Vorlandgewässern an das Hauptgerinne und der kausale Zusammenhang zwischen der Hydrodynamik und dem lateralen Sedimenteintrag bzw. -austrag zwischen Hauptgerinne und Buhnenfeldern.

Geophysical, Sedimentological and Geochemical Data from the Lower Havel Inner Delta (Gülpe Island), Brandenburg (Germany)

To investigate subsurface features in the Lower Havel River floodplain, we conducted Electrical Resistivity Tomography (ERT) transects and Electromagnetic Induction (EMI) surveys at three different depths in 2023 and 2024. These near surface geophysical methods were complemented by 24 driving core drillings to relate the electrical properties with sedimentological characteristics. Additionally, five selected sediment cores were used for subsequent geochemical lab analyses (grain size, CNS, TOC, TIC). Electromagnetic induction (EMI) was measured with a CMD-Mini Explorer (GF Instruments s.r.o., Brno, Czech Republic) in June 2023 and June 2024. We used the vertical dipole (VDP) at coil spacings of 0.32 m (VDP1), 0.71 m (VDP2) and 1.18 m (VDP3), archieving effective penetration depths of 0.5 m (VDP1), 1.0 m (VDP2) and 1.8 m (VDP3). According to the manufacturer, 70% of the signal originate from above these depths. The EMI sensors measure the apparent electrical conductivity (ECa, in mS/m). Measurements were taken by carrying the instrument about 0.2 m above ground while being directly connected to D-GPS (Leica GPS1200) for positioning. The acquisition rate was five measurements per second. Data quality was checked by measuring a reference line before and after each measurement. The area investigated by EMI in June 2023 is located to the north and northeast of the Gülpe research station. It has a total area of 12.3 ha. The reference line was located in the southern part of the study area. No drift correction had to be applied due to good data quality. Reference lines and single outliers were removed. The area investigated by EMI in June 2024 is located southeast of the research station. The survey area there is 8.1 ha in size. The reference line for the measurements there was located in the north-westernmost area of the site. No drift correction had to be applied due to good data quality. Reference lines and single outliers were removed. The Electrical Resistivity Tomography (ERT) data were acquired by using a PC controlled DC resistivity meter system (RESECS, Geoserve, Kiel, Germany). In total, we measured four ERT transects. Two transects in June 2023, where transect 1 had a total length of 259 m with an electrode spacing of 0.5 m and transect 2 had a total length of 223 m with an electrode spacing of 1 m. The measurements in 2023 were carried out under extreme dry conditions. Two further transects were measured in June 2024 with an electrode spacing of 1m, transect 3 with a total length of 207 m and transect 4 with a total length of 239 m. We applied wenner alpha and dipol-dipol configuration. The coordinates and the height of the electrodes were measured with a D-GPS (2023: TOPCON HiPer II / 2024: Leica GPS1200). Sediment cores were recovered using a hand-held Cobra Pro (Atlas Copco) core drilling system with a 60 mm diameter open corer. One-meter segments were retrieved and assessed in the field for sedimentological features, including estimations of grain size, carbonate content, humus content, and redox features (AG Boden 2005, 2024). Colour descriptions were carried out using the Munsell Soil Color Chart. The exact positions of the drilling points were recorded using a differential GPS device (TOPCON HiPer II). The cores were photographed, documented and sampled at 5–10 cm intervals for subsequent laboratory analyses. Bulk samples from five selected cores (RK1, RK3, RK13, RK15, RK17) were freeze-dried, sieved (2 mm), and weighed. Total carbon (TC), total nitrogen (TN), and total sulfur (TS) contents were measured using a CNS analyzer (Vario EL cube, Elementar). Inorganic carbon (TIC) was determined using calcimeter measurements (Scheibler method, Eijkelkamp). Organic carbon (TOC) was calculated as TOC = TC − TIC. For the grain size analyses, sediment samples were first sieved to <2 mm and subsamples of 10 g were treated with 50 ml of 35% hydrogen peroxide (H₂O₂) and gently heated to remove organic matter. Following this, 10 ml of 0.4 N sodium pyrophosphate solution (Na₄P₂O₇) was added to disperse the particles, and the suspension was subjected to ultrasonic treatment for 45 minutes. The sand fraction was analysed by dry sieving and classified into four size classes: coarse sand (2000–630 µm), medium sand (630–200 µm), fine sand (200–125 µm), and very fine sand (125–63 µm). Finer fractions were determined using X-ray granulometry (XRG) with a SediGraph III 5120 (Micromeritics). These included coarse silt (63–20 µm), medium silt (20–6.3 µm), fine silt (6.3–2.0 µm), coarse clay (2.0–0.6 µm), medium clay (0.6–0.2 µm), and fine clay (<0.2 µm).

Festigkeiten nichtbindiger Böden

Herleitung von Korrelationen zur realitätsnahen Beurteilung der Festigkeiten nichtbindiger Böden Die Datenbasis bestehender Korrelationen zur Ermittlung der Festigkeiten nichtbindiger Böden anhand von Drucksondierungen ist gering. Mittels Untersuchungen in einer Versuchsgrube sowie Labor- und Feldversuchen sollen Korrelationen aufgestellt werden, um eine sichere und wirtschaftliche Bemessung zu ermöglichen. Aufgabenstellung und Ziel Das maßgebliche Kriterium zur Bemessung von Bauteilen sowie zur Beurteilung von Standsicherheiten ist neben dem Grundwasserstand die Festigkeit, d. h. die Scherfestigkeit und die Kompressibilität der anstehenden Böden. Während bei Festgestein und bindigen Böden (Tone und Schluffe) vornehmlich direkte Elementversuche an entnommenen Bodenproben im Labor ausgeführt werden, kommen bei nichtbindigen Böden (Sande und Kiese) indirekte Verfahren mittels Sondierungen in Verbindung mit Korrelationen zur Anwendung. Von den unterschiedlichen Sondierverfahren kommt heutzutage überwiegend die Drucksondierung (CPT – Cone Penetration Test) zur Anwendung, um auf die Festigkeiten und die Schichtenfolge der Böden in situ zu schließen. Wie Untersuchungen (z. B. Melzer 1968; Lunne et al. 1997) gezeigt haben, ist das Sondierergebnis einer CPT, d. h. der Spitzenwiderstand und die Mantelreibung, abhängig von diversen Eigenschaften des anstehenden Bodens, wie z. B.: Kornform, Kornverteilung, Lagerungsdichte, Chemismus, Grundwasserstand. Derzeitige Korrelationen (z. B. DIN EN 1997-2, 10/2010) gehen auf einige der Parameter, insbesondere die Kornverteilung, ein. Die Datengrundlage zur Herleitung der derzeit verwendeten Korrelationen basiert lediglich auf oberflächennahen Untersuchungen; die Datenbasis ist gering. Eine Interpretation durch den Sachverständigen für Geotechnik auf Grundlage lokaler Erfahrungen wird daher in den Normen empfohlen. In der norddeutschen Tiefebene stehen regionaltypische nichtbindige Böden in weiten bauwerksrelevanten Bereichen an. Zur realitätsnahen Beurteilung der Festigkeiten dieser Böden sind systematische experimentelle Untersuchungen von Drucksondierungen in einem labortechnischen Druckbehälter (Bild 1) durchzuführen und folglich eigene Korrelationen aufzustellen. Hierbei ist in die unterschiedlichen Ablagerungsmilieus, wie z. B. marine Sedimente, glaziale Schmelzwassersande und Beckensande zu unterscheiden. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) In der Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) werden Aufschlüsse für die Erkundung des Baugrunds in großem Umfang als Sondierungen ausgeführt und bilden die Grundlage für die Bewertung des Baugrundes. Nur durch eine zutreffend ermittelte Scherfestigkeit und Kompressibilität des Baugrundes können Bauteile wie Uferwände, Baugrubenwände und -sohlen, Rückverankerungen, Pfähle, etc. wirtschaftlich und ressourcenschonend und gleichzeitig sicher dimensioniert werden. Des Weiteren können mithilfe einer besseren Kenntnis der Festigkeitseigenschaften von Böden Standsicherheiten bestehender Strukturen realitätsnäher berechnet werden, was z. B. bei bestehenden übersteilen Böschungen an Kanälen das Entscheidungskriterium für die weitere Vorgehensweise (Erhalt, Beobachtungsmethode, Ertüchtigung, Neubau) ist. Abschließend kommt den o. g. Parametern in der Planung eine bedeutende Rolle bei der Festlegung geeigneter Bauverfahren zu. Untersuchungsmethoden Es sind experimentelle Untersuchungen in einem labortechnischen Druckbehälter, auch Kalibrierkammer genannt (Bild 1), zur Erstellung eigener Korrelationen vorgesehen. Hierbei sind unter definierten Bedingungen unterschiedliche Korngemische zu untersuchen, um verschiedene Einflussparameter wie z. B. Kornverteilung, Korngröße, Kornform, Lagerungsdichte, etc. und auf das Sondierergebnis zu untersuchen. (Text gekürzt) Herleitung von Korrelationen zur realitätsnahen Beurteilung der Festigkeiten nichtbindiger Böden Die Datenbasis bestehender Kor

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.1: Optimierung des Adsorbermaterials für die Beschichtung mit Enzymen

Verbesserung der Prozesseffizienz des werkstofflichen Recyclings von Post-Consumer Kunststoff-Verpackungsabfällen durch intelligentes Stoffstrommanagement, Teilvorhaben 9: Sensorbasiertes Qualitätsmanagement und intelligente Sortierung

1 2 3 4 582 83 84