s/kosteneffizient/Kosteneffizienz/gi
Im Rahmen des Forschungsvorhabens Timber Earth Slab (T.E.S.) schließen sich Branchenexperten aus der Industrie aus den Bereichen Holzbau und Lehmbau mit Professuren der TU München aus den Disziplinen Digitaler Fertigung, Holzbau und Baukonstruktion, Klimadesign und Architektur zusammen, um im mehrgeschossigen Holzbau einen grundlegenden Beitrag hin zum CO2-neutralen Bauen anzustoßen: T.E.S., eine industriell gefertigte Net-Zero Holz-Lehm-Decke. Geschossdecken sind eine zentrale Komponente für das Erreichen der CO2-Neutralität im mehrgeschossigen Holzbau mit sehr hohen Anforderungen an den Brandschutz, thermischer Masse und Schallschutz. T.E.S. kombiniert computergestütztes Design, robotisch gestützte Fertigung und Materialtechnologie, um eine neue innovative Lösung für die industrielle Fertigung eines ressourceneffizienten und funktionsintegrierten Deckensystems aus Holz und Lehm zu erforschen, das alle strukturellen und bautechnischen Anforderungen für den mehrgeschossigen Holzbau erfüllt, außerdem CO2-neutral hergestellt werden kann und vollständig rezyklierbar ist. Mithilfe der Materialtechnologie des ETH-Spinoffs Oxara, mit der Lehm mit geringem Wasseranteil fließfähig gemacht und vergossen werden kann, und robotischer Fertigungstechnologie, die die maßgeschneiderte Herstellung einer auf den Fließlehm abgestimmten feingliedrigen Holzkonstruktion ermöglicht, verspricht T.E.S. ein hybrides Deckensystem, welches die Stärken beider Materialien ideal kombinieren lässt: Durch die guten statischen Eigenschaften von Holz in Kombination mit den positiven Eigenschaften des Lehms hinsichtlich thermischer Masse, der Möglichkeiten zur thermischen Aktivierung, Brandschutz und Schallschutz können mit T.E.S. Nachhaltigkeit, Performativität und Kosteneffizienz in einer Deckenkonstruktion zusammengebracht werden.
Mit der expliziten Integration wirtschaftlicher Überlegungen in der Europäischen Wasserrahmenrichtlinie (WRRL) wurde eine zentrale Neuerung in den europäischen Gewässerschutz eingeführt. Gekoppelt mit dem integrativen Flussgebietsansatz der Richtlinie, sehen sich Behörden und Experten gleichermaßen vor neue Herausforderungen gestellt. Vor diesem Hintergrund wurde Ende 2005 eine Ad-Hoc Arbeitsgruppe Ökonomie in der Flussgebietsgemeinschaft Elbe einberufen. Die Professur für Umwelttechnik / Umweltmanagement unterstützt die Arbeit der Ad-Hoc Arbeitsgruppe zu ökonomischen Fragestellungen des Umsetzungsprozesses durch die fachliche Begleitung der Sitzungen und fachlichen Gutachten zu speziellen Fragestellungen. Im Rahmen des Projektes wurde beispielsweise eine Auswertung von Pilotprojekten zur Kosteneffizienzanalyse durchgeführt und Empfehlungen für das weitere Vorgehen an der Elbe entwickelt.
Im Rahmen des Forschungsvorhabens Timber Earth Slab (T.E.S.) schließen sich Branchenexperten aus der Industrie aus den Bereichen Holzbau und Lehmbau mit Professuren der TU München aus den Disziplinen Digitaler Fertigung, Holzbau und Baukonstruktion, Klimadesign und Architektur zusammen, um im mehrgeschossigen Holzbau einen grundlegenden Beitrag hin zum CO2-neutralen Bauen anzustoßen: T.E.S., eine industriell gefertigte Net-Zero Holz-Lehm-Decke. Geschossdecken sind eine zentrale Komponente für das Erreichen der CO2-Neutralität im mehrgeschossigen Holzbau mit sehr hohen Anforderungen an den Brandschutz, thermischer Masse und Schallschutz. T.E.S. kombiniert computergestütztes Design, robotisch gestützte Fertigung und Materialtechnologie, um eine neue innovative Lösung für die industrielle Fertigung eines ressourceneffizienten und funktionsintegrierten Deckensystems aus Holz und Lehm zu erforschen, das alle strukturellen und bautechnischen Anforderungen für den mehrgeschossigen Holzbau erfüllt, außerdem CO2-neutral hergestellt werden kann und vollständig rezyklierbar ist. Mithilfe der Materialtechnologie des ETH-Spinoffs Oxara, mit der Lehm mit geringem Wasseranteil fließfähig gemacht und vergossen werden kann, und robotischer Fertigungstechnologie, die die maßgeschneiderte Herstellung einer auf den Fließlehm abgestimmten feingliedrigen Holzkonstruktion ermöglicht, verspricht T.E.S. ein hybrides Deckensystem, welches die Stärken beider Materialien ideal kombinieren lässt: Durch die guten statischen Eigenschaften von Holz in Kombination mit den positiven Eigenschaften des Lehms hinsichtlich thermischer Masse, der Möglichkeiten zur thermischen Aktivierung, Brandschutz und Schallschutz können mit T.E.S. Nachhaltigkeit, Performativität und Kosteneffizienz in einer Deckenkonstruktion zusammengebracht werden
Dieses Schwerpunktthema des Themenfelds 2 behandelt die Einschleppung und Verbreitung von zum Teil invasiven Neobiota, welche die heimische Tier- und Pflanzenwelt gefährdet und somit die Biodiversität beeinträchtigt. Der Ausbau der marinen Verkehrsinfrastruktur und die damit einhergehende weitere Belastung der heimischen marinen und binnenländischen Ökosysteme durch die Einschleppung von Neobiota (z. B. über das Ballastwasser der Schiffe) sind ein wichtiger Faktor, der aber noch nicht abschließend verstanden ist. Dies betrifft auch die Verbreitungswege über die Binnenwasserstraßen sowie über das Straßen- und Schienennetz. Ein wichtiges Problem sind in diesem Zusammenhang invasive Pflanzenarten, die teilweise sogar gesundheitsschädigend sein können. Hier besteht Handlungsbedarf, um die Veränderungen in der Artenvielfalt zu dokumentieren und zu bewerten und um die Entwicklung von Techniken zu unterstützen, die helfen der Arteneinschleppung entgegenzuwirken. Das Projekt wird dazu die Bedeutung invasiver Arten an ausgewählten Brennpunkten der Infrastruktur und des Verkehrsbetriebs ermitteln und ggf. deren nachteilige Wirkungen auf den Natur- und Artenschutz und die Biodiversität analysieren. Ziele des Projekts sind die Formulierung verkehrsträgerübergreifender Strategien zur Prävention der Einschleppung oder Kontrolle der bereits vorhandenen Neobiota, die sich am Kosten-Nutzen-Verhältnis orientieren.
Ziel des Vorhabens ist es unter Berücksichtigung vorhandener Informationen und ggf. zusätzlich zu untersuchender Proben Oberflächenwasserkörper mit natürlicherweise erhöhten Gehalten an Blei (Pb), Cadmium (Cd), Kupfer (Cu), Nickel (Ni) und/oder Zink (Zn) in der Wasserphase oder im Sediment/Schwebstoff zu identifizieren und für diese Wasserkörper die natürlichen Hintergrundkonzentrationen für diese Schwermetalle in der Wasserphase sowie im Sediment/Schwebstoff abzuleiten. Auf Basis der Ergebnisse können einerseits für diejenigen Wasserkörper, in denen die Umweltqualitätsnormen (UQN)für die prioritären Metalle Pb, Cd und Ni auf Grund von natürlichen Gegebenheiten überschritten werden, Ausnahmen nach Artikel 4(5) WRRL geltend gemacht werden. Andererseits wird die Ursachenforschung für die fünf betrachteten Metalle deutlich unterstützt. Dadurch können Minderungsmaßnahmen zielgerichteter und kosteneffizienter gestaltet werden.
Das übergeordnete Ziel von TrophCost ist es, Daten und Informationen der Biodiversitätsexploratorien (BEs) bezüglich des gemeinsamen Vorkommens und der trophischen Beziehungen von pflanzlichen Ressourcen und Insektenkonsumenten zu nutzen, um konzeptionell ein ökologisch-ökonomisches Modellierungsverfahren weiterzuentwickeln. Letztendlich soll ein Modellierungsverfahren entwickelt werden, das unter Berücksichtigung der Daten aus den BEs Vorschläge entwickelt, wie Agrarumweltprogramme zum Schutz von Grünlandbiodiversität kosteneffizient ausgestaltet werden sollen. Unter Kosteneffizienz wird hier verstanden, dass für gegebene Budgets Biodiversitätsschutzziele im höchstmöglichen Umfang erreicht werden. Das Modellierungsverfahren wird gegenüber dem bisherigen, rein modelbasierten Ansatz weiterentwickelt, indem in einem verbundenen Ansatz die Auswirkungen von Managementmaßnahmen auf Biodiversität, Nahrungsbeziehungen sowie ökonomische Aspekte der Grünlandnutzung basierend auf Daten aus den BEs im Rahmen von Simulationen und Optimierungen verknüpft werden. Ergebnisse des Modellierungsverfahrens werden als Schutzgrößen sowohl gefährdete Arten als auch Interaktionen zwischen Arten berücksichtigen. Die geographische Diversität der BEs bietet ideale Bedingungen um räumlich differenzierte Empfehlungen abzuleiten und auch, um zu analysieren, aus welchen Gründen sie sich unterscheiden. Wir werden in einem ersten Schritt Gruppen von Pflanzen- und Insektenarten mit häufigem gemeinsamen Vorkommen und bekannten trophischen Beziehungen identifizieren. Zu diesem Zweck werden Assoziationen zwischen Artenpaaren von pflanzlichen Ressourcen und Insektenkonsumenten in Matrizen verglichen, welche das gemeinsame Vorkommen und bekannte Nahrungsbeziehungen charakterisieren. Die Artenpaare mit häufigem gemeinsamen Vorkommen und etablierten Nahrungsbeziehungen sind Kandidaten, die im ökologisch-ökonomischen Modellierungsverfahren berücksichtigt werden. Um zu verstehen wie sich die lokale Grünlandbewirtschaftung auf das gemeinsame Vorkommen von pflanzlichen Ressourcen und Insektenkonsumenten entlang der Umweltgradienten in den BEs auswirkt, werden die Nahrungsbeziehungen der Artenpaare für Tagfalter und granivore Laufkäfer für vorhandene Gemeinschaftsdaten aus allen 150 Grünlandflächen der BEs untersucht. In einem nächsten Schritt werden wir dann ein bestehendes Modellierungsverfahren verändern, indem wir ökologische, ökonomische sowie Landnutzungs- und Landschaftsdaten für die drei BEs in das Modellierungsverfahren einfügen. Abschließend werden wir das Modellierungsverfahren anwenden, um Empfehlungen für kosteneffiziente Agrarumweltprogramme abzuleiten, die Nahrungsbeziehungen zwischen pflanzlichen Ressourcen und Insektenkonsumenten berücksichtigen. Diese Empfehlungen werden für alle drei Fallstudiengebiete abgeleitet, wodurch räumlich explizite Empfehlungen entstehen.
Im Rahmen des Forschungsvorhabens Timber Earth Slab (T.E.S.) schließen sich Branchenexperten aus der Industrie aus den Bereichen Holzbau und Lehmbau mit Professuren der TU München aus den Disziplinen Digitaler Fertigung, Holzbau und Baukonstruktion, Klimadesign und Architektur zusammen, um im mehrgeschossigen Holzbau einen grundlegenden Beitrag hin zum CO2-neutralen Bauen anzustoßen: T.E.S., eine industriell gefertigte Net-Zero Holz-Lehm-Decke. Geschossdecken sind eine zentrale Komponente für das Erreichen der CO2-Neutralität im mehrgeschossigen Holzbau mit sehr hohen Anforderungen an den Brandschutz, thermischer Masse und Schallschutz. T.E.S. kombiniert computergestütztes Design, robotisch gestützte Fertigung und Materialtechnologie, um eine neue innovative Lösung für die industrielle Fertigung eines ressourceneffizienten und funktionsintegrierten Deckensystems aus Holz und Lehm zu erforschen, das alle strukturellen und bautechnischen Anforderungen für den mehrgeschossigen Holzbau erfüllt, außerdem CO2-neutral hergestellt werden kann und vollständig rezyklierbar ist. Mithilfe der Materialtechnologie des ETH-Spinoffs Oxara, mit der Lehm mit geringem Wasseranteil fließfähig gemacht und vergossen werden kann, und robotischer Fertigungstechnologie, die die maßgeschneiderte Herstellung einer auf den Fließlehm abgestimmten feingliedrigen Holzkonstruktion ermöglicht, verspricht T.E.S. ein hybrides Deckensystem, welches die Stärken beider Materialien ideal kombinieren lässt: Durch die guten statischen Eigenschaften von Holz in Kombination mit den positiven Eigenschaften des Lehms hinsichtlich thermischer Masse, der Möglichkeiten zur thermischen Aktivierung, Brandschutz und Schallschutz können mit T.E.S. Nachhaltigkeit, Performativität und Kosteneffizienz in einer Deckenkonstruktion zusammengebracht werden.
For Greenpeace France, Ecofys provided an independent assessment for European Emissions Trading Scheme (EU ETS) sectors in France in phase II of the EU ETS according to the objective of the Emissions Trading Directive using the projection data publicly available as of March 2006.
Im Rahmen des Forschungsvorhabens Timber Earth Slab (T.E.S.) schließen sich Branchenexperten aus der Industrie aus den Bereichen Holzbau und Lehmbau mit Professuren der TU München aus den Disziplinen Digitaler Fertigung, Holzbau und Baukonstruktion, Klimadesign und Architektur zusammen, um im mehrgeschossigen Holzbau einen grundlegenden Beitrag hin zum CO2-neutralen Bauen anzustoßen: T.E.S., eine industriell gefertigte Net-Zero Holz-Lehm-Decke. Geschossdecken sind eine zentrale Komponente für das Erreichen der CO2-Neutralität im mehrgeschossigen Holzbau mit sehr hohen Anforderungen an den Brandschutz, thermischer Masse und Schallschutz. T.E.S. kombiniert computergestütztes Design, robotisch gestützte Fertigung und Materialtechnologie, um eine neue innovative Lösung für die industrielle Fertigung eines ressourceneffizienten und funktionsintegrierten Deckensystems aus Holz und Lehm zu erforschen, das alle strukturellen und bautechnischen Anforderungen für den mehrgeschossigen Holzbau erfüllt, außerdem CO2-neutral hergestellt werden kann und vollständig rezyklierbar ist. Mithilfe der Materialtechnologie des ETH-Spinoffs Oxara, mit der Lehm mit geringem Wasseranteil fließfähig gemacht und vergossen werden kann, und robotischer Fertigungstechnologie, die die maßgeschneiderte Herstellung einer auf den Fließlehm abgestimmten feingliedrigen Holzkonstruktion ermöglicht, verspricht T.E.S. ein hybrides Deckensystem, welches die Stärken beider Materialien ideal kombinieren lässt: Durch die guten statischen Eigenschaften von Holz in Kombination mit den positiven Eigenschaften des Lehms hinsichtlich thermischer Masse, der Möglichkeiten zur thermischen Aktivierung, Brandschutz und Schallschutz können mit T.E.S. Nachhaltigkeit, Performativität und Kosteneffizienz in einer Deckenkonstruktion zusammengebracht werden.
Die EU-Energieeffizienzrichtlinie sieht bis zum Jahr 2020 eine Verringerung des Energieverbrauchs um 20 Prozent vor. Bleibt es jedoch bei der aktuellen Entwicklung, wird Europa nur die Hälfte davon tatsächlich erreichen. Deshalb sind beste verfügbare Techniken, die zu einer Reduzierung des Energieverbrauchs innerhalb der EU beitragen können, notwendiger denn je. Die technische Dämmung von Industrieanlagen ist eine solche beste und bereits seit Jahren verfügbare Technik. Eine von der European Industrial Insulation Foundation (EiiF) in Auftrag gegebene Ecofys-Studie belegt, dass eine bessere Dämmung von Industrieanlagen großes Potential für Energie- und CO2-Einsparungen birgt. Die dazu erforderlichen Maßnahmen könnten kosteneffizient umgesetzt werden. Der Studie zufolge sind mindestens 10 Prozent der Oberflächen in industriellen Anlagen ungedämmt oder weisen eine beschädigte Isolierung auf. Darüber hinaus sind die meisten existierenden Dämmsysteme auf Basis von allgemeinen und heute deutlich zu hohen Wärmeverlustraten oder Minimalstandards für Oberflächentemperaturen angelegt. Anforderungen wie Wirtschaftlichkeit oder maximale Energieeffizienz werden dabei in der Regel nicht berücksichtigt. Würde die Industrie in der EU auf kosteneffiziente Dämmsysteme umstellen, wären - so die Studie - jährliche Energieeinsparungen von 620 PJ und eine Reduktion der CO2-Emissionen um 49 Mt CO2 pro Jahr möglich. Die vollständige Studie kann beim EiiF angefordert werden: http://www.eiif.org/?Extra/50/14.
Origin | Count |
---|---|
Bund | 1083 |
Land | 18 |
Wissenschaft | 1 |
Type | Count |
---|---|
Daten und Messstellen | 1 |
Förderprogramm | 1034 |
Taxon | 1 |
Text | 38 |
unbekannt | 27 |
License | Count |
---|---|
geschlossen | 64 |
offen | 1036 |
Language | Count |
---|---|
Deutsch | 939 |
Englisch | 252 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 23 |
Keine | 548 |
Unbekannt | 1 |
Webseite | 534 |
Topic | Count |
---|---|
Boden | 692 |
Lebewesen und Lebensräume | 647 |
Luft | 607 |
Mensch und Umwelt | 1100 |
Wasser | 456 |
Weitere | 1100 |