API src

Found 1030 results.

Related terms

Kriterien und Instrumente zur Bewertung des Potentials der Kraft-Wärme-Kopplung in Brandenburg - Phase I (KWK für Wärmepotentiale kleiner 30 MW)

Kriterien und Instrumente zur Bewertung des Potentials der Kraft-Wärme-Kopplung in Brandenburg - Phase II (KWK für Wärmepotentiale größer 30 MW, Holzhackschnitzelanlagen)

Kraftwerke: konventionelle und erneuerbare Energieträger

<p>Kraftwerke: konventionelle und erneuerbare Energieträger </p><p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand August 2025.<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand August 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Windleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p>&nbsp;</p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>⁠-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 20 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 188,8 GW. (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“)</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der <strong>Photovoltaik</strong> (PV). Seit Anfang 2020 wurden mehr als 50 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren verdoppelt. Mit einem Zubau von über 16,7 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei <strong>Windenergie</strong> zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,4 GW neue Windenergie-Leistung zugebaut (2023: 3,3 GW; 2021: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,8 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a>⁠ ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig.</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.</p>

Hochtemperatur-Wärmepumpen-Energiespeicher als dekarbonisierter Flexibilitäts-Ersatz fossiler Kraftwerke

In diesem Vorhaben wird eine der Schlüsselkomponenten zu einer netzdienlichen Langzeit-Energiespeicherlösung auf Basis von Malta’s Hochtemperatur-Wärmepumpen Strom- und Wärmespeichern (MHWS) entwickelt und das MHWS Einsatzpotential in Deutschland untersucht. Die MHWS-Speichertechnologie stellt bei der Ausspeicherung gleichzeitig Strom und Wärme bereit, sodass die Elektrifizierung des Wärmesektors über Kraft-Wärmekopplung ebenfalls erfolgen kann. Ein wesentliches Ziel des Vorhabens ist die Kraftwerks-maßstäbliche Untersuchung neuer Flüssigsalz-Luft Wärmeübertrager als kritische MHWS-Schlüsselkomponente in der Testanlage für Wärmespeicherung in Salzschmelzen (TESIS) des DLR. Diese Untersuchung stellt einen sehr wichtigen Qualifikations-Schritt dar, das Wärmepumpen Strom- und Wärmespeicher Konzept zu Kraftwerksgröße hochzuskalieren und damit fossile Gaskraftwerke samt ihren Flexibilitäts- und Netzstabilisierungsdiensten in Zukunft zu ersetzen. Damit ebnet dieses Vorhaben den Weg, für die Energiewende in Deutschland, Europa und weltweit deutsche Turbomaschinen als weitere Kernkomponente von Hochtemperatur-Wärmepumpen Strom- und Wärmespeichern einzusetzen. MHWS verfolgt folgende Hauptziele im Teilvorhaben: - Definition geeigneter Zielparameter für die Wärmeübertrager-Untersuchungen und die Integration der MHWS-Speichertechnologie in das Energiesystem (AP2) - Begleitung der Wärmeübertragertests und Auswertung der Testergebnisse (AP 3) samt ihrer Auswirkung auf Design und Betrieb eines MHWS-Speichers (AP 6) - Anpassung des MHWS-Speichermodells für Wärmeauskopplung und Kostenermittlung unterschiedlicher Speicherkonfigurationen (AP6) - Technoökonomische Bewertung der MHWS-Speichertechnologie mit Integration in Strom- und Wärmenetze und Untersuchung des Marktpotentials in Deutschland (AP7)

Entwicklung und Erprobung eines neuartigen Sensorsystems zur kontinuierlichen Erfassung des Zylinderdruckverlaufs an Verbrennungskraftmotoren

Kraft-Wärme-Kopplung (KWK)

<p>Kraft-Wärme-Kopplung ist die gleichzeitige Umwandlung von Energie in mechanische oder elektrische Energie und nutzbare Wärme innerhalb eines thermodynamischen Prozesses. Die parallel zur Stromerzeugung produzierte Wärme wird zur Beheizung und Warmwasserbereitung oder für Produktionsprozesse genutzt. Der Einsatz der KWK mindert den Energieeinsatz und daraus resultierende Kohlendioxid-Emissionen.</p><p>KWK-Anlagen</p><p>KWK-Anlagen unterscheiden sich in ihren Techniken, den eingesetzten Brennstoffen, hinsichtlich ihrer Leistung und bezüglich ihrer Versorgungsaufgaben. In den vergangenen Jahren wurde im Interesse der Energieeinsparung sowie des Umwelt- und Klimaschutzes durch verschiedene energiepoltische Instrumente (insbesondere KWKG und EEG) der Ausbau der KWK angereizt und unterstützt. Der wesentliche ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ des KWK-Ausbaus ist die KWK-Nettostromerzeugung, dessen Entwicklung durch eine energiepolitische Zielstellung flankiert ist. Neben der KWK-Stromerzeugung ist auch die damit korrespondierende KWK-Nettowärmeerzeugung eine im Fokus stehende Größe. Auf die Veränderung dieser beiden wesentlichen KWK-Kenngrößen konzentrieren sich die nachfolgenden Darstellungen.</p><p>KWK-Stromerzeugung</p><p>Die KWK-Nettostromerzeugung – gezeigt werden hier die Daten unter Berücksichtigung des Eigenwärmebedarfs des Biogasanlagenfermenters – ist im Zeitraum von 2003 bis 2017 kontinuierlich gestiegen (siehe Abb. „KWK: Nettostromerzeugung nach Energieträgern“). Der Zuwachs ist insbesondere auf den verstärkten Einsatz von ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠ sowie auf den Zubau und einer besseren Auslastung erdgasbasierter KWK-Anlagen zurückzuführen. Die auf Steinkohle- und Mineralölen basierende KWK-Stromerzeugung ist im Zeitverlauf dagegen zurückgegangen.</p><p>Die Minderung im Jahr 2018 gegenüber 2017 ist im Wesentlichen die Folge einer verbesserten energiestatistischen Erfassung der KWK(-Anlagen) ab 2018. Der moderate Rückgang seit 2018 bis 2020 spiegelt die reduzierte Nachfrage nach Strom in diesem Zeitraum wider. Dieser basiert hauptsächlich auf der Stilllegung von KWK-Anlagen, welche mit Stein- oder Braunkohle betrieben wurden. Im gleichen Zeitraum ist die gesamte Nettostromerzeugung um rund 10 Prozent zurückgegangen. 2021 ist die KWK-Stromerzeugung um rund 3 Prozent gegenüber 2020 gestiegen.</p><p>KWK-Wärmeerzeugung</p><p>Die Abbildung „KWK: Nettowärmeerzeugung nach Energieträgern“) zeigt von 2003 bis 2021 mit einem fast kontinuierlichen Anstieg ein ähnliches Bild wie im Strombereich (unter Berücksichtigung des Eigenwärmebedarfs der Biogasanlagen). Die im Vergleich zur KWK-Nettostromerzeugung prozentual geringere Erhöhung der KWK-Nettowärmeerzeugung im Zeitverlauf bis zum Jahr 2017 ist die Folge der Errichtung zahlreicher Gas-und-Dampf (GuD)-Anlagen, die eine überdurchschnittlich hohe ⁠<a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Stromkennzahl#alphabar">Stromkennzahl</a>⁠ aufweisen. Zwischen den Jahren 2017 und 2018 wurde die Erfassungsmethodik auf eine bessere Datengrundlage gestellt. Der Rückgang seit 2018 korrespondiert mit der jeweiligen Verringerung der KWK-Stromerzeugung (siehe Abschnitt „KWK-Stromerzeugung). 2021 stieg die KWK-Wärmeerzeugung um rund 4 Prozent. Infolge der Einsparanstrengungen von Erdgas infolge des russischen Angriffskriegs auf die Ukraine ist die KWK-Wärmeerzeugung 2022 um sieben Prozent und 2023 um fünf Prozent gegenüber dem jeweiligen Vorjahr gefallen.</p><p>Ziel der Bundesregierung für die KWK-Stromerzeugung</p><p>Bis zur Novellierung des Kraft-Wärme-Kopplungsgesetzes (KWKG) bezog sich das Ausbauziel der Politik auf die Gesamtnettostromerzeugung: Der KWK-Anteil an der gesamten Nettostromerzeugung sollte bis 2020 25 % betragen. Dieses wurde mit der Novellierung zum 1.1.2016 durch ein absolutes Mengenziel ersetzt. Die KWK-Nettostromerzeugung sollte demnach im Jahr 2020 mindestens 110 Terawattstunden und im Jahr 2025 mindestens 120 Terawattstunden betragen (§ 1 KWKG 2016) (siehe Abb. "KWK: Nettostromerzeugung nach Energieträgern" im ersten Abschnitt). Das Ziel für 2020 wurde nach vorläufigen Daten mit einer KWK-Nettostromerzeugung von 113 Terawattstunden erreicht.</p>

Wärmewende als Herausforderung der Zukunft: 11. Landesnetzwerktreffen bietet Unterstützung für Kommunen und kommunale Energieversorger Vorträge zum Download Impressionen vom 11. Landesnetzwerktreffen:

14. November 2019 Mehr als 50 Prozent des Endenergieverbrauchs fließen hierzulande in die Wärmeerzeugung, wobei die Brennstoffe überwiegend fossiler Natur sind. Um die nachhaltige Wärmeversorgung voranzutreiben, bietet die Landesenergieagentur Sachsen-Anhalt GmbH (LENA) aktive Unterstützung an, zum Beispiel in Form des 11. Landesnetzwerktreffens "Energie & Kommune", das am 14. November 2019 stattfand. Dieses Landesnetzwerktreffen war gleichzeitig eine Premiere, denn erstmalig wurde es gemeinsam mit dem Verband kommunaler Unternehmen Sachsen-Anhalt (VKU) ausgerichtet. Über 70 Vertreterinnen und Vertreter der eingeladenen Kommunen und kommunalen Energieversorger kamen nach Magdeburg, um ihre Erfahrungen zur nachhaltigen kommunalen Wärmeversorgung auszutauschen - darunter auch die Städtischen Werke Magdeburg (SWM) und die Stadtwerke Halle. Der Sprecher der Geschäftsführung der SWM und Vorsitzende des VKU Sachsen-Anhalt, Helmut Herdt, hatte als Beispiel für den Einsatz erneuerbarer Energien im Wärmebereich das Biomasseheizkraftwerk in Magdeburg-Cracau vorgestellt, durch das der östliche Teil Magdeburgs mit Fernwärme versorgt werden kann. Als Brennstoff werden naturbelassene Holzhackschnitzel eingesetzt. Matthias Lux, Geschäftsführer der Stadtwerke Halle, stellte den interessierten Teilnehmerinnen und Teilnehmern als weiteres Praxisbeispiel den Energie- und Zukunftsspeicher der Stadt Halle vor. Dabei handelt es sich um einen Groß-Wärmespeicher, durch den der Wärmebedarf der Hallenser für drei Tage gedeckt werden kann. Zudem ermöglicht der Speicher auch die optimale Ausnutzung regenerativer Energien. In weiteren Vorträgen wurden die Zukunft der Kraft-Wärme-Kopplung, die rechtlichen Rahmenbedingungen der Lastflexibilisierung sowie die Fördermöglichkeiten für Wärmeinfrastruktur durch Experten beleuchtet. "Die Wärmewende ist eine Herausforderung der Zukunft, vor der alle Städtischen Werke in Sachsen-Anhalt stehen. Wir freuen uns, dass wir die Stadtwerke und Kommunen dank der Kooperation mit dem VKU zukünftig noch besser in diesem Prozess unterstützen, gemeinsam Projekte entwickeln und gegenseitig von unseren Erfahrungen profitieren können", betont LENA-Geschäftsführer Marko Mühlstein.

Errichtung und Betrieb eines Gas- und Dampfturbinenkraftwerks sowie einer Heißwasserkesselanlage (Fuel-Switch-Anlage) der EnBW Energie Baden-Württemberg AG am Standort Altbach/Deizisau

Die EnBW Energie Baden-Württemberg AG (EnBW) plant am Kraftwerksstandort Altbach/Deizisau, Industriestraße 11, 73776 Altbach, infolge des beschlossenen Kohleausstiegs die Errichtung und den Betrieb eines erdgasbefeuerten Gas- und Dampfturbinenkraftwerks (GuD-Kraftwerk, Bezeichnung: HKW 3) zur Erzeugung von Strom und Fernwärme in Kraft-Wärme-Kopplung sowie eine mit Erdgas befeuerte Heißwasserkesselanlage (HWKA) bestehend aus drei Heißwasserkesseln (Projektname: „Fuel-Switch Altbach“). Ziel des Projekts ist es, die Fernwärmeversorgung CO2-ärmer und zukunftssicher zu gestalten sowie weiterhin zur Netzstabilität beizutragen. Die Inbetriebnahme ist für 2026 vorgesehen. Das GuD-Kraftwerk hat eine Feuerungswärmeleistung (FWL) von max. 1.140 MW und wird primär mit Erdgas der öffentlichen Gasversorgung betrieben, wobei es bereits perspektivisch für die Mitverbrennung von Wasserstoff ausgelegt ist. Die Heißwasserkesselanlage hat eine FWL von insgesamt 135 MW (je 45 MW) und wird ebenfalls primär mit Erdgas der öffentlichen Gasversorgung betrieben.

Bebauungsplan Billstedt 103 1. Änderung Hamburg

§ 2 Nummer 3 der Verordnung über den Bebauungsplan Billstedt 103 vom 18. September 2007 (HmbGVBl. S. 299) erhält folgende Fassung: 3. Für die Beheizung und die Wasserversorgung gilt: 3.1 Neu zu errichtende Gebäude sind für Beheizung und Warmwasserversorgung an ein Wärmenetz anzuschließen und über dieses zu versorgen. Die Wärme muss überwiegend aus erneuerbaren Energien, Abwärme oder Kraft-Wärme-Kopplung erzeugt werden. 3.2 Vom Anschluss- und Benutzungszwang nach Nummer 3.1 wird ausnahmsweise abgesehen, wenn der berechnete Jahres-Heizwärmebedarf der Gebäude nach der Energieeinsparverordnung vom 24. Juli 2007 (BGBl. I S. 1519), geändert am 29. April 2009 (BGBl. I S. 954), den Wert von 15 kWh (m2a) Nutzfläche nicht übersteigt. 3.3 Vom Anschluss- und Benutzungsgebot nach Nummer 3.1 kann auf Antrag befreit werden, soweit die Erfüllung der Anforderungen im Einzelfall wegen besonderer Umstände zu einer unbilligen Härte führen würde. Die Befreiung kann zeitlich befristet werden."

Erneuerbare Energien – Vermiedene Treibhausgase

<p>Erneuerbare Energien vermeiden Treibhausgase. In vielen Bereichen verdrängen sie fossile Energieträger und vermeiden damit Emissionen. Die meisten Emissionen werden durch die erneuerbare Stromerzeugung eingespart, aber auch im Wärme- und Verkehrssektor tragen erneuerbare Energien zum Klimaschutz bei. 2024 wurden so 256 Millionen Tonnen Kohlendioxid-Äquivalente vermieden.</p><p>Die verstärkte Nutzung erneuerbarer Energieträger führt zu einer Verdrängung fossiler Energien und somit zu einer zunehmenden Vermeidung klimaschädlicher Treibhausgase. Berechnungen des Umweltbundesamtes zeigen, dass der Einsatz erneuerbarer Energien in den letzten Jahrzehnten so einen wichtigen Beitrag zum ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>⁠ leisten konnte. Im Jahr 2024 vermieden erneuerbare Energien 256 Millionen Tonnen CO2-Äquivalente. Seit dem Jahr 2000 ist dieser Wert auf mehr als das Fünffache gestiegen (siehe Abb. „Vermiedene ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen durch die Nutzung erneuerbarer Energien“).</p><p>Beiträge der verschiedenen Erneuerbaren Energieträger zur Treibhausgasvermeidung</p><p>Wichtigster Energieträger bei der Vermeidung von ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen ist die Windenergie. Sie kommt ausschließlich in der Stromerzeugung zum Einsatz. Zweitwichtigster Energieträger ist die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠: Vor allem die erneuerbare Wärmeversorgung, aber auch erneuerbare Kraftstoffe basieren bislang überwiegend auf Bioenergieträgern. Auch in Kraftwerken wird mit Biomasse Strom bzw. mit Kraft-Wärme-Kopplung (KWK) zusätzlich Wärme erzeugt (siehe Abb. „Vermiedene Treibhausgas-Emissionen durch die Nutzung erneuerbarer Energien im Jahr 2024“).</p><p>Stromerzeugung</p><p>Die erneuerbaren Energien in der Stromerzeugung leisten mit Abstand den wichtigsten Beitrag bei der Vermeidung von Treibhausgasen. Ihr Anteil beträgt etwa 80 %. Der Umfang der vermiedenen Emissionen ist in den vergangenen Jahrzehnten fast kontinuierlich gewachsen. Insgesamt zeigt die Entwicklung seit dem Jahr 2010, dass sich der erfolgreiche Ausbau der erneuerbaren Energien besonders im Stromsektor positiv auf die Vermeidung von Treibhausgasen auswirkt: Insbesondere durch die Entwicklung bei der Windenergie und der Photovoltaik werden mittlerweile mehr als 2,5-mal so viele Treibhausgase vermieden wie noch 2010. (siehe Abb. „Stromsektor: Vermiedene ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen durch die Nutzung erneuerbarer Energien“).</p><p>Wärmeerzeugung</p><p>Im Wärmesektor trägt vor allem die Nutzung fester ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠ (also vor allem Holz) zur Vermeidung von Treibhausgasen bei (siehe Abb. „Wärmesektor: Vermiedene ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen durch die Nutzung erneuerbarer Energien“). Allerdings ist die Bedeutung von fester Biomasse zwischen 2010 und 2024 zurückgegangen. Zugenommen hat der Beitrag biogener Gase und vor allem die Emissionsvermeidung durch die Nutzung von Solarthermie, Geothermie und Umweltwärme. Sie machen nun etwa 21% der Emissionsvermeidung im Wärmesektor aus.</p><p>Ausführlichere Informationen zum Einsatz erneuerbarer Energien im Wärmesektor finden Sie auch im Artikel „<a href="https://www.umweltbundesamt.de/daten/energie/energieverbrauch-fuer-fossile-erneuerbare-waerme">Energieverbrauch für fossile und erneuerbare Wärme</a>“.</p><p>Verkehr</p><p>Biokraftstoffe vermeiden ebenfalls Emissionen im Umfang von mehreren Millionen Tonnen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Kohlendioxid-quivalente#alphabar">Kohlendioxid-Äquivalente</a>⁠ (siehe Abb. „Verkehrssektor: Vermiedene ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen durch die Nutzung biogener Kraftstoffe“). Allerdings bleibt der Verkehrssektor der Bereich mit dem geringsten Anteil an erneuerbaren Energien – und damit auch der Sektor mit der geringsten Emissionsvermeidung.</p><p>Die Menge vermiedener Treibhausgas-Emissionen geht im Wesentlichen einher mit der Entwicklung des Einsatzes Erneuerbarer Energien im Verkehrssektor (siehe Artikel „Erneuerbare Energie im Verkehr“). Im Jahr 2024 wie schon im Jahr 2010 wird die Vermeidung von Treibhausgasemissionen vor allem Biodiesel und Hydriertem Pflanzenöl (HVO) sowie Bioethanol getragen. Der im Verkehr verwendete Strom aus erneuerbaren Energiequellen wird hier nicht ausgewiesen, da der emissionsmindernde Effekt bereits im Stromsektor erfasst wird (siehe oben).</p><p>Methodische Hinweise</p><p>Die Berechnungen zur Emissionsvermeidung durch die Nutzung erneuerbarer Energien basieren auf einer Netto-Betrachtung (Netto-Bilanz). Dabei werden die durch die Endenergiebereitstellung aus erneuerbaren Energien verursachten Emissionen mit denen verrechnet, die durch die Substitution fossiler Energieträger brutto vermieden werden. Vorgelagerte Prozessketten zur Gewinnung und Bereitstellung der Energieträger sowie für die Herstellung und den Betrieb der Anlagen werden dabei weitestgehend mit einbezogen.</p><p>Die detaillierte Methodik zur Berechnung des Indikators wird in der Publikation „<a href="https://www.umweltbundesamt.de/publikationen/emissionsbilanz-erneuerbarer-energietraeger-2022">Emissionsbilanz erneuerbarer Energieträger 2023"</a> beschrieben.</p>

1 2 3 4 5101 102 103