API src

Found 561 results.

Similar terms

s/kristalisation/Kristallisation/gi

Geochemical, isotopic, geochronological data and assimilation plus fractional crystallization model of The Pleiades Volcanic Field (Northern Victoria Land, Antarctica)

Abstract

Markt für Zucker, aus Zuckerrüben

technologyComment of beet sugar production (CH, RoW): Sweet juice is extracted from the sugar beets by diffusion. The juice is then purified and crystallized to sugar. Molasses come as a by-product of the crystallization process.

Glossar zum Methodensteckbrief "großräumige Vertikalbewegungen" (PDF)

Glossar zu Ausschlusskriterium „Großräumige Vertikalbewegungen“ Einengungstektonikauch: Kompressionstektonik. Tektonischer Baustil, bei dem die hori- zontale Verkürzung der Erdkruste überwiegt. Die resultierenden Strukturen sind Aufschiebungen, Überschiebungen, Falten und De- cken (Lexikon der Geowissenschaften, 2001). Eozäninternational verwendete stratigraphische Bezeichnung für das mitt- lere Alttertiär. Das Eozän umfasst einen erdgeschichtlichen Zeitraum von ca. 20 Mio. Jahren (ca. 55 Mio. Jahre – 35 Mio. Jahre) (Lexikon der Geowissenschaften, 2001; Deutsche Stratigraphische Kommission, 2016). Erdkrusteäußere [„starre“] Erdschale […]. Man unterscheidet zwischen einer kontinentalen Erdkruste (30 – 50 km Mächtigkeit) und einer ozeani- schen Kruste (5 – 10 km Mächtigkeit) (Lexikon der Geowissenschaften, 2001). ErdmantelTeil der Erdschale, der sich unterhalb der Erdkruste und oberhalb des Erdkerns befindet. Der Erdmantel ist plastisch verformbar und wird in einen oberen und einen unteren Mantel unterteilt. ErosionOberbegriff für die Abtragungsprozesse, bei denen Materialumlage- rung durch exogene Prozesse (z.B. Wind, Wasser, Gletscher) statt- findet (Lexikon der Geowissenschaften, 2001). Duktile Verformungauch: „dehnbar, streckbar, verformbar“. Irreversible Verformung ohne Kohäsionsverlust. Der Begriff wird bei Gesteinen verwendet, die fest sind, sich aber bei langzeitiger Beanspruchung plastisch ver- halten (Murawski & Meyer, 2010). Geogene Hebungauf geologische Prozesse zurückzuführende Hebung der Erdober- fläche in Bezug auf die amtlich festgelegte Bezugshöhe. Holozänaktueller, auf das Pleistozän folgender erdgeschichtlicher (stratigra- phischer) Zeitraum von rund 10 000 Jahren (0,0117 Mio. Jahre bis heute). Es umfasst die nacheiszeitliche Warmzeit (Lexikon der Geowissenschaften, 2001; Deutsche Stratigraphische Kommission, 2016). Isostatisch, IsostasieHydrostatisches Gleichgewicht der […] Lithosphäre (Lexikon der Geowissenschaften, 2001). Isostasie bezeichnet den Ausgleich von Massendefiziten (z.B. durch Erosion) bzw. Massenüberschüssen (z.B. durch sedimentäre Ablagerungen) in der Lithosphäre (Erd- kruste und oberster Teil des Erdmantels) im Sinne des Archimedi- schen Prinzips. Vereinfacht dargestellt: Setzt sich eine Person auf eine schwimmende Luftmatratze, so wird der „Massenüberschuss“ im Zentrum des Schwimmkörpers durch Verdrängung des Wassers an dieser Stelle ausgeglichen. Verlässt die Person die Luftmatratze, so wird die Matratze zu dem gleichen Betrag, zu dem sie vorher ein- gesunken ist, wieder aus dem Wasser aufsteigen. Geschäftszeichen: SG02101/27/6-2020#5 | Stand: 13.03.2020 1 Lithosphärebezeichnet die äußere, etwa 100-200 km mächtige Schale der Erde, die sich stark vereinfacht ausgedrückt starr und nicht duktil verhält. Die Lithosphäre umfasst die kontinentale bzw. die ozeanische Erd- kruste und den oberen Erdmantel (Lexikon der Geowissenschaften, 2001). Känozoikumerdgeschichtliche (stratigraphische) Bezeichnung für den jüngsten Abschnitt des Phanerozoikums. Das Känozoikum umfasst das Ter- tiär und Quartär (66 Mio. Jahre bis heute) (Lexikon der Geowissenschaften, 2001; Deutsche Stratigraphische Kommission, 2016). KonvektionBewegung durch z.B. Temperaturunterschiede im Erdmantel (Wär- metransport durch Stofftransport), die zur Umwalzung des Mantel- materials führt. Konvektion ist u.a. ein Faktor, der zur Plattenbewe- gung (Verschiebung der Kontinente) beiträgt (Lexikon der Geowissenschaften, 2001). Konvergenzbewegungdas Aufeinanderzudriften und die Kollision von Platten im Sinne der Plattentektonik. Magmatische Prozessezusammenfassender Begriff für die Prozesse, die zur Bildung von Magmen in der Erde (und in anderen Planeten) führen, die ihre Be- wegung verursachen und die Kristallisation steuern (Lexikon der Geowissenschaften, 2001). Oberkreidejüngste erdgeschichtliche (stratigraphische) Einheit des Mesozoi- kums (100 Mio. Jahre – 66 Mio. Jahre) (Deutsche Stratigraphische Kommission, 2016). Postglaziale Aus- gleichsbewegungauch: „nacheiszeitliche“ isostatische Ausgleichsbewegung, gravita- tive Hebung der Erdkruste durch Abschmelzen der Gletscher (siehe auch: „isostatisch, Isostasie“). StrukturinversionReliefumkehr; Aufwölbung und Heraushebung ehemaliger Sedi- menttröge (Murawski & Meyer, 2010); vereinfacht darstellbar als die Entstehung eines Berges aus einer Mulde/Senke durch tektonische Hebungsbewegungen. Subsidenzlokale oder regionale Absenkung der Erdoberfläche (Lexikon der Geowissenschaften, 2001). Geschäftszeichen: SG02101/27/6-2020#5 | Stand: 13.03.2020 2 Literaturverzeichnis Deutsche Stratigraphische Kommission 2016: Stratigraphische Tabelle von Deutschland 2016. Potsdam (Deutsches GeoForschungsZentrum). Martin, C. & Eiblmaier, M. (Mithrsg.) 2003: Lexikon der Geowissenschaften. Spektrum Akademischer Verlag, Heidelberg. Murawski, H. & Meyer, W. 2010: Geologisches Wörterbuch. Spektrum Akademischer Verlag, Heidelberg. Geschäftszeichen: SG02101/27/6-2020#5 | Stand: 13.03.2020 3

Umweltgerechte Behandlung von nitrathaltigen Abwässern

Süd-Chemie AG produziert am Standort Bruckmühl Katalysatoren für die chemische und petrochemische Industrie. Bei der Katalysatoren Produktion fallen Abwässer mit einem hohen Salzgehalt an. Ziel des Vorhabens ist die umweltgerechte Behandlung dieser nitrathaltigen Abwässer und die Rückgewinnung von Natriumnitrat. Das Nitrat soll weitgehend ohne den zusätzlichen Einsatz von Chemikalien und ohne Anfall von Klärschlamm bei vertretbarem Energieeinsatz zurückgewonnen werden. Für die Behandlung dieser Abwässer hat die Süd-Chemie AG eine neuartige Verfahrenskombination bestehend aus Filtration, Ionenaustausch, Umkehrosmose und Eindampfer und Kristallisator entwickelt. Die Abwässer mit sehr unterschiedlichen Nitratgehalten werden zusammengefasst und zur Abtrennung der Feststoffpartikel filtriert. Nach dem Entfernen der in geringen Mengen im Filtrat vorliegenden Schwermetalle über Ionentauscher, werden die nitrathaltigen Filtrate durch kaskadenartig geschaltete Umkehrosmosestufen aufkonzentriert. Diese so erhaltene hochkonzentrierte Natriumnitratlösung wird dann eingedampft; nach einer abschließenden Kristallisation fällt hochreines Natriumnitrat an. Bei dieser innovativen Verfahrenskombination werden ca. 2.300 Tonnen Natriumnitrat pro Jahr gewonnen, eine Belastung der Gewässer durch organische Sauerstoffakzeptoren und Neutralisationschemikalien wird vermieden. Außerdem fällt kein Klärschlamm an. Das Vorhaben setzt neue Maßstäbe bei der Abwasserbehandlung und Wertstoffrückgewinnung. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Wasser / Abwasser Fördernehmer: Süd-Chemie AG Bundesland: Bayern Laufzeit: 2003 - 2008 Status: Abgeschlossen

Xtra-Abbau\Kali-DE-2000

Gewinnung von Kalisalzen: Die geförderten Rohsalze enthalten aufgrund ihrer Entstehungsgeschichte verschiedene Salzminerale. Das Ziel der Aufbereitung nach der Förderung ist das Abtrennen der Wertstoffe als verkaufsfähige Produkte von den Mineralsalzen, die den Rückstand bilden. Dies kann in Abhängigkeit der Eigenschaften der zu verarbeitenden Rohstoffe auf unterschiedliche Weise und in den verschiedensten Verfahrenskombinationen geschehen. Bei allen Prozessen steht am Anfang das Mahlen des stückigen Rohsalzes (bis zu Korngrößen um 1 mm). Die weiteren Verfahren sind sehr stark vom Rohsalztyp, dessen spezieller Zusammensetzung und dem Verwachsungsgrad der Salzminerale abhängig (BMU 1995). Die wichtigsten Prozesse sind: (1) Heißlöseverfahren: Aus dem Rohsalz wird Kaliumchlorid mittels einer heißen , mit Natriumchlorid gesättigten Kreislauflösung gelöst und durch Kristallisation mittels Vakuumverdampfung gewonnen. Der feste Rückstand wird meistens aufgehaldet. Falls Carnallit im Rohsalz enthalten ist, fällt dies in gelöster Form an und wird entsorgt (Ableitung in den Zechstein). (2) Elektrostatische Aufbereitung (ESTA): Das Rohsalz wird mit selektiv wirkenden oberflächenaktiven Stoffen behandelt und trocken im elektrischen Feld getrennt. Es fällt kein Prozeßwasser an. Der Rückstand der ersten Stufe wird aufgehaldet, während die Produkte weiterer Stufen anderen Aufbereitungsverfahren zugeführt werden können. Die ESTA kann auch zur Abtrennung von Kieserit eingesetzt werden. (3) Flotation: Dieses Verfahren wird für Rohsalze und den Rückstand des Heißlöseverfahrens angewendet. Auch bei diesem Verfahren werden selektiv wirkende oberflächenaktive Substanzen eingesetzt. Die Trennung erfolgt in einer sog. Traglauge durch das Abschöpfen eines wertstoffreichen, schaumigen Konzentrats. Der Rückstand wird aufgehaldet, die Trennflüssigkeiten weitestgehend im Kreis geführt. (4) Kieseritwäsche: Der feste Rückstand des Heißlöseverfahrens besteht aus einem Steinsalz-Kieserit-Gemisch, aus dem das Steinsalz in einem mehrstufigen Waschvorgang herausgelöst wird und als flüssiger Rückstand anfällt. (5) Herstellung von Kaliumsulfat: Aus Kaliumchlorid und Kieserit wird durch eine zweistufige Umsetzung Kaliumsulfat hergestellt. Dabei fällt magnesiumchloridhaltiges Abwasser an (BMU 1995). Insgesamt bestehen die Aufbereitungsrückstände im wesentlichen aus Magnesiumchlorid und Steinsalz. Magnesiumchlorid fällt dabei zwangsweise im Abwasser an. Der Abwasseranfall für die verschiedenen Verfahren wird vom BMU folgendermaßen beziffert: Tab.: Spezifischer Abwasseranfall für die einzelnen Aufbereitungsverfahren (BMU 1995) Verfahren Bezug Abwasser (m³) Heißlösen t verarbeitetes Rohsalz SylvinitHartsalz+Carnallit+ je % MgCl2 <0,10,10,03-0,05 Flotation je t verarbeitetes Rohsalz+ je % MgCl2 0,10,03-0,05 Kieseritwäsche je t Kieserit 5-7 Kaliumsulfat-Herstellung je t eingesetztes Kaliumchlorid mit 60 % K2O 3-5 Die beschriebenen Verfahren werden an den verschiedenen Standorten in unterschiedlichen Kombinationen je nach Vorkommen, Zusammensetzung des Salzes (Wertstoffgehalt) und Verwachsungsgrad eingesetzt. Die prägenden Rohsalztypen für die einzelnen Werke sind in der folgenden Tabelle gemeinsam mit den Produktionsdaten zusammengestellt. Tab.: Produktionskapazitäten der einzelnen Kaliwerke für 1993 incl. Produktionsstruktur (BMU 1995). Werke Rohsalz Kali Kaliumsulfat Kieserit Mio t Mio t K2O Mio t K2O Mio t Hattorf (He)H.salz/Carn. 9,6 0,7 0,38 0,1 Neuhof (He)H.salz/Carn. 3,7 0,35 - 0,6 Wintershall (He)H.salz/Carn. 9,5 0,65 0,26 0,1 Sigmundshall (Nd)Sylvinit 3,0 0,4 - - Unterbreizbach (Th)H.salz/Carn. 4,1 0,4 - 0,3 Zielitz (SA)Sylvinit 8,6 1,1 - - Summe 38,5 3,6 0,64 1,1 Der hier bilanzierte Prozess der Gewinnung von Kalisalzen umfaßt die Aufbereitung der geförderten Rohsalze zu absatzfähigen Produkten. Für die Bilanzierung standen lediglich Sekundärdaten zur Verfügung (OEKO 1992a), (BMU 1995), (Scharf 1993), (Kali 1996). Daraus ergibt sich sowohl der Grad der Aggregation als auch die weitgefaßten Systemgrenzen. Die Materialbilanzen konnten nur aus Daten hessischer Werke für den Bilanzzeitraum Anfang der 90er Jahre zur Erstellung der Kennziffern herangezogen werden. Dabei sind der Berechnung der Kennziffern die Planungsdaten für das Jahr 1993 zugrundegelegt, die aber durch reale Produktionsdaten verifiziert werden konnten. Über den Energiebedarf der Prozesse lagen keine Daten vor. Hier mußte auf statistische Daten zurückgegriffen werden (OEKO 1992a). Die hessischen Werke machen den weitaus größten Teil der westdeutschen Produktion aus. Die Förderung in den neuen Bundesländern konnte nicht berücksichtigt werden. Es muß jedoch darauf hingewiesen werden, daß die Werte für die anderen Werke stark abweichen kann. Je nach Zusammensetzung des Rohsalzes, der eingesetzten - meist kombinierten - Verfahren und dem Produktportfolio können andere Kenngrößen differieren. Weiterhin muß darauf hingewiesen werden, daß die Berechnungsgrundlage für die verwendeten Bilanzen nicht eindeutig geklärt ist (Scharf 1993). Dadurch können in der Bilanz auftretende Differenzen nicht abschließend erklärt werden. Eine abschließende Erklärung wäre nur im Rahmen einer weitergehenden Studie möglich, die im Rahmen von GEMIS nicht zu leisten ist. Eine weitergehende Untergliederung des Prozesses in einzelne Prozesseinheiten oder nach einzelnen oben beschriebenen Verfahren ist anhand der vorliegenden Daten nicht möglich gewesen. Aufgrund der mangelhaften Datenlage ist der vorliegende Datensatz nur als grobe Schätzung zu bezeichnen. Allokation: Neben den Kalisalzen Kaliumchlorid und Kaliumsulfat wird Magnesiumsulfat in großen Mengen gewonnen, das auf die Wirtschaftlichkeit der deutschen Werke einen entscheidenden Einfluß hat (Scharf 1993). Diese drei Produkte werden in der vorliegenden Bilanz gleichwertig in bezug auf die Masse als Hauptprodukt angesehen. Es findet somit eine Allokation nach Masse statt, wobei die Produkte summarisch bilanziert werden. Neben den erwähnten Produkten werden keine weiteren Produkte in der Bilanz berücksichtigt. Auch Brom wird nicht mitbilanziert, da die Bromproduktion durch die Kaliindustrie eingestellt wurde (BMU 1995). Mineralsalze in fester und gelöster Form werden als Rückstände angesehen, auch wenn teilweise Bestrebungen existieren, sie ebenso als Produkt zu verwerten. Bislang wird jedoch der Großteil verworfen. Genese der Kennziffern Massenbilanz: Bezogen auf eine Tonne Produktmix müssen nach den Planungsdaten der hessischen Werke für das Jahr 1993 8250 kg Rohsalz gefördert werden (Scharf 1993). Diese Daten können durch die realen Produktionszahlen bestätigt werden. Im Jahr 1993 mußten real zur Gewinnung einer Tonne Produktmix ca. 8120 kg Rohsalz verarbeitet werden (Kali 1996). Dieser Wert wird in der vorliegenden Studie angesetzt, da er auf Herstellerangaben beruht. Energiebedarf: Zum Energiebedarf bei der Gewinnung von Kalisalzen liegen derzeit nur sehr wenige Daten vor. Aus den Daten des Statistischen Bundesamtes (StBA) und der Arbeitsgemeinschaft Energiebilanzen (AGEB) sind lediglich Daten für den gemeinsamen Energieverbrauch der Kali- und der Steinsalzindustrie zu entnehmen (OEKO 1992a). Unter der Voraussetzung, daß Kali- und Steinsalz von der Masse her gleichrangig behandelt werden, ergibt sich ein vorläufiger Proporz der Kaliindustrie. Bezogen auf eine Tonne Produktmix werden daher die in der folgenden Tabelle dargestellten Daten für die Gewinnung der Kalisalze bilanziert: Tab.: Energiebedarf bei der Herstellung von Kalisalzen für das Jahr 1987 in den alten Bundesländern(OEKO 1992). Kenngröße Einheit Kali- & Steins. Kali Steinsalz Prod.menge t 1,0 E+7 2,77 E+6 7,26 E+6 Brennstoff GJ/t 1,516 0,419 1,097 Strom GJ/t 0,342 0,094 0,248 Demnach werden 0,419 GJ/t Prozesswärme und 0,094 GJ/t Strom benötigt zur Herstellung einer Tonne Produktmix benötigt. Die Werte konnten durch die überarbeitete Erklärung des Kalivereins zur Klimavorsorge von 1996 bestätigt werden. In ihr wird für das Jahr 1994 ein spezifischer Energieverbrauch von 0,528 GJ/t Rohsalz angegeben (Kaliverein 1996). Dieser wird allerdings nicht nach Energieträgern spezifiziert. Für GEMIS wird die Summe aus der Erklärung des Kalivereins angesetzt mit der Verteilung nach den statistischen Angaben zwischen den einzelnen Energieträgern. Daraus ergibt sich ein Brennstoffbedarf von 0,432 GJ/t und ein Strombedarf von 0,096 GJ/t. Als Brennstoff zur Bereitstellung der Prozeßwärme wird Gas angesetzt. Die vorliegenden Daten zum Energiebedarf der Kalisalzherstellung sind als Schätzung anzusehen (Kali 1996). Prozessbedingte Luftemissionen: Abgesehen von den Emissionen, die aus der Energiebereitstellung resultieren, werden keine weiteren Prozessemissionen bilanziert. Etwaige Staubemissionen, verursacht durch die Aufhaldung der festen Reststoffe, können hier nicht quantifiziert werden. Sie werden aber - trotz fehlender Daten - ausdrücklich nicht ausgeschlossen. Wasserinanspruchnahme: Wasser wird in nahezu allen Produktionsschritten in Anspruch genommen. Insgesamt waren für 1993 5,65 m³ Wasser angesetzt bezogen auf eine Tonne des in dieser Studie berücksichtigten Produktmixes. Diese Menge teilt sich folgendermaßen auf: Tab.: Abwassermengen bei der Kalisalzgewinnung (Scharf 1993). Abwasserherkunft Menge in m³/t Produktmix Ableitung Abwasser von Halden 0,1 Versenkung Prozeßabw. KCl-Herst. 1,25 Versenkung Prozeßabw. MgSO4-Herst. 2,3 Werra Prozeßabw. K2SO4-Herst. 1,75 Versenkung Kühl- und Sielwässer 0,25 Werra Summe 5,65 Aufgrund der eingeschränkten Datenverfügbarkeit wurde in der vorliegenden Studie vereinfachend die Wasserinanspruchnahme gleich der Abwassermenge gesetzt. Kühl- und Sielwässer sind in der Regel nicht oder nur gering mit Salzen belastet. Sie wurden jedoch auf Salzabwässer umgerechnet. Die real einzusetzende Wassermenge liegt also wahrscheinlich höher. Die Tendenzen in der Kaliindustrie gehen dahin, die Abwassermengen - respektive die Wasserinanspruchnahme - durch eine geeignete Verfahrensführung zu reduzieren. Das würde jedoch zwangsläufig zu größeren Mengen fester Reststoffe führen. Dieser Effekt kann hier nur qualitativ beschrieben werden. Eine quantitative Abschätzung ist hierzu nicht möglich. Abwasserinhaltsstoffe: Hinsichtlich der in dieser Studie bilanzierten organischen Summenparametern ist bei der Kalisalz-Herstellung nicht mit erheblichen Zusatzbelastungen zu rechnen. Da organische Hilfsstoffe (Flotationsmittel), die in den Prozessen eingesetzt werden, in der vorliegenden Untersuchung nicht bilanziert wurden, können über deren Auswirkungen auf die Abwasserqualität keine Aussagen getroffen werden. Daher werden die Frachten pro Tonne Produktmix für die organischen Summenparameter wie auch für die Nährstoffe hier auf Null gesetzt. Erheblich ist allerdings die Chloridfracht der Abwässer. Sie ist in der folgenden Tabelle aufgeführt. Tab.: Abwasseranalysen 1992 hessischer Werke (Scharf 1993). Parameter Einheit Versenkung Werra Chlorid g/l 190 160 Chlorid kg/t Produktmix 589 408 Summe kg/t Produktmix 997 Reststoffe: Aus den Planungsdaten der bilanzierten Werke für das Jahr 1993 geht hervor, daß pro Tonne Produktmix 5000 kg Haldenmaterial anfallen (Scharf 1993). Die realen Produktionszahlen für 1993 bestätigen diesen Wert. Aus ihnen geht hervor, dass pro Tonne Produkt 4710 kg aufgehaldet werden (Kali 1996). Dieser Wert wird in GEMIS als Kennziffer zugrundegelegt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 12,3% Produkt: Rohstoffe

Xtra-Abbau\Kalisalz-DE-2010

Gewinnung von Kalisalzen: Die geförderten Rohsalze enthalten aufgrund ihrer Entstehungsgeschichte verschiedene Salzminerale. Das Ziel der Aufbereitung nach der Förderung ist das Abtrennen der Wertstoffe als verkaufsfähige Produkte von den Mineralsalzen, die den Rückstand bilden. Dies kann in Abhängigkeit der Eigenschaften der zu verarbeitenden Rohstoffe auf unterschiedliche Weise und in den verschiedensten Verfahrenskombinationen geschehen. Bei allen Prozessen steht am Anfang das Mahlen des stückigen Rohsalzes (bis zu Korngrößen um 1 mm). Die weiteren Verfahren sind sehr stark vom Rohsalztyp, dessen spezieller Zusammensetzung und dem Verwachsungsgrad der Salzminerale abhängig (BMU 1995). Die wichtigsten Prozesse sind: (1) Heißlöseverfahren: Aus dem Rohsalz wird Kaliumchlorid mittels einer heißen , mit Natriumchlorid gesättigten Kreislauflösung gelöst und durch Kristallisation mittels Vakuumverdampfung gewonnen. Der feste Rückstand wird meistens aufgehaldet. Falls Carnallit im Rohsalz enthalten ist, fällt dies in gelöster Form an und wird entsorgt (Ableitung in den Zechstein). (2) Elektrostatische Aufbereitung (ESTA): Das Rohsalz wird mit selektiv wirkenden oberflächenaktiven Stoffen behandelt und trocken im elektrischen Feld getrennt. Es fällt kein Prozeßwasser an. Der Rückstand der ersten Stufe wird aufgehaldet, während die Produkte weiterer Stufen anderen Aufbereitungsverfahren zugeführt werden können. Die ESTA kann auch zur Abtrennung von Kieserit eingesetzt werden. (3) Flotation: Dieses Verfahren wird für Rohsalze und den Rückstand des Heißlöseverfahrens angewendet. Auch bei diesem Verfahren werden selektiv wirkende oberflächenaktive Substanzen eingesetzt. Die Trennung erfolgt in einer sog. Traglauge durch das Abschöpfen eines wertstoffreichen, schaumigen Konzentrats. Der Rückstand wird aufgehaldet, die Trennflüssigkeiten weitestgehend im Kreis geführt. (4) Kieseritwäsche: Der feste Rückstand des Heißlöseverfahrens besteht aus einem Steinsalz-Kieserit-Gemisch, aus dem das Steinsalz in einem mehrstufigen Waschvorgang herausgelöst wird und als flüssiger Rückstand anfällt. (5) Herstellung von Kaliumsulfat: Aus Kaliumchlorid und Kieserit wird durch eine zweistufige Umsetzung Kaliumsulfat hergestellt. Dabei fällt magnesiumchloridhaltiges Abwasser an (BMU 1995). Insgesamt bestehen die Aufbereitungsrückstände im wesentlichen aus Magnesiumchlorid und Steinsalz. Magnesiumchlorid fällt dabei zwangsweise im Abwasser an. Die beschriebenen Verfahren werden an den verschiedenen Standorten in unterschiedlichen Kombinationen je nach Vorkommen, Zusammensetzung des Salzes (Wertstoffgehalt) und Verwachsungsgrad eingesetzt. Die prägenden Rohsalztypen für die einzelnen Werke sind in der folgenden Tabelle gemeinsam mit den Produktionsdaten zusammengestellt. Tab.: Produktionskapazitäten der einzelnen Kaliwerke für 1993 incl. Produktionsstruktur (BMU 1995). Werke Rohsalz Kali Kaliumsulfat Kieserit Mio t Mio t K2O Mio t K2O Mio t Hattorf (He)H.salz/Carn. 9,6 0,7 0,38 0,1 Neuhof (He)H.salz/Carn. 3,7 0,35 - 0,6 Wintershall (He)H.salz/Carn. 9,5 0,65 0,26 0,1 Sigmundshall (Nd)Sylvinit 3,0 0,4 - - Unterbreizbach (Th)H.salz/Carn. 4,1 0,4 - 0,3 Zielitz (SA)Sylvinit 8,6 1,1 - - Summe 38,5 3,6 0,64 1,1 Der vorliegenden Prozess zur Gewinnung von Kalisalzen umfaßt die Aufbereitung der geförderten Rohsalze zu absatzfähigen Produkten. Für die Bilanzierung standen lediglich Sekundärdaten zur Verfügung (OEKO 1992a), (BMU 1995), (Scharf 1993), (Kali 1996). Daraus ergibt sich sowohl der Grad der Aggregation als auch die weitgefaßten Systemgrenzen. Die Materialbilanzen konnten nur aus Daten hessischer Werke für den Bilanzzeitraum Anfang der 90er Jahre zur Erstellung der Kennziffern herangezogen werden. Dabei sind der Berechnung der Kennziffern die Planungsdaten für das Jahr 1993 zugrundegelegt, die aber durch reale Produktionsdaten verifiziert werden konnten. Über den Energiebedarf der Prozesse lagen keine Daten vor. Hier mußte auf statistische Daten zurückgegriffen werden (OEKO 1992a). Die hessischen Werke machen den weitaus größten Teil der westdeutschen Produktion aus. Die Förderung in den neuen Bundesländern konnte nicht berücksichtigt werden. Es muß jedoch darauf hingewiesen werden, daß die Werte für die anderen Werke stark abweichen kann. Je nach Zusammensetzung des Rohsalzes, der eingesetzten - meist kombinierten - Verfahren und dem Produktportfolio können andere Kenngrößen differieren. Weiterhin muß darauf hingewiesen werden, daß die Berechnungsgrundlage für die verwendeten Bilanzen nicht eindeutig geklärt ist (Scharf 1993). Dadurch können in der Bilanz auftretende Differenzen nicht abschließend erklärt werden. Eine abschließende Erklärung wäre nur im Rahmen einer weitergehenden Studie möglich, die im Rahmen von GEMIS nicht zu leisten ist. Eine weitergehende Untergliederung des Prozesses in einzelne Prozeßeinheiten oder nach einzelnen oben beschriebenen Verfahren ist anhand der vorliegenden Daten nicht möglich gewesen. Aufgrund der mangelhaften Datenlage ist der vorliegende Datensatz nur als grobe Schätzung und damit als vorläufig zu bezeichnen. Allokation: Neben den Kalisalzen Kaliumchlorid und Kaliumsulfat wird Magnesiumsulfat in großen Mengen gewonnen, das auf die Wirtschaftlichkeit der deutschen Werke einen entscheidenden Einfluß hat (Scharf 1993). Diese drei Produkte werden in der vorliegenden Bilanz gleichwertig in bezug auf die Masse als Hauptprodukt angesehen. Es findet somit eine Allokation nach Masse statt. Wobei die Produkte summarisch bilanziert werden. Neben den erwähnten Produkten werden keine weiteren Produkte in der Bilanz berücksichtigt. Auch Brom wird nicht mitbilanziert, da die Bromproduktion durch die Kaliindustrie eingestellt wurde (BMU 1995). Mineralsalze in fester und gelöster Form werden als Rückstände angesehen, auch wenn teilweise Bestrebungen existieren, sie ebenso als Produkt zu verwerten. Bislang wird jedoch der Großteil verworfen. Genese der Kennziffern Massenbilanz: Bezogen auf eine Tonne Produktmix müssen nach den Planungsdaten der hessischen Werke für das Jahr 1993 8250 kg Rohsalz gefördert werden (Scharf 1993). Diese Daten können durch die realen Produktionszahlen bestätigt werden. Im Jahr 1993 mußten real zur Gewinnung einer Tonne Produktmix ca. 8120 kg Rohsalz verarbeitet werden (Kali 1996). Dieser Wert wird in der vorliegenden Studie angesetzt, da er auf Herstellerangaben beruht. Energiebedarf: Zum Energiebedarf bei der Gewinnung von Kalisalzen liegen derzeit nur sehr wenige Daten vor. Aus den Daten des Statistischen Bundesamtes (StBA) und der Arbeitsgemeinschaft Energiebilanzen (AGEB) sind lediglich Daten für den gemeinsamen Energieverbrauch der Kali- und der Steinsalzindustrie zu entnehmen (OEKO 1992a). Unter der Voraussetzung, daß Kali- und Steinsalz von der Masse her gleichrangig behandelt werden, ergibt sich ein vorläufiger Proporz der Kaliindustrie. Bezogen auf eine Tonne Produktmix werden daher die in der folgenden Tabelle dargestellten Daten für die Gewinnung der Kalisalze bilanziert: Tab.: Energiebedarf bei der Herstellung von Kalisalzen für das Jahr 1987 in den alten Bundesländern(OEKO 1992). Kenngröße Einheit Kali- & Steins. Kali Steinsalz Prod.menge t 1,0 E+7 2,77 E+6 7,26 E+6 Brennstoff GJ/t 1,516 0,419 1,097 Strom GJ/t 0,342 0,094 0,248 Demnach werden 0,419 GJ/t Prozesswärme und 0,094 GJ/t Strom benötigt zur Herstellung einer Tonne Produktmix benötigt. Die Werte konnten durch die überarbeitete Erklärung des Kalivereins zur Klimavorsorge von 1996 bestätigt werden. In ihr wird für das Jahr 1994 ein spezifischer Energieverbrauch von 0,528 GJ/t Rohsalz angegeben (Kaliverein 1996). Dieser wird allerdings nicht nach Energieträgern spezifiziert. Für GEMIS wird die Summe aus der Erklärung des Kalivereins angesetzt mit der Verteilung nach den statistischen Angaben zwischen den einzelnen Energieträgern. Daraus ergibt sich ein Brennstoffbedarf von 0,43 GJ/t und ein Strombedarf von 0,1 GJ/t. Als Brennstoff zur Bereitstellung der Prozesswärme wird Gas angesetzt. Prozeßbedingte Luftemissionen: Abgesehen von den Emissionen, die aus der Energiebereitstellung resultieren, werden keine weiteren Prozeßemissionen bilanziert. Reststoffe: Aus den Planungsdaten der bilanzierten Werke für das Jahr 1993 geht hervor, daß pro Tonne Produktmix 5000 kg Haldenmaterial anfallen (Scharf 1993). Die realen Produktionszahlen für 1993 bestätigen diesen Wert. Aus ihnen geht hervor, daß pro Tonne Produkt 4710 kg aufgehaldet werden (Kali 1996). Dieser Wert wird in GEMIS als Kennziffer zugrundegelegt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 12,3% Produkt: Rohstoffe

Xtra-Abbau\Kalisalz-DE-2000

Gewinnung von Kalisalzen: Die geförderten Rohsalze enthalten aufgrund ihrer Entstehungsgeschichte verschiedene Salzminerale . Das Ziel der Aufbereitung nach der Förderung ist das Abtrennen der Wertstoffe als verkaufsfähige Produkte von den Mineralsalzen, die den Rückstand bilden. Dies kann in Abhängigkeit der Eigenschaften der zu verarbeitenden Rohstoffe auf unterschiedliche Weise und in den verschiedensten Verfahrenskombinationen geschehen. Bei allen Prozessen steht am Anfang das Mahlen des stückigen Rohsalzes (bis zu Korngrößen um 1 mm). Die weiteren Verfahren sind sehr stark vom Rohsalztyp, dessen spezieller Zusammensetzung und dem Verwachsungsgrad der Salzminerale abhängig (BMU 1995). Die wichtigsten Prozesse sind: (1) Heißlöseverfahren: Aus dem Rohsalz wird Kaliumchlorid mittels einer heißen , mit Natriumchlorid gesättigten Kreislauflösung gelöst und durch Kristallisation mittels Vakuumverdampfung gewonnen. Der feste Rückstand wird meistens aufgehaldet. Falls Carnallit im Rohsalz enthalten ist, fällt dies in gelöster Form an und wird entsorgt (Ableitung in den Zechstein). (2) Elektrostatische Aufbereitung (ESTA): Das Rohsalz wird mit selektiv wirkenden oberflächenaktiven Stoffen behandelt und trocken im elektrischen Feld getrennt. Es fällt kein Prozeßwasser an. Der Rückstand der ersten Stufe wird aufgehaldet, während die Produkte weiterer Stufen anderen Aufbereitungsverfahren zugeführt werden können. Die ESTA kann auch zur Abtrennung von Kieserit eingesetzt werden. (3) Flotation: Dieses Verfahren wird für Rohsalze und den Rückstand des Heißlöseverfahrens angewendet. Auch bei diesem Verfahren werden selektiv wirkende oberflächenaktive Substanzen eingesetzt. Die Trennung erfolgt in einer sog. Traglauge durch das Abschöpfen eines wertstoffreichen, schaumigen Konzentrats. Der Rückstand wird aufgehaldet, die Trennflüssigkeiten weitestgehend im Kreis geführt. (4) Kieseritwäsche: Der feste Rückstand des Heißlöseverfahrens besteht aus einem Steinsalz-Kieserit-Gemisch, aus dem das Steinsalz in einem mehrstufigen Waschvorgang herausgelöst wird und als flüssiger Rückstand anfällt. (5) Herstellung von Kaliumsulfat: Aus Kaliumchlorid und Kieserit wird durch eine zweistufige Umsetzung Kaliumsulfat hergestellt. Dabei fällt magnesiumchloridhaltiges Abwasser an (BMU 1995). Insgesamt bestehen die Aufbereitungsrückstände im wesentlichen aus Magnesiumchlorid und Steinsalz. Magnesiumchlorid fällt dabei zwangsweise im Abwasser an. Der Abwasseranfall für die verschiedenen Verfahren wird vom BMU folgendermaßen beziffert: Tab.: Spezifischer Abwasseranfall für die einzelnen Aufbereitungsverfahren (BMU 1995) Verfahren Bezug Abwasser (m³) Heißlösen t verarbeitetes RohsalzSylvinitHartsalz+Carnallit+ je % MgCl2 <0,10,10,03-0,05 Flotation je t verarbeitetes Rohsalz+ je % MgCl2 0,10,03-0,05 Kieseritwäsche je t Kieserit 5-7 Kaliumsulfat-Herstellung je t eingesetztes Kaliumchlorid mit 60 % K2O 3-5 Die beschriebenen Verfahren werden an den verschiedenen Standorten in unterschiedlichen Kombinationen je nach Vorkommen, Zusammensetzung des Salzes (Wertstoffgehalt) und Verwachsungsgrad eingesetzt. Die prägenden Rohsalztypen für die einzelnen Werke sind in der folgenden Tabelle gemeinsam mit den Produktionsdaten zusammengestellt. Tab.: Produktionskapazitäten der einzelnen Kaliwerke für 1993 incl. Produktionsstruktur (BMU 1995). Werke Rohsalz Kali Kaliumsulfat Kieserit Mio t Mio t K2O Mio t K2O Mio t Hattorf (He)H.salz/Carn. 9,6 0,7 0,38 0,1 Neuhof (He)H.salz/Carn. 3,7 0,35 - 0,6 Wintershall (He)H.salz/Carn. 9,5 0,65 0,26 0,1 Sigmundshall (Nd)Sylvinit 3,0 0,4 - - Unterbreizbach (Th)H.salz/Carn. 4,1 0,4 - 0,3 Zielitz (SA)Sylvinit 8,6 1,1 - - Summe 38,5 3,6 0,64 1,1 Der in der vorliegenden Studie bilanzierte Prozeß der Gewinnung von Kalisalzen umfaßt die Aufbereitung der geförderten Rohsalze zu absatzfähigen Produkten. Für die Bilanzierung standen lediglich Sekundärdaten zur Verfügung (OEKO 1992a), (BMU 1995), (Scharf 1993), (Kali 1996). Daraus ergibt sich sowohl der Grad der Aggregation als auch die weitgefaßten Systemgrenzen. Die Materialbilanzen konnten nur aus Daten hessischer Werke für den Bilanzzeitraum Anfang der 90er Jahre zur Erstellung der Kennziffern herangezogen werden. Dabei sind der Berechnung der Kennziffern die Planungsdaten für das Jahr 1993 zugrundegelegt, die aber durch reale Produktionsdaten verifiziert werden konnten. Über den Energiebedarf der Prozesse lagen keine Daten vor. Hier mußte auf statistische Daten zurückgegriffen werden (OEKO 1992a). Die hessischen Werke machen den weitaus größten Teil der westdeutschen Produktion aus. Die Förderung in den neuen Bundesländern konnte nicht berücksichtigt werden. Es muß jedoch darauf hingewiesen werden, daß die Werte für die anderen Werke stark abweichen kann. Je nach Zusammensetzung des Rohsalzes, der eingesetzten - meist kombinierten - Verfahren und dem Produktportfolio können andere Kenngrößen differieren. Weiterhin muß darauf hingewiesen werden, daß die Berechnungsgrundlage für die verwendeten Bilanzen nicht eindeutig geklärt ist (Scharf 1993). Dadurch können in der Bilanz auftretende Differenzen nicht abschließend erklärt werden. Eine abschließende Erklärung wäre nur im Rahmen einer weitergehenden Studie möglich, die im Rahmen von GEMIS nicht zu leisten ist. Eine weitergehende Untergliederung des Prozesses in einzelne Prozeßeinheiten oder nach einzelnen oben beschriebenen Verfahren ist anhand der vorliegenden Daten nicht möglich gewesen. Aufgrund der mangelhaften Datenlage ist der vorliegende Datensatz nur als grobe Schätzung und damit als vorläufig zu bezeichnen. Allokation: Neben den Kalisalzen Kaliumchlorid und Kaliumsulfat wird Magnesiumsulfat in großen Mengen gewonnen, das auf die Wirtschaftlichkeit der deutschen Werke einen entscheidenden Einfluß hat (Scharf 1993). Diese drei Produkte werden in der vorliegenden Bilanz gleichwertig in bezug auf die Masse als Hauptprodukt angesehen. Es findet somit eine Allokation nach Masse statt. Wobei die Produkte summarisch bilanziert werden. Neben den erwähnten Produkten werden keine weiteren Produkte in der Bilanz berücksichtigt. Auch Brom wird nicht mitbilanziert, da die Bromproduktion durch die Kaliindustrie eingestellt wurde (BMU 1995). Mineralsalze in fester und gelöster Form werden als Rückstände angesehen, auch wenn teilweise Bestrebungen existieren, sie ebenso als Produkt zu verwerten. Bislang wird jedoch der Großteil verworfen. Genese der Kennziffern Massenbilanz: Bezogen auf eine Tonne Produktmix müssen nach den Planungsdaten der hessischen Werke für das Jahr 1993 8250 kg Rohsalz gefördert werden (Scharf 1993). Diese Daten können durch die realen Produktionszahlen bestätigt werden. Im Jahr 1993 mußten real zur Gewinnung einer Tonne Produktmix ca. 8120 kg Rohsalz verarbeitet werden (Kali 1996). Dieser Wert wird in der vorliegenden Studie angesetzt, da er auf Herstellerangaben beruht. Energiebedarf: Zum Energiebedarf bei der Gewinnung von Kalisalzen liegen derzeit nur sehr wenige Daten vor. Aus den Daten des Statistischen Bundesamtes (StBA) und der Arbeitsgemeinschaft Energiebilanzen (AGEB) sind lediglich Daten für den gemeinsamen Energieverbrauch der Kali- und der Steinsalzindustrie zu entnehmen (OEKO 1992a). Unter der Voraussetzung, daß Kali- und Steinsalz von der Masse her gleichrangig behandelt werden, ergibt sich ein vorläufiger Proporz der Kaliindustrie. Bezogen auf eine Tonne Produktmix werden daher die in der folgenden Tabelle dargestellten Daten für die Gewinnung der Kalisalze bilanziert: Tab.: Energiebedarf bei der Herstellung von Kalisalzen für das Jahr 1987 in den alten Bundesländern(OEKO 1992). Kenngröße Einheit Kali- & Steins. Kali Steinsalz Prod.menge t 1,0 E+7 2,77 E+6 7,26 E+6 Brennstoff GJ/t 1,516 0,419 1,097 Strom GJ/t 0,342 0,094 0,248 Demnach werden 0,419 GJ/t Prozeßwärme und 0,094 GJ/t Strom benötigt zur Herstellung einer Tonne Produktmix benötigt. Die Werte konnten durch die überarbeitete Erklärung des Kalivereins zur Klimavorsorge von 1996 bestätigt werden. In ihr wird für das Jahr 1994 ein spezifischer Energieverbrauch von 0,528 GJ/t Rohsalz angegeben (Kaliverein 1996). Dieser wird allerdings nicht nach Energieträgern spezifiziert. Für GEMIS wird die Summe aus der Erklärung des Kalivereins angesetzt mit der Verteilung nach den statistischen Angaben zwischen den einzelnen Energieträgern. Daraus ergibt sich ein Brennstoffbedarf von 0,432 GJ/t und ein Strombedarf von 0,096 GJ/t. Als Brennstoff zur Bereitstellung der Prozeßwärme wird Gas angesetzt. Die vorliegenden Daten zum Energiebedarf der Kalisalzherstellung sind als vorläufig anzusehen. Aktuellere und genauere Daten sind für die zweite Jahreshälfte des Jahres 1996 zu erwarten (Kali 1996). Prozeßbedingte Luftemissionen: Abgesehen von den Emissionen, die aus der Energiebereitstellung resultieren, werden keine weiteren Prozeßemissionen bilanziert. Etwaige Staubemissionen, verursacht durch die Aufhaldung der festen Reststoffe, können hier nicht quantifiziert werden. Sie werden aber - trotz fehlender Daten - ausdrücklich nicht ausgeschlossen. Wasserinanspruchnahme: Wasser wird in nahezu allen Produktionsschritten in Anspruch genommen. Insgesamt waren für 1993 5,65 m³ Wasser angesetzt bezogen auf eine Tonne des in dieser Studie berücksichtigten Produktmixes. Diese Menge teilt sich folgendermaßen auf: Tab.: Abwassermengen bei der Kalisalzgewinnung (Scharf 1993). Abwasserherkunft Menge in m³/t Produktmix Ableitung Abwasser von Halden 0,1 Versenkung Prozeßabw. KCl-Herst. 1,25 Versenkung Prozeßabw. MgSO4-Herst. 2,3 Werra Prozeßabw. K2SO4-Herst. 1,75 Versenkung Kühl- und Sielwässer 0,25 Werra Summe 5,65 Aufgrund der eingeschränkten Datenverfügbarkeit wurde in der vorliegenden Studie vereinfachend die Wasserinanspruchnahme gleich der Abwassermenge gesetzt. Kühl- und Sielwässer sind in der Regel nicht oder nur gering mit Salzen belastet. Sie wurden jedoch auf Salzabwässer umgerechnet. Die real einzusetzende Wassermenge liegt also wahrscheinlich höher. Die Tendenzen in der Kaliindustrie gehen dahin, die Abwassermengen - respektive die Wasserinanspruchnahme - durch eine geeignete Verfahrensführung zu reduzieren. Das würde jedoch zwangsläufig zu größeren Mengen fester Reststoffe führen. Dieser Effekt kann hier nur qualitativ beschrieben werden. Eine quantitative Abschätzung ist hierzu nicht möglich. Abwasserinhaltsstoffe: Hinsichtlich der in dieser Studie bilanzierten organischen Summenparametern ist bei der Kalisalz-Herstellung nicht mit erheblichen Zusatzbelastungen zu rechnen. Da organische Hilfsstoffe (Flotationsmittel), die in den Prozessen eingesetzt werden, in der vorliegenden Untersuchung nicht bilanziert wurden, können über deren Auswirkungen auf die Abwasserqualität keine Aussagen getroffen werden. Daher werden die Frachten pro Tonne Produktmix für die organischen Summenparameter wie auch für die Nährstoffe in dieser Studie 0 gesetzt. Erheblich ist allerdings die Chloridfracht der Abwässer. Sie ist in der folgenden Tabelle aufgeführt. Tab.: Abwasseranalysen 1992 hessischer Werke (Scharf 1993). Parameter Einheit Versenkung Werra Chlorid g/l 190 160 Chlorid kg/t Produktmix 589 408 Summe kg/t Produktmix 997 Reststoffe: Aus den Planungsdaten der bilanzierten Werke für das Jahr 1993 geht hervor, daß pro Tonne Produktmix 5000 kg Haldenmaterial anfallen (Scharf 1993). Die realen Produktionszahlen für 1993 bestätigen diesen Wert. Aus ihnen geht hervor, daß pro Tonne Produkt 4710 kg aufgehaldet werden (Kali 1996). Dieser Wert wird in GEMIS als Kennziffer zugrundegelegt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 12,3% Produkt: Rohstoffe

Markt für Chrom

technologyComment of chromium production (RoW): Metallic chromium is produced by aluminothermic process (75%) and electroylsis of dissolved ferrochromium (25%) technologyComment of chromium production (RER): Metallic chromium is produced by aluminothermic process (75%) and electroylsis of dissolved ferrochromium (25%) ALUMINOTHERMIC PROCESS The thermic process uses aluminium as a reducing agent for chromium hydroxide. The charge is weighed and loaded into a bin, which is taken to an enclosed room to mix the contents. The firing pot is prepared by ramming refractory sand mixed with water around a central former. After ramming the firing pot, the inner surface is coated with a weak binder solution and dried under a gas fired hood before being transferred to the firing station. The raw material mix is automatically fed at a controlled rate into the firing pot, where the exothermic reaction takes place. When the metal has solidified following the reaction, the firing pot is removed and transferred by crane to a cooling conveyor. On removal from the cooling conveyor (by crane), the firing pot is placed on a stripping bogie for transferral to a stripping booth. Inside the closed booth, the pot casing is hoisted off the solidified metal/slag. The slag is separated from the Chromium metal “button” and sent to a despatch storage area. Water is used to reduce button temperature to below 100 ºC. After cooling the metal button is transferred to other departments on site for cleaning, breaking, crushing and grinding to achieve the desired product size. ELECTROLYTIC PROCESS In the electrolytic process normally high carbon ferrochrome is used as the feed material which is then converted into chromium alum by dissolution with sulphuric acid at temperatures at about 200 ºC. After several process steps using crystallisation filtration ageing, a second filtration and a clarifying operation the alum becomes the electrolyte for a diaphragm cell. Chromium is plated onto stainless steel cathodes until it attains a thickness of ca. 3 mm. The process is very sensitive. The additional de-gassing (heating at 420 °C) stage is necessary because the carbon content of the electrolytic chromium is sometimes too high for further industrial applications. The cooled chromium metal is fragmented with a breaker prior to crushing and drumming. The generated slag can be reused as refractory lining or sold as abrasive or refractory material. Overall emissions and waste: Emissions to air consist of dust and fume emissions from smelting, hard metal and carbide production; other emissions to air are ammonia (NH3), acid fume (HCl), hydrogen fluoride (HF), VOC’s and heavy metals. Emissions to water are overflow water from wet scrubbing systems, wastewater from slag and metal granulation, and blow down from cooling water cycles. Solid waste is composed of dust, fume and sludge, and slag. References: IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169

Staatssekretär Jürgen Ude verleiht Hugo-Junkers-Preise für Forschung und Innovation

Staatssekretär Dr. Jürgen Ude hat am heutigen Montag in Vertretung von Wissenschaftsminister Prof. Dr. Armin Willingmann die „Hugo-Junkers-Preise für Forschung und Innovation aus Sachsen-Anhalt 2020“ verliehen. Aufgrund der Corona-Pandemie musste die Preisverleihung, die im Dezember 2020 stattfinden sollte, zunächst verschoben und als virtuelles Event nachgeholt werden. Kurz vor der virtuellen Preisverleihung hatte sich der Minister, der Schirmherr des Preises ist, nach einer Warnmeldung der Corona-App in häusliche Quarantäne begeben. Deshalb gratulierte Staatssekretär Ude den zwölf Preisträgern in vier Kategorien per Live-Stream aus dem Mitteldeutschen Multimediazentrum (MMZ) in Halle (Saale). Im vergangenen Jahr wurden trotz Pandemie rund 100 zukunftsweisende Projekte und Produkte aus Wirtschaft und Wissenschaft eingereicht. Ausgezeichnet in vier Kategorien wurden: Staatssekretär Ude erinnerte in Anlehnung an den Flugzeugpionier Hugo Junkers daran, dass Sachsen-Anhalt schon immer ein Land mutiger und kreativer Ideengeber war. „Daran wollen wir gerade jetzt in Zeiten wirtschaftlicher Umbrüche anknüpfen“, erklärte Ude. „Wir wollen die Chancen nutzen, die sich insbesondere im Bereich der Zukunftstechnologien bieten.“ Willingmann erklärte vorab, in den vergangenen vier Jahren habe das Ministerium bereits verstärkt in Wissenschaft und Wirtschaft investiert, beide Bereiche noch enger vernetzt. „Diesen Kurs müssen wir auch in den kommenden Jahren fortsetzen. Die Entwicklung von Innovationen ist die Basis für mehr Wertschöpfung und damit auch für neue, hochwertige Arbeitsplätze bei uns in Sachsen-Anhalt“, so Willingmann. „Wie innovativ unser Land bereits heute aufgestellt ist, zeigen die mit dem Hugo-Junkers-Preis ausgezeichneten Projekte eindrucksvoll auf.“ Die Preisträger in den vier Kategorien im Überblick Kategorie: „Innovativste Vorhaben der Grundlagenforschung“: Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Orthopädische Universitätsklinik. Forschungsbereich Experimentelle Orthopädie M.Sc. Ann-Kathrin Meinshausen, Prof. Dr. Jessica Bertrand, Prof. Dr. med. Christoph H. Lohmann Innovationstitel: C9 als Biomarker für Protheseninfektion Eine Infektion an einer Prothese kann dazu führen, dass das Gelenkimplantat ausgetauscht werden muss. Die Patienten leiden unter vermehrten Krankenhausaufenthalten, Operationen und einer höheren Sterblichkeit. Je schneller und zuverlässiger solch eine Infektion entdeckt wird, umso weniger Gewebe wird geschädigt und umso geringer ist der Knochenverlust. Bei der Diagnose macht sich das Forschungsteam die natürliche Reaktion des Körpers zunutze. Denn das angeborene Immunsystem aktiviert Signalwege, um eine bakterielle Infektion zu bekämpfen. Ein wichtiger Bestandteil dieser Signalwege ist das Protein C9. Es löst über Poren in der Bakterienmembran den Tod der Bakterien aus. Um das Protein und damit eine Infektion nachzuweisen, entwickelte das Forscherteam einen Biomarker. Es untersuchte, ob das Gewebe von infizierten Prothesen das Protein C9 enthält. Hier wies es deutlich mehr C9 nach als in nicht infiziertem Gewebe. Zum Vergleich wurde auch Gewebe von Patienten mit anderen Gelenkerkrankungen untersucht. Die Patienten litten unter Rheuma, Chondrokalzinose oder Metallose. Doch das entzündete Gewebe zeigte eine deutlich geringere Färbung von C9. Das Protein zeigte somit wieder das Gewebe mit einer bakteriellen Infektion mit großer Sicherheit an. Eine Kreuzreaktion von C9 mit anderen entzündlichen Gelenkerkrankungen konnte ausgeschlossen werden. Dr. rer. nat. Matthias Jung, Prof. Dr. med. Dan Rujescu, Carla Hartmann, Bernadette Harwardt, Ole Pless, Dr. rer. nat. Antje Appelt-Menzel, Winfried Neuhaus Innovationstitel : ScreenHub: Personalisiertes/Alzheimer-spezifisches Blut-Hirn-Schranken-Modell für Target/Medikamenten Screening Für die Alzheimer-Krankheit gibt es bisher keine Heilung. Die Ursachen sind trotz jahrelanger intensiver Forschung nicht vollständig aufgeklärt. Eine entscheidende Rolle könnten Veränderungen in der Bluthirnschranke spielen. Die Bluthirnschranke grenzt das Gehirn vom Körper ab. Zugleich fungiert sie als Logistikzentrum für Versorgung und Entsorgung. Denn über die Bluthirnschranke gelangen essentielle Nährstoffe oder Medikamente in das zentrale Nervensystem und Schadstoffe werden abtransportiert. Das Forschungsteam hat in genetischen Studien Mutationen gefunden, die mit der Alzheimer-Krankheit in Verbindung gebracht werden. Diese Entdeckung bietet die Chance, neue Krankheitsmechanismen auszumachen und sie für Therapien zu nutzen. Dafür muss die Bluthirnschranke besser erforscht werden. Deshalb hat das Team ein Zellkultur-Modell entwickelt. Es basiert auf künstlichen Stammzellen von Alzheimer-Patienten. Sie werden in einem dafür spezialisierten Labor in Halle hergestellt und in eine Zellkultureinlage eingebracht. Der Prozess ist technisch komplex, doch im Verbund der beteiligten Forschungseinrichtungen gut realisierbar. Die Eigenschaften des Modells entsprechen einer großen technischen Innovation, denn sie kommen den tatsächlichen Bedingungen im Gehirn sehr nahe. Die Forschenden kommen ohne Tierversuche aus. Das Modell kann genutzt werden, um Medikamente und Impfstoffe zu testen. Der Effekt von Mutationen auf die Bluthirnschranke kann untersucht werden. Zudem ermöglicht das Modell in naher Zukunft die Anwendung personalisierter Medizin. Dabei geht es um eine maßgeschneiderte Behandlung. Dies wird unter anderem die Wirkung von Medikamenten verbessern. Otto-von-Guericke-Universität Magdeburg, Fakultät für Maschinenbau, Institut für Werkstoff- und Fügetechnik, Leibnitz-Institut für Neurobiologie, Magdeburg Prof. Dr. Dr. Kentaroh Takagaki, Dr. Rodrigo Herrera-Molina, Dipl.-Ing Markus Wilke, Dr.-Ing. Martin Ecke, Dr. Anja Maria Oelschlegel, M.Sc. Zifeng Xia Innovationstitel: Die MAGDEBURGER Elektrode zur Aufzeichnung von Hirnaktivitäten und zur Behandlung von Hirnerkrankungen Die „Magdeburger Elektrode“ kann als fundamentaler Durchbruch für die Erforschung von Hirnerkrankungen bezeichnet werden. Es geht um einen komplett neuen Ansatz, Hirnelektroden herzustellen und zu designen. Hirnelektroden dienen dazu, Hirnströme aufzuzeichnen und Hirnaktivitäten zu untersuchen. Das Forschungsteam hat eine nanostrukturierende Fertigungsmethode mit dem Elektrodendesign innovativ kombiniert. Das ermöglicht, Hirnelektroden voll flexibel herzustellen und Elektroden minimalinvasiv zu implantieren. Entgegen aktueller Forschungsarbeiten wird das Signal mit jeder Elektrode an verschiedenen Positionen gleichzeitig abgegriffen. Zudem können gewünschte Hirnareale gezielt stimuliert werden. Die Fertigung der Elektrode erfolgt interdisziplinär. Neurobiologen und Mediziner bestimmen die exakten Positionen und Formen für die nano-Fertigung. Materialwissenschaftler nutzen dann einen fokussierten Ionenstrahl als nanostrukturierende Methode. So können vor dem operativen Eingriff die Elektroden individuell auf die Art der Untersuchung und den Patienten angepasst werden. Durch das Design und das verwendete Material kommt es weder zu Blutungen, noch zu Schäden im betroffenen Hirnareal. Somit besteht auch nicht die Gefahr von entzündlichen Reaktionen oder Narbenbildung. Die Magdeburger Elektrode ist nahezu „unsichtbar“ für das umliegende Gewebe. Erstmals kann ein derartiges System dauerhaft im Hirn verbleiben und ermöglicht so eine Signalerfassung über sehr lange Zeiträume. Dabei kommt es weder zum Verlust der Datenqualität, noch zur Schädigung des Patienten. Einzigartig ist zudem die Menge an Daten, die mit einer Elektrode erfasst werden kann. Komplexe Vorgänge wie Lernen, Gedächtnis und neurodegenerative Erkrankungen können erstmals erforscht und die Wirkung von Medikamenten hinreichend beschrieben werden. Langfristig können Hirnerkrankungen wie Alzheimer, Parkinson oder Epilepsie besser untersucht und behandelt werden. Kategorie: „Innovativste Projekte der angewandten Forschung“: Fraunhofer-Institut für Mikrostruktur von Werkstoffen u. Systemen IMWS, Halle (Saale), Fraunhofer-Institut für Angewandte Polymerforschung IAP, Fraunhofer-Institut für Molekularbiologie und Angewandte Ökologie IME Prof. Dr. Mario Beiner, Dr. Gaurav Gupta, Dr. Marlen Malke, Dr. Ulrich Wendler, Dr. Christian Schulze Gronover, Prof. Dr. Dirk Prüfer Innovationstitel : BISYKA - Biomimetischer Synthesekautschuk Natürlicher Kautschuk aus Kautschukbäumen ermöglicht bisher einzigartige Eigenschaften für Reifenanwendungen, insbesondere für hoch beanspruchte Lkw-Reifen. Naturkautschuk ist allerdings ein begrenzter Rohstoff. Zudem ist die Versorgungssicherheit durch Pflanzenschädlinge gefährdet. Das Forschungsteam aus den beteiligten Fraunhofer-Instituten hat einen künstlichen Kautschuk hergestellt. Der Fokus bei diesem sogenannten biomimetischen Synthesekautschuk BISYKA lag auf einer bestimmten Eigenschaft: der dehninduzierten Kristallisation. Dieses Merkmal ist bisher nur dem Naturkautschuk vorbehalten. Es bedeutet, dass sich kristalline Bereiche bilden, wenn Naturkautschuk auf die dreifache Länge gedehnt wird – der Kautschuk verhärtet sich. Das Forschungsteam identifizierte zunächst mithilfe von Löwenzahn-Kautschuk die wichtigen Funktionalitäten und Biokomponenten, die für das Abriebverhalten wichtig sind. Dann wurde der BISYKA-Kautschuk Schritt für Schritt hinsichtlich seiner Dehnkristallisation optimiert. Der neu entwickelte synthetische Kautschuk erreicht beim Abrieb erstmals die Eigenschaften von Reifen aus Naturkautschuk. Beim Rollwiderstand übertrifft der synthetische Kautschuk sogar das Original. Der geringere Rollwiderstand sorgt für Treibstoffeinsparungen. Zudem sorgt er für geringeren Abrieb. Dieser fiel bei ersten Reifentests um 30 Prozent niedriger aus. Der Profilverlust betrug sogar nur knapp die Hälfte. Das reduziert das Problem der Feinstaub- und Mikroplastik-Belastung für Mensch und Umwelt. Der neuartige biomimetische Synthesekautschuk lässt sich in großtechnischem Maßstab in vorhandenen Anlagen produzieren. Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS, Halle (Saale) Dr. Marco Götze, M.Sc.Tobias Hedtke, Dr. rer. nat. Christian Schmelzer Innovationstitel Innovative Wundauflagematerialien auf Basis von Elastin – MatriHEAL Gewebe und Organe wie Blutgefäße, Lunge und Haut können ihre lebenswichtigen Aufgaben nur erfüllen, wenn sie über die nötige Elastizität und Spannkraft verfügen. Diese Eigenschaften erhalten sie durch das Strukturprotein Elastin. Es ist Hauptbestandteil der elastischen Fasern des Bindegewebes. Doch der Körper bildet es nur einmal. Durch Umwelteinflüsse, Alterungsprozesse sowie Verletzungen werden die elastischen Fasern beschädigt. Einmal zerstört, ist ihre Wirkung nicht wieder herstellbar. Deshalb verlieren Organe und Gewebe immer mehr an Elastizität und können schließlich ihre Funktion nicht mehr erfüllen. Besonders problematisch sind großflächige Verletzungen der Haut sowie tiefe und chronische Wunden. Sie treten vor allem bei altersbedingten Erkrankungen wie Diabetes auf. Diesem Problem begegnet das Fraunhofer Institut mit innovativen Wundauflagen: Natürliches Elastin wird aus Nebenerzeugnissen der Lebensmittelindustrie gewonnen und zu Materialien für Wundauflagen verarbeitet. Dabei handelt es sich um Nanofaservliese oder Proteinschwämme. Die Vliese werden mittels Elektrospinnen hergestellt. Sie sind besonders gut geeignet, um großflächige Wunden zu behandeln. Die Proteinschwämme werden durch Gefriertrocknung hergestellt und haben ein hohes Quellvermögen. Sie dienen der Behandlung von tiefen Wunden. Das Material hat drei positive Effekte: Die Wundheilung wird beschleunigt, Entzündungen werden gehemmt und die Elastizität sowie das Erscheinungsbild des Narbengewebes werden verbessert. Dies schafft eine innovative und bio-basierte Lösung für die Versorgung chronischer Wunden. Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät / Universitätsklinikum Magdeburg INKA Healthtec Innovation Laboratory, Orthopädische Universitätsklinik Thomas Sühn, Nazila Esmaeili, Moritz Spiller, Dr. Alfredo Illanes, Dr.-Ing. Axel Boese, Prof. Dr. Michael Friebe, Prof. Dr. med. Christoph H. Lohmann, Prof. Dr. Jessica Bertrand, Maximilian Costa Innovationstitel : IntraOrthoSense - intraoperative vibroakustische Abtastung von Gelenkknorpel für die klinische Entscheidungsunterstützung Osteoarthrose des Knies ist gerade bei älteren Menschen verbreitet. Die Krankheit sorgt dafür, dass Prothesen als Ersatz des Kniegelenks zu den häufigsten Operationen in Deutschland gehören. Das bedeutet in den kommenden Jahrzehnten enorme Belastungen für die einzelnen Betroffenen wie auch für das Gesundheitssystem allgemein. Deshalb ist eine Abwägung wichtig: Der optimale Zeitpunkt und Umfang einer Operation müssen zweifelsfrei bestimmt und die Rehabilitationsmaßnahmen überwacht werden. Dafür ist die Bewertung des Gelenkknorpels entscheidend. Dies geschieht bisher anhand von Röntgenbildern. In vielen Fällen entspricht das nicht dem tatsächlichen Zustand des Knorpels, wie er sich bei der Operation zeigt. IntraOrthoSense liefert hier einen innovativen Ansatz: Der Gelenkknorpel kann intraoperativ bewertet werden. Dazu wird das Gewebe mit Hilfe eines Palpierstabs abgetastet. Die entstehenden vibroakustischen Signale am gegenüberliegenden Ende des Stabs werden über eine spezielle Sensoranordnung erfasst. Die gewonnenen Informationen werden direkt analysiert. Das erlaubt noch im OP Rückschlüsse über die mechanischen Eigenschaften des Knorpels. Der Schweregrad der Arthrose kann objektiv bewertet werden – sowohl in der offenen als auch arthroskopischen Chirurgie. Mit Hilfe dieser Entscheidungsunterstützung kann der optimale Zeitpunkt sowie nötige Umfang des Gelenkersatzes bestimmt werden. Gleichzeitig werden Invasivität und Trauma für die Patienten reduziert. Kategorie: „Innovativste Produktentwicklung/ Dienstleistungen / Geschäftsmodelle: Fraunhofer Institut für Fabrikbetrieb und -automatisierung IFF, Magdeburg Martin Kirch, Olaf Poenicke, Maik Gronenberg Innovationstitel: ScanSpector – Automatische Frachtvermessung in Produktion und Logistik Im Bereich der Logistik wird das Volumen einer Fracht in der Regel manuell bestimmt. Die Maße werden mithilfe von Bandmaß oder Gliedermaßstab erfasst. Zwar gibt es automatische Systeme mit erfahrbaren Linienlasern. Doch diese sind kostenintensiv und stationär. ScanSpector hat neue Ansätze zur Frachtvermessung. Das System ist mit Scan-Säulen modular aufgebaut. Es ermittelt automatisch die Abmaße einer Fracht oder Palette, während diese vorbeifährt. Gleichzeitig wird die Fracht identifiziert – per RFID, Barcode oder Klarschrifterkennung. Zentrales Element von ScanSpector ist eine Frachtinspektionssäule mit integrierten Tiefenbildsensoren. Sie scannt die vorbeifahrende Fracht permanent mit einer hohen Bildwiederholrate. So werden separat blickwinkelabhängige Tiefeninformationen ermittelt, inklusive der Farbwerte RGB. Aus diesen Informationen wird ein 3D-Gesamtbild der Fracht erstellt. Für einen vollständigen 3D-Scan werden üblicherweise zwei gegenüberstehende Säulen benötigt. Sie ermöglichen sowohl eine Rundum-, als auch eine Draufsicht. Alle sendungsrelevanten Daten einer Fracht können direkt im laufenden Logistik-Prozess ohne zeitlichen Mehraufwand ermittelt werden. Das System gibt sie direkt an das Transportmanagementsystem weiter. Zudem wird jedes Transporthilfsmittel, wie Gabelstapler, Hubwagen oder Ameise, mit 2D-Codes gekennzeichnet. Das ermöglicht, den exakten Aufnahmepunkt der Ware zu bestimmen, unabhängig vom Kippwinkel, der aktuellen Position, Gabelhöhe und Fahrtrichtung. COMAN Software GmbH, Stendal Timur Ripke, Sven Kägebein Innovationstitel: Der smarte Datenhub für den industriellen Großanlagenbau - Schwerpunkt Automotive COMAN setzt im Automotive-Anlagenbau an: Der Informationsaustausch beim Um- und Aufbau von Anlagen ist heute noch weitestgehend analog. Oft findet er in unterschiedlichen, in sich geschlossenen Systemen statt. Projektfortschritte werden manuell auf Punktelayouts oder in Baustellentagebüchern erfasst. Die Folge sind ungenaue Ressourcen- und Kostenkalkulationen, fehlende Transparenz des realen Projektstatus, multiple Datenpflege und hohe Fehleranfälligkeit. COMAN ist eine Verkettung von vier Produkten: dem Manager, der Mobile- und LoP-App und dem Dashboard. Fortschritte, Verzögerungen oder Mängel werden vor Ort erfasst und der Entscheider-Ebene in Echtzeit übermittelt. Der Manager ist die Hauptzentrale. Sie schließt alle Projektinformationen in sich zusammen und stellt sie allen Projektteilnehmern zur Verfügung: Die Informationen gelangen über die Applikationen „Mobile” und „LoP“ zu den beteiligten Mitarbeitern auf der Baustelle und wieder zurück. Das ermöglicht eine einheitliche Kommunikation über alle Ebenen, Datendurchgängigkeit und einen ganz neuen Standard im Anlagenbau. Alle Projektdaten werden zentralisiert und es entsteht eine nie dagewesene Transparenz. Alle Prozesse können effizienter organisiert werden und der Datenaustausch wird auf eine neue Ebene gebracht. Zudem werden zu allen branchenüblichen Software-Lösungen Schnittstellen aufgebaut und Daten-Silos abgelöst. So bleiben eingepflegte Anwendungen im Unternehmen weiterhin nutzbar. Wichtige Daten existieren nicht geschlossen und der Anlagenaufbau wird digitalisiert. Effizienz und Qualität werden um durchschnittlich 60 Prozent gesteigert. Infinite Devices GmbH, Otto-von-Guericke-Universität Magdeburg Alexander Alten-Lorenz, Bruno Kamm, Alexandra Sarstedt, Prof. Dr. Marko Sarstedt Innovationstitel: I nfinimesh - eine vollumfängliche Plattform für IoT-Kommunikation Das Internet der Dinge (IoT) gilt als eine der bahnbrechendsten technologischen Revolutionen seit der Erfindung des Internets. Damit Unternehmen jedoch die Vorteile nutzen können, benötigen sie eine Plattform, die ihre Geräteflotte verwaltet. Der Markt wird aktuell von proprietären Cloud-basierten Lösungen dominiert. Diese Anbieter erfüllen allerdings nur bedingt die Anforderungen der europäischen Datenschutzgrundverordnung (DSGVO). Sie verursachen langfristig erhebliche Kosten durch Lock-in-Effekte und sind in ihrem Leistungsangebot eingeschränkt. Dadurch mangelt es an Skalierbarkeit und Sicherheit. Gleichzeitig ist der Aufbau einer Inhouse-Lösung für Unternehmen in der Regel zu teuer. Infinimesh ist eine Open-Source-Plattform. Sie nutzt cutting-edge-Technologie wie Kubernetes, Kafka und DGRaph als Grundlage für eine unabhängige IoT-Plattform. Infinimesh ermöglicht, komplette IoT-Ökosysteme zu integrieren, unabhängig von einer bestimmten Cloud-Technologie oder einem bestimmten IT- Dienstleister. Dies bedeutet, dass Nutzer ihre IoT-Geräte auf internen Systemen verwalten können und somit die volle Kontrolle über ihre Daten behalten. Damit entspricht die Plattform in vollem Umfang den Datenschutzbestimmungen der DSGVO. Gleichzeitig kann infinimesh problemlos mit branchenüblichen Lösungen wie Siemens Mindsphere und IBM Watson IoT verbunden werden. Die Plattform setzt auf dem von Google entwickelten Kubernetes-System auf, das nicht nur extrem sicher ist, sondern auch eine unkomplizierte Skalierung von wenigen bis zu Millionen von Geräten zulässt. Hierdurch werden exponentiell steigende Kosten vermieden, sobald die Anzahl der Geräte steigt. Das erhöht die Kosten- und Planungssicherheit. Kategorie: Sonderpreis „Innovativste Projekte aus dem Bereich APITs - Applied Interactive Technologies". Otto-von-Guericke Universität Magdeburg, Fakultät für Informatik, Institut für Intelligente Kooperierende Systeme (IKS), AG Software Engineering, Landeskriminalamt Sachsen-Anhalt, METOP GmbH Prof. Dr. Frank Ortmeier, M Sc. Marco Filax, Ralf Heidrich, Maria Mendat, Prof. Dr. Thomas Leich, Stephan Dassow Innovationstitel: „EVOK: Echtzeit Vor-Ort-Aufklärung und Einsatzmonitoring“ Geiselnahmen und ähnliche Einsätze von Spezialkräften der Polizei erfordern ein schnelles und professionelles Handeln, um das Leben möglicher Opfer wie auch der Einsatzkräfte zu schützen. Dies wird insbesondere in Gebäuden dadurch erschwert, dass den Tätern meist das räumliche Umfeld bekannt ist. Einsatzkräfte und -leitung müssen sich hingegen erst orientieren und tauschen sich in der Regel verbal aus. Das EVOK System ermöglicht vor Ort eine akkurate und umfassende Lageaufklärung in Echtzeit. Das System erlaubt, in Echtzeit ein virtuelles mehrdimensionales Modell der Umgebung zu erstellen. Personen können während des laufenden Einsatzes verortet werden und eine multiperspektivische Lagedarstellung wird ermöglicht. Ein Schwerpunkt liegt darauf, in Echtzeit Karten zu generieren und mit Informationen anzureichern. Unter anderem werden die Positionen der Einsatzkräfte, Gefahrenstellen oder nachzuführenden Kräfte markiert. Die Informationen werden, zugeschnitten auf die Nutzergruppe, visualisiert. Das erleichtert, schnelle Entscheidungen zu treffen. Das Forscherteam hat mithilfe von AI-Technologie die benötigten Algorithmen optimiert, ein eigenes Hardware-System konzipiert und prototypisch realisiert. Der Prototyp soll in ein Produkt überführt werden. Das Projekt erregte bereits Aufmerksamkeit in der Presse und seitens anderer Landeskriminalämter. 3DQR GmbH, Magdeburg Daniel Anderson, Maximilian Unbescheidt Innovationstitel: 3DQR Studio (Webplattform zur Erstellung eigener Augmented Reality Inhalte) 3DQR bietet mit 3DQR Studio und der 3DQR App ein voll funktionsfähiges Augmented-Reality-Ökosystem. Die Augmented Reality Technologie von 3DQR wird bereits von vielen Unternehmen eingesetzt, um AR-Szenen darzustellen. Diese wurden im Rahmen von Projekten speziell für sie entwickelt. Augmented Reality bedeutet, dass virtuelle 3D-Modelle mit der realen Umgebung verschmelzen. Sie hat das Potenzial, den bisher bekannten Alltag und das Arbeitsleben vollkommen zu verändern. AR-Szenen verändern die Art zu arbeiten, zu lernen und mit dem Umfeld zu interagieren. Dies ist nicht auf einzelne Abteilungen beschränkt. Marketing und Vertrieb können genauso von AR profitieren wie die Instandhaltung sowie Wartungs- und Servicearbeit, die Anlagen- und Produktionsplanung oder die Aus- und Weiterbildung von Personal. Das Produkt der 3DQR besteht aus zwei Teilen: Einerseits einer universellen Reader-App mit eigens entwickeltem Algorithmus zur Bildverarbeitung. Er ermöglicht es erstmals, vollständige Augmented Reality-Szenen auf jedem normalen QR-Code darzustellen. Ein Patent ist angemeldet. Andererseits bildet eine neue Online-Authoring-Plattform die Grundlage dafür, dass auch mittelständische Unternehmen mit einem einfachen Baukastensystem neue AR-Szenen erstellen und auf ihren QR-Codes platzieren können. Dies ermöglicht eine hohe Flexibilität und legt, aufbauend auf den weit verbreiteten QR-Code-Standard, den Grundstein für einen universellen AR-Standard. prefrontal cortex GbR, Halle (Saale) Felix Herbst, Paul Kirsten, Christian Freitag Innovationstitel: Mars Makalös - Wissensvermittlung und archäologische Forschung in XR Das schwedische Flaggschiff "Mars Makalös" sank im Jahre 1563 vor der Küste von Öland. Nach vielen Jahren der erfolglosen Suche wurde es erst 2011 gefunden. Doch statt es zu bergen, wurde das sensationelle Wrack in jahrelanger Arbeit detailgetreu aus zehntausenden Bildern digital zum Leben erweckt. Dieser Fund sollte Archäologen und der Öffentlichkeit zugänglich gemacht werden. Dafür entwickelte prefrontal cortex einen spielerischen Ansatz und verband so Wissensvermittlung mit Forschung. Das macht nicht nur möglich, den Ort zu begehen. Die Gegebenheiten 80 Meter unter der Meeresoberfläche werden realistisch dargestellt. Das 3D-Modell des Wracks kann in virtueller und erweiterter Realität erlebt und analysiert werden. Als Taucher ist man hautnah dabei und sucht in der Tiefe nach Artefakten und Spuren. Als Wissenschaftlerin analysiert man die gefundenen Fragmente und dreidimensionalen Rekonstruktionen und erfährt detaillierte Hintergrundinformationen über die damalige Zeit und die heutige Forschung. „Mars Makalös“ ist das erste Produkt eines Frameworks, mit dem photogrammetrische Szenen didaktisch vermittelt und digital analysiert werden. Es findet eine breite Anwendung in Kultur, Archäologie, Lehre und Forschung. Zudem bildet es eine adäquate Brücke zwischen dem traditionellen Museum und der modernen digitalen Welt. Aktuelle Informationen zu interessanten Themen aus Wirtschaft, Wissenschaft und Digitalisierung finden Sie auch auf den Social-Media-Kanälen des Ministeriums bei Twitter , Instagram , Facebook und Linkedin . Impressum: Ministerium für Wirtschaft, Wissenschaft und Digitalisierung des Landes Sachsen-Anhalt Stabsstelle Öffentlichkeitsarbeit und Kommunikation Hasselbachstr. 4 39104 Magdeburg Tel.: +49 391 567-4316 Fax: +49 391 567-4443 E-Mail: presse@mw.sachsen-anhalt.de Web: www.mw.sachsen-anhalt.de Datenschutzerklärung

12 Abfall/Abwasser >> Abwasserbehandlung / Abwassereinleitung

Der Projekttyp beinhaltet kommunale Kläranlagen zur Reinigung des häuslichen und kommunalen Schmutzwassers und gewerbliche und industrielle Abwasserbehandlungsanlagen vor der Einleitung in die Vorfluter. Bei Mischeinleitung wird auch mit der Kanalisation abgeleitetes Niederschlagswasser behandelt. Die einzuhaltenden Rest-Stoffgehalte sind in der Abwasserverordnung festgelegt. Die Abwasserreinigung erfolgt mehrphasig und kann aus mehreren hintereinander geschalteten Stufen aufgebaut sein. Entsprechend den Verfahrensprozessen sind die Anlagebestandteile zugeordnet. 1. Mechanische Reinigung: - Grobreinigung; Abscheidung von Sand und Faserstoffen (Sandfang, Rechen, Siebe); - Fettabscheidung mittels Flotation und Abschöpfen; - Vorklärbecken (Absetzbecken). 2. Biologische Reinigung: - natürliche Verfahren: Absetzmulden, -erdbecken, Rieselverfahren, Bodenfiltration, Oxidationsteiche, -gräben, Abwasserteiche, Verregnung, Pflanzenanlagen; - künstliche Verfahren: Belebtschlammverfahren in -becken- oder Bioreaktoren, Tropfkörperverfahren, ggf. hintereinandergeschaltet (anaerober und aerober Abbau der biologisch abbaubaren - Stoffe durch Mikroorganismen, aerobe Verfahren ggf. mit Belüftungsanlagen); - mehrstufige kombinierte künstliche und/oder natürliche Verfahren; - chemische Reinigung mit Hilfe von Fäll- u. Flockmitteln; - Nachklärbecken (Absetzbecken für Belebtschlammflocken, Schlammrückführung), Filtration, Auslauf; - Schönungsteiche; 3. Weitergehende Reinigung, insbesondere in Industriekläranlagen zum Abbau nicht biologisch abbaubarer Stoffe: - physikalische Filtration; - chemische Fällung und Flockung, Neutralisation (für Säuren und Laugen), Filtration (für Schwebstoffe); - biologische oder chemische Nährstoffeliminierung; - Nassoxidation für schwer abbaubare organische Stoffe; - Ionenaustausch und Umkehrosmose zum Stickstoffabbau und zur Entsalzung; - thermische Verfahren (Strippen, Verdunsten, Verdampfen, Verbrennen, Kristallisation, Extrahieren); - Rückgewinnung von Nutzstoffen (Phosphat, Metalle, z. B. elektrochemische Verfahren für Metalle, Mikrosiebe); - Desinfektion (UV, Ozon, Chlor); 4. Schlamm- und Gasbehandlung: - Faulung in Faultürmen, aerobe oder anaerobe Schlammstabilisierung (durch Mineralisation organischer in anorganische Bestandteile); - Schlammentwässerung (Eindickung, Konditionierung, Schlammsilos, Schlammplätze, -zwischenlager, maschinelle Entwässerung (Zentrifugen, Dekanter, Separatoren, Vakuumfilter, Filterpressen), chemische Entwässerung, thermische Entwässerung, Trocknung, Kompostierung, Ausbringung, Veraschung u. a.; - Gasbehälter, Verwendung anfallender Faulgase aus der aeroben Schlammstabilisierung zur Wärmegewinnung oder Stromerzeugung, ggf. auch von Abwärme aus Schlammverbrennungsanlagen; - Blockheizkraftwerke. Zu den Anlagebestandteilen gehören des Weiteren - vorgeschaltete Bestandteile des Kanalisationssystems, ggf. mit Regenrückhaltebecken und Notüberlaufbecken (bei Reinigung); - ein befestigtes Betriebsgelände, Straßen, Maschinenhäuser, Gebläsestationen, Labor, Garagen, Betriebsgebäude mit Aufenthaltsräumen, Werkstätten, (Heizöl-)Lager und gärtnerisch gestaltete Grünflächen. Zu den möglichen baubedingten Vorhabensbestandteilen zählen u. a. Zufahrten, Baustraßen, Baustelle bzw. Baufeld, Materiallagerplätze, Maschinenabstellplätze, Erdentnahmestellen, Bodendeponien, Baumaschinen und Baubetrieb, Baustellenverkehr und Baustellenbeleuchtung.

1 2 3 4 555 56 57