API src

Found 2243 results.

Related terms

CyrusOne Frankfurt 7 Holdings B.V., Errichtung und Betrieb von Notstromdieselmotoren (NDM) zur Sicherstellung der Elektrizitätsversorgung bei Ausfall der öffentlichen Stromversorgung (insgesamt 42 Motoren + 1 Life-Safety-Generator mit einer Feuerungswärmeleistung von 255,3 MW), 0029-IV-F 43.1-53.u.12.01-00030#2024-00001

Die CyrusOne Frankfurt 7 Holdings B.V., WTC Schiphol Airport, Schiphol Boulevard 359, 1118 BJ Amsterdam Schiphol (Niederlande), plant die Errichtung und den Be-trieb von insgesamt 42 Notstromdieselmotoren (NDM) sowie eines Life-Safety-Generators mit einer Gesamtfeuerungswärmeleistung (FWL) von etwa 255,3 MW mitsamt den erforderlichen dienenden Nebeneinrichtungen zur Sicherstellung der Elekt-rizitätsversorgung des Rechenzentrums FF7 L1 am Standort Fritz-Klatte-Straße o. Nr., 65933 Frankfurt am Main, bei Ausfall der öffentlichen Stromversorgung. Hierzu hat die CyrusOne Frankfurt 7 Holdings B.V., in Vertretung durch die KUA dc solutions GmbH, Grüneburgweg 115, 60323 Frankfurt am Main, einen Antrag auf Erteilung einer immissionsschutzrechtlichen Genehmigung gestellt. Bei dem beantragten Vorhaben sollen 42 Notstromdieselmotoren sowie ein Life-Safety-Generator im Rechenzentrum FF7 L1 errichtet und sowohl im Notstrom- als auch im Testbetrieb betrieben werden. Die Brennstoffversorgung besteht aus: - 42 Kraftstofftanks mit Pumpe und einem Volumen von jeweils 34 m³ - 1 Kraftstofftank mit Pumpe und einem Volumen von 14 m³ - 43 Kraftstoffpflegeanlagen - 4 Kraftstoff-Sammeltanks (je 610 Liter Volumen) - 2 Abfüllplätze für Kraftstoff (gleichzeitig Abfüllplätze für Harnstoff) - Rohrleitungen von den Kraftstofflagertanks zu den Notstromaggregaten. Die Notstromversorgung bestehend aus: - 42 Notstromaggregate jeweils mit Kraftstoff-Tagestanks mit einem Volumen von jeweils 300 Litern, Motorkühlsystem und SCR-System (Harnstoff-Lagertank mit 4.000 Litern auf dem jeweiligen Container, Harnstoff-Tagestank mit maximal 400 Litern im Container) - 1 Life-Safety-Generator mit Kraftstoff-Tagestank mit einem Volumen von 2.300 Litern, Motorkühlsystem und SCR-System (Harnstoff-Lagertank mit 1.500 Litern auf dem Container, Harnstoff-Tagestank mit maximal 400 Litern im Container) - 12 Sammel-Abgaskamine - 4 Harnstoff-Zwischentanks (je 610 Liter Volumen) - Bei der Anlage handelt es sich um eine Anlage nach der Industrieemissionsrichtlinie. Dieses Vorhaben bedarf nach § 4 Abs. 1 des Bundes-Immissionsschutzgesetzes (BIm-SchG) in Verbindung mit Nr. 1.1 des Anhangs 1 der Vierten Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) der immissionsschutzrechtlichen Genehmigung das Regierungspräsidium Darmstadt. Zusätzlich wurde ein Antrag auf Zulassung des vorzeitigen Beginns gemäß § 8a BImSchG gestellt für - 23 Kraftstofftanks mit Pumpe und einem Volumen von jeweils 34 m³ - 1 Kraftstofftank mit Pumpe und einem Volumen von 14 m³ - Rohrleitungen von den Kraftstofflagertanks zu den Notstromaggregaten - 1 Abfüllplatz (Abfüllplatz 1) für Kraftstoff (gleichzeitig Abfüllplatz für Harnstoff) - 24 Kraftstoffpflegeanlagen mit Pumpen - 2 Kraftstoff-Sammeltanks mit Pumpe und einem Volumen von jeweils 610 Liter - 7 Notstromaggregate jeweils mit Kraftstoff-Tagestanks mit einem Volumen von jeweils 300 Litern, Motorkühlsystem und SCR-System (Harnstoff- Lagertank inkl. Pumpe mit 4.000 Litern auf dem jeweiligen Container, Harnstoff-Tagestank mit maximal 400 Litern im Container) - 1 Life-Safety-Generator in einem Container neben dem Gebäude L1 (GEN-001) mit Kraftstoff-Tagestank mit einem Volumen von 2.300 Litern, Motorkühlsystem und SCR-System (Harnstoff-Lagertank inkl. Pumpe mit 1.500 Litern auf dem Container, Harnstoff-Tagestank mit maximal 400 Litern im Container) - 7 Sammel-Abgaskamine - 2 Harnstoff-Zwischentanks mit Pumpe und einem Volumen von jeweils 610 Liter einschließlich der Maßnahmen, die zur Prüfung der Betriebstüchtigkeit erforderlich sind. Zuständige Behörde für das beantragte Vorhaben ist das Regierungspräsidium Darmstadt, Abteilung Umwelt in Frankfurt. Für das Vorhaben besteht die Pflicht, nach § 6 i. V. m. Nr. 1.1.1 der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG) eine Umweltverträglichkeitsprüfung durchzuführen. Der dazu erforderliche UVP-Bericht wurde mit den Antragsun-terlagen vorgelegt und ist dort im Kapitel 20 eingebunden.

Pflanzenoel als Kraftstoff fuer Dieselmotoren

In dieser Arbeit wird die Verwendungsmoeglichkeit von Pflanzenoelen als Kraftstoff fuer Dieselmotoren, insbesondere in Hinblick auf die Anwendung dieser Technologie in den Laendern der Dritten Welt untersucht. Daher wird hier das 'On-farm-Konzept' verfolgt. Dh die gesamte Kette von der Oelsaatproduktion ueber das Oelpressen bis hin zur Verwertung des Oels erfolgt im landwirtschaftlichen Betrieb. Der Schwerpunkt der Arbeit liegt in der Durchfuehrung von Dauertests mit kaltgepresstem Rapsoel.

Entwicklung einer Methode zur Aufarbeitung gebrauchter und minderwertiger nativer Fette und Öle zu Treibstoff für Dieselmaschinen

Gebrauchte oder minderwertige native Fette und Öle sind eine interessante Energiequelle für Dieselmaschinen, die sich durch eine ausgezeichnete Ökobilanz auszeichnen und nicht in Konkurrenz zu Nahrungs- oder Futtermitteln stehen. Dem Einsatz in Dieselmschinen stehen der i.d.R. hohe Gehalt an Schlackebildnern (Ca, Mg, Na, K, P) und an freien Fettsäuren entgegen. Ziel des Vorhabens ist es, ein Verfahren zu entwickeln, mit dem die o.g. Rohstoffe so aufzuarbeiten sind, dass sie ohne weiteres in Dieselmaschinen eingesetzt werden können. Dazu wurde der Rohstoff einer sauer katalysierten Veresterung mit biogenem Ethanol unterworfen, mit dem die Gehalte sowohl an freien Fettsäuren, als auch an den genannten Schlackebildnern soweit gesenkt werden konnten, dass die Maßgaben der DIN-VN 51 605 erfüllt werden. Abgesehen davon, dass die so gewonnen Treibstoffe aus rein biogenen Rohstoffen bestehen, weisen sie Stockpunkte von teilweise unter -20 Grad Celsius auf.

Mit Sensoren für eine saubere Fahrweise

Die Motoren von Binnenschiffen gelten allgemein als ineffizient und dreckig - ihr Schadstoffausstoß gilt immer noch als zu hoch. Aber ist diese pauschale Aussage richtig? Die Ladungsmenge auf einem einzelnen Binnenschiff übertrifft diejenige von LKW und Bahn um ein Vielfaches, wodurch der Transport im Allgemeinen sehr effizient ist. Trotzdem ist der Schadstoffausstoß verhältnismäßig hoch, weshalb die Europäische Union die Grenzwerte für ausgestoßene Schadstoffe auch für die Binnenschifffahrt verschärfen wird. Im Rahmen des europäischen Forschungs- und Innovationsprogramms HORIZON2020 beteiligt sich die BAW am Vorhaben PROMINENT (promoting innovation in the inland waterways transport sector; http://www.prominent-iwt.eu/). Das Vorhaben hat zum Ziel, den Treibstoffbedarf und die Luftschadstoffemissionen der Binnenschiffe durch technische Maßnahmen und energieeffiziente Navigation zu reduzieren. Mit der Entwicklung eines Assistenzsystems erhält ein Schiffsführer Hinweise, wie er seinen Zielhafen treibstoffsparend und termingerecht erreichen kann. Dafür werden neben Motor- und Verbrauchsdaten von Schiffen auch Informationen zur Wassertiefe, Strömungsgeschwindigkeit und Wasserspiegellage für den zu befahrenden Flussabschnitt benötigt. Da präzise Peildaten und mehrdimensionale numerische Modelle nicht flächendeckend für alle Wasserstraßen innerhalb der EU verfügbar sind, rüstet die BAW Binnenschiffe mit Messgeräten zur Erfassung von Sohlenhöhen und Strömungsgeschwindigkeiten aus. Dabei werden gleichermaßen die Machbarkeit und der Aufwand für die Installation und den Betrieb der Sensorik bewertet. Die Reederei Deymann Management GmbH und Co. KG mit Sitz in Haren (Ems) unterstützt das Vorhaben, indem sie die Installation der Sensoren auf dem Großmotorgüterschiff (GMS) MONIKA DEYMANN gestattet. Das Schiff wurde im Juli 2016 in den Dienst gestellt. Die BAW hat in der Bauphase den Einbau und die Verkabelung der geplanten Sensoren mit der Reederei sowie der ausführenden Werft abgestimmt und durchgeführt. Das 135 m lange und 14,2 m breite GMS verkehrt derzeit im Liniendienst zwischen Antwerpen und Mainz. Es fährt in der Regel mit drei Lagen Containern, woraus ein mittlerer Tiefgang zwischen 1,8 m und 2,5 m resultiert. Für einen Umlauf Antwerpen - Mainz - Antwerpen werden sieben bis acht Tage benötigt, sodass das Schiff den Mittelrhein rund zweimal pro Woche passiert. Eine besondere Herausforderung ist es, von einem Binnenschiff aus die Strömungsgeschwindigkeiten im laufenden Schiffsbetrieb zu erfassen, da die Strömung im nahen Umfeld des Schiffes durch das Rückströmungsfeld gestört wird. Dessen Größe und Ausdehnung hängt insbesondere vom Gewässerquerschnitt und der Schiffsgeschwindigkeit gegenüber Wasser ab. Bei geringen Wassertiefen kann daher die Geschwindigkeit nicht vertikal unter einem Binnenschiff gemessen werden, wie es bei Messschiffen sonst üblich ist. (Text gekürzt)

Ertüchtigung von Gasmotoren in Kraft-Wärme-Kopplungs- Neu- und Bestandsanlagen für den angestrebten schrittweisen 'Fuel-Switch' von fossilem Erdgas zu klimaneutralen Gasen, Teilvorhaben: Systemintegration und Feldversuch

Mit der angestrebten schrittweisen Kraftstofftransformation ('Fuel-Switch') von fossilem Erdgas zu klimaneutralen Gasen wie z.B. grünem Wasserstoff werden in Zukunft unterschiedliche Gasgemische im Gasnetz vorliegen. Im Rahmen des Projekts 'HydroFit' sollen Gasmotoren in KWK-Anlagen für diesen 'Fuel-Switch' ertüchtigt werden. Dabei werden neben zukünftigen Motoren, auch insbesondere Bestandsanlagen adressiert, die durch HydroFit leistungstechnisch optimiert werden. Um die Motoren in Zukunft nachhaltig, effizient und emissionsarm betreiben zu können, bedarf es geeigneter Anpassungen in Hard- und Software. Hierfür wird ein adaptives System entwickelt, das es ermöglicht, Gasmotoren unabhängig von der aktuellen Kraftstoffzusammensetzung im Versorgungsnetz zu betreiben. Das System kann dabei auf zeitlich sich ändernde Gaszusammensetzung reagieren, ohne dass Umbauten am Motor durchgeführt werden müssen. Dies ist insbesondere für die Übergangsphase der schrittweisen Einführung von der Wasserstoffbeimengung bis zur reinen Wasserstoffbereitstellung von Bedeutung. Zusätzlich wird HydroFit konstruktiv so gestaltet, dass bereits im Betrieb befindliche Anlagen wirtschaftlich ohne Änderungen am Grundmotor nachgerüstet werden können. Um die Funktionalität des Konzepts sicherzustellen, soll nach der Entwicklung eines Prototypsystems, dieses zunächst im Labor getestet werden. In einer weiteren Ausbaustufe erfolgt die Erprobung an einem Versuchsmotor im Feld. Mit dem vollständigen Umstieg auf Wasserstoff und andere klimaneutrale Kraftstoffe können Gasmotoren-BHKW nicht nur als Brückentechnologie in der Energiewende dienen, sondern auch langfristig für die Dekarbonisierung der Wärme- und Stromerzeugung sorgen. Mit dem in diesem Vorhaben geplanten adaptiven System bleiben sie dabei sehr flexibel und können im Gegensatz zu alternativen Technologien (wie z.B. der Brennstoffzelle) unabhängig von der Kraftstoffzusammensetzung, insbesondere der Reinheit des Wasserstoffs, betrieben werden.

Ertüchtigung von Gasmotoren in Kraft-Wärme-Kopplungs- Neu- und Bestandsanlagen für den angestrebten schrittweisen 'Fuel-Switch' von fossilem Erdgas zu klimaneutralen Gasen, Teilvorhaben: Entwicklung und Untersuchung einer kraftstoffvariablen Einblas- und Zündeinheit für Gasmotoren

Mit der angestrebten schrittweisen Kraftstofftransformation ('Fuel-Switch') von fossilem Erdgas zu klimaneutralen Gasen wie z.B. grünem Wasserstoff werden in Zukunft unterschiedliche Gasgemische im Gasnetz vorliegen. Im Rahmen des Projekts 'HydroFit' sollen Gasmotoren in KWK-Anlagen für diesen 'Fuel-Switch' ertüchtigt werden. Dabei werden neben zukünftigen Motoren, auch insbesondere Bestandsanlagen adressiert, die durch HydroFit leistungstechnisch optimiert werden. Um die Motoren in Zukunft nachhaltig, effizient und emissionsarm betreiben zu können, bedarf es geeigneter Anpassungen in Hard- und Software. Hierfür wird ein adaptives System entwickelt, das es ermöglicht, Gasmotoren unabhängig von der aktuellen Kraftstoffzusammensetzung im Versorgungsnetz zu betreiben. Das System kann dabei auf zeitlich sich ändernde Gaszusammensetzung reagieren, ohne dass Umbauten am Motor durchgeführt werden müssen. Dies ist insbesondere für die Übergangsphase der schrittweisen Einführung von der Wasserstoffbeimengung bis zur reinen Wasserstoffbereitstellung von Bedeutung. Zusätzlich wird HydroFit konstruktiv so gestaltet, dass bereits im Betrieb befindende Anlagen wirtschaftlich ohne Änderungen am Grundmotor nachgerüstet werden können. Um die Funktionalität des Konzepts sicherzustellen, soll nach der Entwicklung eines Prototypsystems, dieses zunächst im Labor getestet werden. In einer weiteren Ausbaustufe erfolgt die Erprobung an einem Versuchsmotor im Feld. Mit dem vollständigen Umstieg auf Wasserstoff und andere klimaneutrale Kraftstoffe können Gasmotoren-BHKW nicht nur als Brückentechnologie in der Energiewende dienen, sondern auch langfristig für die Dekarbonisierung der Wärme- und Stromerzeugung sorgen. Mit dem in diesem Vorhaben geplanten adaptiven System bleiben sie dabei sehr flexibel und können im Gegensatz zu alternativen Technologien (wie z.B. der Brennstoffzelle) unabhängig von der Kraftstoffzusammensetzung, insbesondere der Reinheit des Wasserstoffs, betrieben werden.

Ertüchtigung von Gasmotoren in Kraft-Wärme-Kopplungs- Neu- und Bestandsanlagen für den angestrebten schrittweisen 'Fuel-Switch' von fossilem Erdgas zu klimaneutralen Gasen, Teilvorhaben: Zündsystem und integrierte Zünd-/Einblaseinheit

Mit der angestrebten schrittweisen Kraftstofftransformation ('Fuel-Switch') von fossilem Erdgas zu klimaneutralen Gasen wie z.B. grünem Wasserstoff werden in Zukunft unterschiedliche Gasgemische im Gasnetz vorliegen. Im Rahmen des Projekts 'HydroFit' sollen Gasmotoren in KWK-Anlagen für diesen 'Fuel-Switch' ertüchtigt werden. Dabei werden neben zukünftigen Motoren, auch insbesondere Bestandsanlagen adressiert, die durch HydroFit leistungstechnisch optimiert werden. Um die Motoren in Zukunft nachhaltig, effizient und emissionsarm betreiben zu können, bedarf es geeigneter Anpassungen in Hard- und Software. Hierfür wird ein adaptives System entwickelt, das es ermöglicht, Gasmotoren unabhängig von der aktuellen Kraftstoffzusammensetzung im Versorgungsnetz zu betreiben. Das System kann dabei auf zeitlich sich ändernde Gaszusammensetzung reagieren, ohne dass Umbauten am Motor durchgeführt werden müssen. Dies ist insbesondere für die Übergangsphase der schrittweisen Einführung von der Wasserstoffbeimengung bis zur reinen Wasserstoffbereitstellung von Bedeutung. Zusätzlich wird HydroFit konstruktiv so gestaltet, dass bereits im Betrieb befindende Anlagen wirtschaftlich ohne Änderungen am Grundmotor nachgerüstet werden können. Um die Funktionalität des Konzepts sicherzustellen, soll nach der Entwicklung eines Prototypsystems, dieses zunächst im Labor getestet werden. In einer weiteren Ausbaustufe erfolgt die Erprobung an einem Versuchsmotor im Feld. Mit dem vollständigen Umstieg auf Wasserstoff und andere klimaneutrale Kraftstoffe können Gasmotoren-BHKW nicht nur als Brückentechnologie in der Energiewende dienen, sondern auch langfristig für die Dekarbonisierung der Wärme- und Stromerzeugung sorgen. Mit dem in diesem Vorhaben geplanten adaptiven System bleiben sie dabei sehr flexibel und können im Gegensatz zu alternativen Technologien (wie z.B. der Brennstoffzelle) unabhängig von der Kraftstoffzusammensetzung, insbesondere der Reinheit des Wasserstoffs, betrieben werden.

Ertüchtigung von Gasmotoren in Kraft-Wärme-Kopplungs- Neu- und Bestandsanlagen für den angestrebten schrittweisen 'Fuel-Switch' von fossilem Erdgas zu klimaneutralen Gasen, Teilvorhaben: Motorversuch und Verschleißuntersuchungen

Mit der angestrebten schrittweisen Kraftstofftransformation ('Fuel-Switch') von fossilem Erdgas zu klimaneutralen Gasen wie z.B. grünem Wasserstoff werden in Zukunft unterschiedliche Gasgemische im Gasnetz vorliegen. Im Rahmen des Projekts 'HydroFit' sollen Gasmotoren in KWK-Anlagen für diesen 'Fuel-Switch' ertüchtigt werden. Dabei werden neben zukünftigen Motoren, auch insbesondere Bestandsanlagen adressiert, die durch HydroFit leistungstechnisch optimiert werden. Um die Motoren in Zukunft nachhaltig, effizient und emissionsarm betreiben zu können, bedarf es geeigneter Anpassungen in Hard- und Software. Hierfür wird ein adaptives System entwickelt, das es ermöglicht, Gasmotoren unabhängig von der aktuellen Kraftstoffzusammensetzung im Versorgungsnetz zu betreiben. Das System kann dabei auf zeitlich sich ändernde Gaszusammensetzung reagieren, ohne dass Umbauten am Motor durchgeführt werden müssen. Dies ist insbesondere für die Übergangsphase der schrittweisen Einführung von der Wasserstoffbeimengung bis zur reinen Wasserstoffbereitstellung von Bedeutung. Zusätzlich wird HydroFit konstruktiv so gestaltet, dass bereits im Betrieb befindliche Anlagen wirtschaftlich ohne Änderungen am Grundmotor nachgerüstet werden können. Um die Funktionalität des Konzepts sicherzustellen, soll nach der Entwicklung eines Prototypsystems, dieses zunächst im Labor getestet werden. In einer weiteren Ausbaustufe erfolgt die Erprobung an einem Versuchsmotor im Feld. Mit dem vollständigen Umstieg auf Wasserstoff und andere klimaneutrale Kraftstoffe können Gasmotoren-BHKW nicht nur als Brückentechnologie in der Energiewende dienen, sondern auch langfristig für die Dekarbonisierung der Wärme- und Stromerzeugung sorgen. Mit dem in diesem Vorhaben geplanten adaptiven System bleiben sie dabei sehr flexibel und können im Gegensatz zu alternativen Technologien (wie z.B. der Brennstoffzelle) unabhängig von der Kraftstoffzusammensetzung, insbesondere der Reinheit des Wasserstoffs, betrieben werden.

Ertüchtigung von Gasmotoren in Kraft-Wärme-Kopplungs- Neu- und Bestandsanlagen für den angestrebten schrittweisen 'Fuel-Switch' von fossilem Erdgas zu klimaneutralen Gasen

Mit der angestrebten schrittweisen Kraftstofftransformation ('Fuel-Switch') von fossilem Erdgas zu klimaneutralen Gasen wie z.B. grünem Wasserstoff werden in Zukunft unterschiedliche Gasgemische im Gasnetz vorliegen. Im Rahmen des Projekts 'HydroFit' sollen Gasmotoren in KWK-Anlagen für diesen 'Fuel-Switch' ertüchtigt werden. Dabei werden neben zukünftigen Motoren, auch insbesondere Bestandsanlagen adressiert, die durch HydroFit leistungstechnisch optimiert werden. Um die Motoren in Zukunft nachhaltig, effizient und emissionsarm betreiben zu können, bedarf es geeigneter Anpassungen in Hard- und Software. Hierfür wird ein adaptives System entwickelt, das es ermöglicht, Gasmotoren unabhängig von der aktuellen Kraftstoffzusammensetzung im Versorgungsnetz zu betreiben. Das System kann dabei auf zeitlich sich ändernde Gaszusammensetzung reagieren, ohne dass Umbauten am Motor durchgeführt werden müssen. Dies ist insbesondere für die Übergangsphase der schrittweisen Einführung von der Wasserstoffbeimengung bis zur reinen Wasserstoffbereitstellung von Bedeutung. Zusätzlich wird HydroFit konstruktiv so gestaltet, dass bereits im Betrieb befindliche Anlagen wirtschaftlich ohne Änderungen am Grundmotor nachgerüstet werden können. Um die Funktionalität des Konzepts sicherzustellen, soll nach der Entwicklung eines Prototypsystems, dieses zunächst im Labor getestet werden. In einer weiteren Ausbaustufe erfolgt die Erprobung an einem Versuchsmotor im Feld. Mit dem vollständigen Umstieg auf Wasserstoff und andere klimaneutrale Kraftstoffe können Gasmotoren-BHKW nicht nur als Brückentechnologie in der Energiewende dienen, sondern auch langfristig für die Dekarbonisierung der Wärme- und Stromerzeugung sorgen. Mit dem in diesem Vorhaben geplanten adaptiven System bleiben sie dabei sehr flexibel und können im Gegensatz zu alternativen Technologien (wie z.B. der Brennstoffzelle) unabhängig von der Kraftstoffzusammensetzung, insbesondere der Reinheit des Wasserstoffs, betrieben werden.

Neuartiger Leichtbaustahl - Errichtung einer Produktionsanlage für Stahlbänder

Das Projekt wird an zwei Unternehmensstandorten durchgeführt: Eine neuartige Bandgießanlage zur Herstellung von Vorbändern wird in Peine errichtet. Dort sollen neue, hochfeste Stahlwerkstoffe mit hohem Mangan-, Silizium- und Aluminium-Gehalten hergestellt werden. In Salzgitter wird eine vorhandene Walzanlage zur Weiterverarbeitung der Vorbänder umgebaut. Bei der Herstellung von Leichtbaustählen sollen etwa 170 kg CO2 pro Tonne Warmband eingespart werden. Bezogen auf das Produktionsvolumen der geplanten Anlage (25.000 Tonnen) ergibt das eine CO2-Einsparung von 4.250 Tonnen pro Jahr. Darüber hinaus werden erhebliche Energieeinsparungspotenziale in der Stahl verarbeitenden Industrie erwartet. Beim Einsatz beispielsweise in Kraftfahrzeugen rechnen Experten mit einer Kraftstoffreduzierung von ca. 0,2 Liter / 100 km bzw. ca. 8 g CO2 / km. Das entspricht umgerechnet auf die produzierte Jahresmenge an Stahl etwa 8 Millionen Kraftstoff jährlich.

1 2 3 4 5223 224 225