Subterrane Ökosysteme beherbergen eine breite Vielfalt spezialisierter und endemischer Organismen, die einen einzigartigen Bruchteil der globalen Vielfalt ausmachen. Darüber hinaus leisten sie entscheidende Beiträge der Natur für die Menschen – insbesondere die Bereitstellung von Trinkwasser für mehr als die Hälfte der Weltbevölkerung. Diese unsichtbaren Ökosysteme werden jedoch bei den Biodiversitäts- und Klimaschutzzielen für die Zeit nach 2020 übersehen. Nur 6,9 % der bekannten subterranen Ökosysteme überschneiden sich mit dem ´Netzwerk von Schutzgebieten. Zwei Haupthindernisse sind für diesen Mangel an Schutz verantwortlich. Erstens bleiben subterrane Biodiversitätsmuster weitgehend unkartiert. Zweitens fehlt uns ein mechanistisches Verständnis der Reaktion subterraner Arten auf vom Menschen verursachte Störungen. Das DarCo-Projekt zielt darauf ab, subterrane Biodiversität in ganz Europa zu kartieren und einen expliziten Plan zur Einbeziehung subterraner Ökosysteme in die Biodiversitätsstrategie der Europäischen Union (EU) für 2030 zu entwickeln. Zu diesem Zweck haben wir ein multidisziplinäres Team führender Wissenschaftler in subterraner Biologie und Makroökologie zusammengestellt und Naturschutz aus einem breiten Spektrum europäischer Länder. Das Projekt gliedert sich in drei Arbeitspakete, die der direkten Forschung gewidmet sind (WP2-4), plus ein viertes (WP5), das darauf abzielt, die Verbreitung der Ergebnisse und das Engagement der Interessengruppen für die praktische Umsetzung des Naturschutzes zu maximieren. Zunächst werden wir durch die Zusammenstellung bestehender Datenbanken und die Nutzung eines kapillaren Netzwerks internationaler Mitarbeiter Verbreitungsdaten, Merkmale und Phylogenien für alle wichtigen subterranen Tiergruppen sammeln, einschließlich Krebstiere, Mollusken, Insekten und Wirbeltiere (WP2). Diese Daten werden dazu dienen, die Reaktionen von Arten auf menschliche Bedrohungen mithilfe der hierarchischen Modellierung von Artengemeinschaften (WP3) vorherzusagen. Die Vorhersagen der Modelle zur Veränderung der biologischen Vielfalt werden die Grundlage für eine erste dynamische Kartierung des subterranen Lebens in Europa bilden. Durch die Verschneidung von Karten von Diversitätsmustern, Bedrohungen und Schutzgebieten werden wir einen Plan zum Schutz der subterranen Biodiversität entwerfen, der das aktuelle EU-Netzwerk von Schutzgebieten (Natura 2000) ergänzt und gleichzeitig klimabedingte Veränderungen in subterranen Ökoregionen berücksichtigt (WP4). Schließlich versuchen wir durch gezielte Aktivitäten in WP5, das gesellschaftliche Bewusstsein für subterrane Ökosysteme zu schärfen und Interessengruppen einzuladen, die subterrane Biodiversität in multilaterale Vereinbarungen einzubeziehen. In Übereinstimmung mit dem europäischen Plan S werden wir alle Daten offen und wiederverwendbar machen, indem wir eine zentralisierte und offene Datenbank zum subterranen Leben entwickeln – die Subterranean Biodiversity Platform.
Bei Feldarbeit und Materialsammlungen im Karibischen Meer, an der brasilianischen Kueste und im tropischen Ostpazifik wurden Porzellaniden beobachtet und gesammelt. Die Feldbeobachtungen und die Daten eigener Sammlungen, die Auswertung von Museumsmaterial und einschlaegiger Literatur erhellen die oekologischen Beduerfnisse der Arten. Die ungewoehnlich vollstaendigen Verbreitungsdaten lassen eine Rekonstruktion der Entstehungsgeschichte der heutigen Faunenverteilung zu. Groessenvergleiche von Tieren aus unterschiedlichen Klimazonen lassen Rueckschluesse auf das Groessenwachstum zu. Dabei zeichnet sich ab, dass bei kaelteren Temperaturen ein groesserer Anteil der aufgenommenen Energie fuer das Wachstum verfuegbar ist, als bei tropischen Bedingungen.
Im Rahmen dieses Projektes sollen die Verwandtschaftsbeziehungen ausgewählter Copepodenarten auf Populations- bzw. Artebene zwischen verschiedenen Gebieten des atlantischen Sektors des Südpolarmeeres (Küstenstrom (Weddell-, Lazarevmeer), Antarktischer Zirkumpolarstrom) u.a. mit molekulargenetischen Methoden untersucht werden. Damit werden neue Erkenntnisse über die ökologische Abgrenzung, Biogeographie, Phylogenie und Evolution pelagischer Copepoden erwartet.Da bei der Identifikation und Charakterisierung zahlreicher pelagischer Copepodenarten die Anwendung morphologischer Methoden nicht zu befriedigenden Ergebnissen führte, sollen in diesem Projekt maßgeblich molekularbiologische Methoden zum Einsatz kommen. Sollten die molekularbiologischen Daten deutliche genetische Distanzen der untersuchten Populationen aufzeigen, so wird davon auszugehen sein, dass Geschwisterarten bzw. supraspezifische Taxa (Gattungen, Familien) vorliegen. Molekularbiologischen Hinweisen soll als zweiter Schritt durch genauere morphologische Untersuchungen (Adult-/Postembryonalstadien, Karyologie) sowie durch Kreuzungsexperimente nachgegangen werden.
Die Zusammensetzung flachmariner Ostracodenfaunen unterliegt verschiedenen ökologischen Kontrollfaktoren wie paläogeographische Position des Lebensraumes, Klima und Meeresströmungen. Folgende Punkte sollen geklärt werden: 1. Erfassung von Ostracodendaten (systematische Bearbeitung) als Basis für weiterführende Untersuchungen. Auf vorhandene Literatur kann nicht zurückgegriffen werden, weil vom Donets Becken/Ukraine aus dem Mittel- und Oberkarbon nur sehr spärliche und vor allem unvollständige Daten vorliegen und von Timan/Rußland überhaupt keine. 2. Vergleich der kaltwasserbeeinflussten Timan-Region mit dem unter warmen tethyalen Einflüssen stehenden Donets Becken. 3. Entwicklung der Ostracodenfaunen innerhalb eines Sedimentationsraumes im Lauf der Zeit. 4. Begleitende Mikrofazies- Untersuchungen zur besseren Erfassung der ökologischen Rahmenbedingungen. 5. Stratigraphische Einordnung und Korrelation der Gebiete mit Hilfe von Fusuliniden- und Conodontenbiostratigraphie.
Die Elbe ist einer der mit Quecksilber am staerksten belasteten Fluesse der Erde. Die zuletzt im Projekt Quecksilbermonitor gemessene Konzentration des Quecksilbers im Elbewasser (in der Messstation Schnackenburg) schwankte im Verlauf der Messkampagne vom 24.2. bis 2.3.1999 zwischen ca. 25-100ng/l. 100ng/l liegt um den Faktor 10 unter der erlaubten Konzentration fuer Trinkwasser (1000ng/l). Diese im Vergleich zum Trinkwassergrenzwert geringe Konzentration scheint auf den ersten Blick nicht der Qualitaet einer Belastung zu entsprechen. Zwei Faktoren relativieren die Konzentrationsangabe: Quecksilber wird, wie andere Schwermetalle auch, an Schwebstoffe, insbesondere die Fraktion kleiner 20um gebunden. Daher ist die Konzentration des Quecksilbers im Wasser stark vom Schwebstoffgehalt abhaengig. Ausserdem wird Quecksilber in der Nahrungskette aufkonzentriert, da nur wenig Quecksilber wieder ausgeschieden wird. So wird z.B. Plankton von Kleinkrebsen aufgenommen, die dann wieder von Fischen aus dem Wasser gefiltert werden. Auf diesem Weg kann die chronische Belastung fuer einen Menschen, der regelmaessig Fisch aus der Elbe isst, so stark werden, dass Vergiftungserscheinungen wie metallischer Geschmack im Mund, nervoese Reizbarkeit sowie Zahnausfall auftreten koennen. Ziel sollte es daher sein, die Quecksilberbelastung so weit wie moeglich zu senken und weitere Verschmutzungen zu vermeiden. Die Ursache der Quecksilberbelastung der Elbe liegt primaer bei fehlenden bzw. unzureichenden industriellen und kommunalen Abwasserreinigungsanlagen und bei alten, belasteten Gewaessersedimenten, die hauptsaechlich in den neuen Bundeslaendern und auf dem Gebiet der Tschechischen Republik vorliegen. Aufgrund der Sedimentbelastung waere selbst bei der Eliminierung aller anthropogener Quecksilberquellen nur ein allmaehlicher Rueckgang der Konzentration zu erwarten. Tatsaechlich ist die Belastung der Elbe mit Quecksilber seit 1989 stark zurueckgegangen, die Quecksilbergehalte liegen aber nach wie vor erheblich ueber den Zielvorgaben fuer den Gewaesserschutz. Eine kontinuierliche Ueberwachung der Elbe wird auf Dauer unerlaesslich sein, da die Ursachen der Verschmutzung durch eine staendige Ueberwachung leichter erkennbar werden, wenn zeitlich begrenzte Einleitungen sofort erkannt werden koennen. Auch koennen die Zusammenhaenge zwischen Temperatur, Niederschlagsmenge, Wasserstand, und der Quecksilberkonzentration klarer ermittelt werden. So koennte die Rolle des bei Niedrigwasser von Schiffen aufgewirbelten Sediments beurteilt werden.
Die Messstelle oh Klösterl, KM 2417 (Messstellen-Nr: 3416) befindet sich im Gewässer Donau. Die Messstelle dient der Überwachung des biologischen Zustands.
Die Messstelle uh. Zusfl. UL u. BBL (Messstellen-Nr: 4305) befindet sich im Gewässer Weiße Laber. Die Messstelle dient der Überwachung des biologischen Zustands.
Die Messstelle oh. Mündung (Messstellen-Nr: 114475) befindet sich im Gewässer Waltenhofener Bach. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands.
Die Messstelle Brücke bei Aidenbach (Messstellen-Nr: 96769) befindet sich im Gewässer Aidenbach. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands.
Die Messstelle Georgensgmuend, Br. oh Mdg. (Messstellen-Nr: 16586) befindet sich im Gewässer Schwäbische Rezat. Die Messstelle dient der Überwachung des biologischen Zustands, des chemischen Zustands.
| Origin | Count |
|---|---|
| Bund | 495 |
| Land | 589 |
| Wissenschaft | 31 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Daten und Messstellen | 331 |
| Ereignis | 2 |
| Förderprogramm | 207 |
| Gesetzestext | 1 |
| Taxon | 306 |
| Text | 26 |
| unbekannt | 278 |
| License | Count |
|---|---|
| geschlossen | 48 |
| offen | 793 |
| unbekannt | 6 |
| Language | Count |
|---|---|
| Deutsch | 782 |
| Englisch | 386 |
| Resource type | Count |
|---|---|
| Archiv | 5 |
| Bild | 4 |
| Datei | 577 |
| Dokument | 22 |
| Keine | 180 |
| Unbekannt | 16 |
| Webdienst | 2 |
| Webseite | 57 |
| Topic | Count |
|---|---|
| Boden | 208 |
| Lebewesen und Lebensräume | 709 |
| Luft | 125 |
| Mensch und Umwelt | 825 |
| Wasser | 760 |
| Weitere | 847 |