API src

Found 39 results.

Geochemische Untersuchungen im Mittelmeer

Es soll die Tiefenwassererneuerung der verschiedenen Mittelmeerbecken, die Herkunft des Ausstromwassers an der Strasse von Gibraltar und Sizilien, sowie die Ausbreitung des Mittelmeerwassers in den Ostatlantik untersucht werden. Methode: Messung von Tiefenprofilen an verschiedenen Stationen von folgenden Groessen: Temperatur, Salzgehalt, Tritium, Krypton-85, Helium-3, Silikat, Sauerstoff, Freon.

Tritium, Kohlenstoff-14 und Krypton-85 in verschiedenen atmosphaerischen Gasen

Nach langjaehrigen Messungen der Radioaktivitaet des atmosphaerischen Krypton, CO2 und Wasserdampfs sollen jetzt organische Bestandteile mit untersucht werden. Beim C-14 Gehalt des atmosphaerischen Methans ist moeglicherweise der Einfluss von Kernkraftwerken nachweisbar; infolge der zunehmenden Verwendung von Tritium in der biologischen und medizinischen Forschung wurden lokale Ueberhoehungen der Tritium-Konzentration bereits gemessen. Methode: Probennahme teils im Zuge der Luftverfluessigung (Methan, Krypton), teils durch chemische Absorption nach Verbrennung. Aktivitaetsmessung im Fluessigkeitsszintillationsspektrometer.

Datierung von alten Grundwaessern

Um Informationen ueber mittlere Verweilzeiten, ueber Herkunft und Fliesswege von Grundwaessern zu erhalten, werden Isotopenmethoden (radioaktive und stabile Nuklide) eingesetzt. Messungen werden v.a. an Waessern der NAGRA-Bohrungen und an benachbarten Waessern durchgefuehrt und interpretiert. Da bereits sehr alte Waesser gefunden wurden, werden neue Methoden mit einem groesseren Datierungsbereich benoetigt, z.B. mit Chlor-36 und Krypton-81. Diese Methoden sind in Entwicklung.

Atmosphaerenmischung, untersucht mit Argon-37

Die Messung der atmosphaerischen Ar-37-Aktivitaet, welche heute natuerliche und kuenstliche Ursachen hat, soll fortgesetzt werden. Damit werden einerseits globale Durchmischungsprozesse in der Atmosphaere untersucht. Andererseits wird Information ueber lokale oder regionale Erhoehungen kuenstlichen Ursprungs gewonnen, vor allem wenn mit Kr-85 und Tritium-Messungen und mit anderen Daten verglichen wird.

Leitstellen für die Überwachung radioaktiver Stoffe in der Umwelt

Leitstellen für die Überwachung radioaktiver Stoffe in der Umwelt Die radioaktiven Stoffe in der Umwelt werden zum einen von den Ländern, zum anderen von Einrichtungen des Bundes überwacht. In diesem Zusammenhang wurden Leitstellen eingerichtet, die jeweils für die Überwachung bestimmter Umweltbereiche verantwortlich sind. Die Aufgaben der Leitstellen sind im Strahlenschutzgesetz bzw. der IMIS -Zuständigkeitsverordnung, der Allgemeinen Verwaltungsvorschrift zum Integrierten Mess- und Informationssystem zur Überwachung radioaktiver Stoffe in der Umwelt ( AVV - IMIS ) und in der Strahlenschutzverordnung festgeschrieben. Der radioaktive Fallout durch die atmosphärischen Kernwaffenversuche in den 1950er und 1960er Jahren machte eine Überwachung der Belastung von Mensch und Umwelt durch Radioaktivität erforderlich. Wegen der Verpflichtungen durch den Artikel 35 des EURATOM -Vertrages von 1957 und der großtechnischen Nutzung der Kernenergie zur Energieproduktion wurde die Überwachung ausgeweitet und gesetzlich geregelt. Die radioaktiven Stoffe in der Umwelt werden zum einen von den Ländern, zum anderen von Einrichtungen des Bundes überwacht. Leitstellen: Einrichtungen des Bundes Gleichzeitig mit der amtlichen Überwachung wurden Leitstellen eingerichtet, die für bestimmte Umweltbereiche verantwortlich sind. Diese Leitstellen sind eingerichtet beim Bundesamt für Strahlenschutz , beim Deutschen Wetterdienst, bei der Bundesanstalt für Gewässerkunde, beim Max-Rubner-Institut, beim Bundesamt für Schifffahrt und Hydrographie, beim Thünen-Institut. Die Aufgaben Die Aufgaben der Leitstellen sind im Strahlenschutzgesetz ( StrlSchG ) mit der IMIS -Zuständigkeitsverordnung ( IMIS -ZustV) und in der Strahlenschutzverordnung ( StrlSchV ) festgeschrieben. Dies sind unter anderem: Überprüfung der Messdaten, die im Rahmen der Umweltüberwachung ( AVV - IMIS ) nach StrlSchG sowie im Rahmen der Emissions- und Immissionsüberwachung ( REI ) nach StrlSchV erhoben werden (Datenerzeuger sind unter anderem die amtlichen Messstellen der Länder, Bundesinstitute sowie die unabhängigen Messstellen zur Überwachung kerntechnischer Einrichtungen und die Betreiber kerntechnischer Einrichtungen), Zusammenfassung und Dokumentation der Daten der Umweltüberwachung nach StrlSchG sowie der Emissions- und Immissionsüberwachung, Überprüfung, Weiterentwicklung und Dokumentation von Probenahme- und Analyseverfahren (Messanleitungen) , Vergleichsanalysen zur externen Qualitätskontrolle (Ringversuche, Messvergleiche), Beratung der zuständigen Ministerien des Bundes und der Länder in fachlichen Fragen. Das BfS nimmt die Funktion einer Leitstelle in folgenden Bereichen wahr: Die Leitstellen des BfS Leitstelle Gesetzliche Grundlage Bemerkungen Leitstelle für Bodenoberflächen (In-situ-Gammaspektrometrie), Ortsdosis und Ortsdosisleistung ( ODL ) StrlSchG , IMIS -ZustV, AVV - IMIS , StrlSchV , REI ODL -Messnetz Leitstelle für Spurenanalyse StrlSchG , IMIS -ZustV, AVV - IMIS Spurenanalyse von radioaktiven Edelgasen (Krypton, Xenon) und luftstaubgebundenen Radionukliden Leitstelle für Trinkwasser, Grundwasser, Abwasser, Klärschlamm, Abfälle und Abwasser aus kerntechnischen Anlagen StrlSchG , IMIS -ZustV, AVV - IMIS , StrlSchV , REI Leitstelle für Arzneimittel und deren Ausgangsstoffe sowie Bedarfsgegenstände StrlSchG , IMIS -ZustV Leitstelle für Fortluft aus kerntechnischen Anlagen StrlSchG , IMIS -ZustV, REI Leitstelle für Fragen der Radioaktivitätsüberwachung bei erhöhter natürlicher Radioaktivität (ENORM) StrlSchG , IMIS -ZustV, StrlSchV Natürliche Radioaktivität in Umweltmedien, wie zum Beispiel Böden, Baustoffen sowie in industriellen Rückständen (zum Beispiel bei der Gewinnung von Erdgas) Qualitätssicherung von Messergebnissen durch die Leitstellen Die Leitstellen prüfen die Messergebnisse auf ihre Plausibilität und übernehmen die Qualitätssicherung der Daten. Korrekte Messergebnisse sind eine maßgebliche Voraussetzung, um in einem nuklearen Ereignisfall mögliche radiologische Auswirkungen richtig einschätzen zu können und die richtigen Maßnahmen zum Schutz der Bevölkerung zu treffen. Die Leitstellen entwickeln die anzuwendenden Probenahme- und Analyseverfahren, prüfen die Messdaten auf Plausibilität, führen Maßnahmen zur Qualitätssicherung durch, bereiten die verfügbaren Daten auf und erstatten Bericht an entscheidungsbefugte Stellen. Ringversuche und Laborvergleichsanalysen und -messungen als externe Qualitätskontrolle Die Leitstellen organisieren regelmäßig Ringversuche bzw. Laborvergleichsuntersuchungen zur externen Qualitätskontrolle. Dazu versendet die verantwortliche Leitstelle standardisierte Proben mit bekannter Zusammensetzung an die teilnehmenden Institutionen. Die Proben werden von den Teilnehmern mit den von ihnen üblicherweise verwendeten Verfahren analysiert. Ergebnisse: Vergleich liefert Informationen über Qualität von Analyse- und Auswertungsmethoden In Fachgesprächen und Workshops werden die angewendeten Methoden und Verfahren sowie die Ergebnisse von Ringversuchen bzw. Laborvergleichsanalysen und -messungen mit den Teilnehmern diskutiert. Im Bedarfsfall unterstützt die jeweilige Leitstelle teilnehmende Institutionen bei der Einführung neuer Mess- oder Analyseverfahren. Internationale Zusammenarbeit Die Mitwirkung der Leitstellen des BfS in internationalen Arbeitsgruppen dient dem Erfahrungsaustausch, der Harmonisierung von Analyse- und Messverfahren im internationalen Rahmen, der Qualitätssicherung der verfügbaren Daten. Die internationale Zusammenarbeit beim Fukushima-Unfall hat gezeigt, wie wichtig qualitätsgesicherte Daten auch auf internationaler Ebene sind. Durch das internationale Messnetz der CTBTO konnte sowohl die Ausbreitung der freigesetzten Radioaktivität als auch ihre Abschwächung bei der Verteilung in der Atmosphäre genau beobachtet werden. Die Entscheider erhielten so frühzeitig zutreffende Prognosen auf zu erwartende radiologische Auswirkungen im jeweiligen Land – eine wichtige Voraussetzung, um über mögliche nationale Schutzmaßnahmen zu entscheiden. Stand: 05.08.2025

Internationale Messnetze

Internationale Messnetze Die Staaten der Europäischen Union haben sich zur kontinuierlichen Überwachung der Radioaktivität in der Umwelt verpflichtet. Auf internationaler Ebene betreibt die Organisation zur Überwachung des umfassenden Kernwaffenteststopp-Vertrags ( CTBTO ) ein globales Messnetz. Innerhalb der Europäischen Union ( EU ) haben sich die Mitgliedstaaten zur kontinuierlichen Überwachung der Radioaktivität in der Umwelt verpflichtet. Auf internationaler Ebene liefert auch das Messnetz zur Überwachung des umfassenden Kernwaffenteststopp-Vertrags weltweit Daten zur Radioaktivität in der Umwelt. Messnetze auf europäischer Ebene Alle Mitgliedstaaten der Europäischen Union haben sich zur kontinuierlichen Überwachung der Radioaktivität in der Umwelt verpflichtet und betreiben ähnliche Messnetze wie das Bundesamt für Strahlenschutz ( BfS ). Österreich und die Schweiz verfügen über ein vergleichsweise engmaschiges Netz zur Messung der Ortsdosisleistung ( ODL ) wie Deutschland. In anderen Staaten liegt der Schwerpunkt auf der Überwachung kerntechnischer Anlagen, das heißt, die Messstationen sind vor allem in der Nähe dieser Anlagen platziert. Die Messstation auf dem Schauinsland ist einer der vier deutschen Standorte des weitmaschigen Netzwerks zur Überwachung der Umweltradioaktivität in der EU ("Dense and Sparse Network"). Nach Artikel 35 des EURATOM -Vertrags werden die erhobenen Daten der Ortsdosisleistung und Aktivitätskonzentrationen im Luftstaub gegenüber der EU berichtet. Die Messwerte der Mitgliedsstaaten für die Ortsdosisleistung als auch für weitere Umweltmedien werden vom Joint Research Centre (JRC) der EU zusammengefasst und veröffentlicht. Das BfS arbeitet mit dem JRC zusammen und führt an der Station Schauinsland mit dem Projekt INTERCAL ein langfristiges Vergleichsexperiment mit Strahlungsdetektoren in- und ausländischer Messnetze durch. Das weltweite Messnetz des CTBT Die Organisation zur Überwachung des umfassenden Kernwaffenteststopp-Vertrags ( CTBTO ) betreibt ein globales Messnetz (International Monitoring System, IMS). Die Messstation Schauinsland ist eine von gegenwärtig 73 zertifizierten Stationen, die partikelgebundene Radioaktivität im Bereich weniger Mikrobecquerel pro Kubikmeter Luft nachweisen können. Außerdem ist die Station eine von nur 26 zertifizierten Stationen weltweit, die radioaktives Xenon im Bereich unter einem Millibecquerel pro Kubikmeter Luft nachweisen können. Das BfS unterstützt die CTBTO seit den neunziger Jahren und hat zuletzt 2021/22 an der Messstation Schauinsland ein neues, hochmodernes Edelgas-Messsystem für das IMS der CTBTO getestet. Dieses ist mittlerweile zertifiziert und kommt im IMS zum Einsatz. Das Edelgaslabor des BfS in Freiburg ist auf die Messung von radioaktivem Krypton und radioaktivem Xenon in der Atmosphäre spezialisiert und misst lang- und kurzfristige Änderungen der Aktivitätskonzentrationen in der Luft. Über atmosphärische Rückwärtsrechnungen wird versucht, Quellort und Quellstärke freigesetzter Radioaktivität zu bestimmen. Im Laufe der letzten Jahrzehnte wurden Proben aus allen Kontinenten einschließlich der Antarktis untersucht. Stand: 09.07.2025

Globale Simulation einfacher Fluide

Es geht bei diesem Projekt um eine Methode zur Vorausberechnung makroskopischer, insbesondere thermodynamischer Daten von Flüssigkeiten oder komprimierten Gasen ohne Verwendung experimenteller Daten, d.h. nur aus quantenmechanischen Rechnungen, gefolgt von Computersimulationen. Der Rechenaufwand ist sehr hoch, aber wegen der Fortschritte der Computertechnologie inzwischen realisierbar. Zu den Teilproblemen des Projekts zählen u.a. die Berücksichtigung von Dreikörper-Potentialen und thermodynamischen Quanteneffekten, die Konstruktion optimaler intermolekularer Potentiale sowie die Simulation molekularer Fluide, bei denen als Komplikation langreichweitige oder nichtlokale Wechselwirkungen oder Deformationen auftreten können. Erste Untersuchungen (Dampfdruckkurven, Flüssigkeitsdichten und kalorische Daten von Neon, Argon, Krypton und Stickstoff) ergaben Vorhersagegenauigkeiten, die an die Größenordnung der experimentellen Unsicherheit heranreichen. Inzwischen wurden auch Hochdruck-Siedegleichgewichte von Edelgasmischungen 'ab initio' berechnet. Die Globale Simulation könnte eine Alternative oder zumindest eine Ergänzung zum Experiment darstellen, wenn die Messungen sehr aufwendig oder riskant sind, also z.B. bei toxischen, korrosiven, explosiven oder instabilen chemischen Verbindungen.

Totes Meer Süß-Salzwasser-Mischung

Im Rahmen einer Zusammenarbeit mit dem Geologischen Dienst von Israel und der Ben Gurion Universität in Beer Sheba wurden im Übergangsbereich von Frischwasser zu extrem salinen Wässern des Toten Meeres Untersuchungen mit natürlichen und künstlichen Tracern durchgeführt. Hierfür wurden im Bereich der natürlichen Tracer neue Techniken zur Analyse von Umweltisotopen in hypersalinen Wässern getestet. Stabile Isotope (18O, 2H) in Salzwässern wurden gemessen, um Mischungsprozesse und Lösungsprozesse unterscheiden zu können und die Herkunft von Mischwässern zu bestimmen. Gasuntersuchungen (Edelgase He, Ne, Ar, Kr, Xe und FCKW, SF6) wurden durchgeführt, um Methoden für die Datierung und die Bestimmung von Neubildungstemperaturen auch in salinen Wässern weiterzuentwickeln. Radioaktive Isotope (Radium-Isotope 228Ra, 226Ra, 224Ra, 223Ra) wurden untersucht, um eine Datierung des Mischungszeitpunktes aus der Veränderung des Sorptionsverhaltens abzuleiten. Durch Laborversuche wurde das Verhalten von künstlichen Tracern, u.a. deren Transportverhalten in salzigen Wässern untersucht.

Markt für Krypton, gasförmig

technologyComment of air separation, xenon krypton purification (CA-QC, RER, RoW): Kr-Xe-concentrate with 99.7% O2 is obtained from a side column of large air separation plants. Processes as purification and further distillation and the achieved yield may vary. Data represents an average process.

PGAA-Actinide, Bestimmung und Validierung von nuklearen Daten von Actiniden zur zerstörungsfreien Spaltstoffanalyse in Abfallproben durch prompt Gamma Neutronenaktivierungsanalyse am FRM II (PGAA-Actinide FRM II)

Im Rahmen des Projekts PGAA-Actinide soll ein zerstörungsfreies Messverfahren entwickelt werden, das eine quantitative Bestimmung von Actiniden und anderen Atomkernen in nuklearem Abfall erlaubt. Die Entwicklung eines solchen Verfahrens ist für die Abfallwirtschaft in Deutschland von herausragender Bedeutung. Denn während nukleare Spaltprodukte wie Iod, Cäsium, Strontium, Xenon oder Krypton überwiegend innerhalb weniger Tage bis einiger Jahrzehnte zerfallen, sind die durch Neutroneneinfang aus Uran entstehenden Actinide wie Neptunium, Plutonium, Americium oder Curium äußerst langlebig sowie chemisch und radiologisch hoch toxisch und müssen daher besonders behandelt und gelagert werden. Für deren Umgang, Transport und Aufnahme in ein Endlager gibt es gesetzliche Bestimmungen, welche Kenntnisse über deren Bestandteile und Mengen notwendig macht. Bisher gibt es allerdings kein Verfahren, mit dem sich die Inhalte von nuklearem Abfall mit ausreichender Genauigkeit bestimmen lassen. Die Methode der prompten Gamma Neutronenaktivierungsanalyse (PGAA) bietet eine einzigartige Perspektive, präzise Informationen über die Art und Menge der Actinide in nuklearem Abfall zu erhalten: Denn durch Neutronen aktivierte Atomkerne emittieren beim Zerfall charakteristische Gammaquanten, an Hand dessen sie sich eindeutig identifizieren lassen. Allerdings sind die prompten Gammalinien der Actinide bisher nicht ausreichend bekannt, auch fehlen präzise Informationen über deren Intensitäten und Wirkungsquerschnitte, also die Wahrscheinlichkeiten, mit denen ein spezifische Atomkerne durch Neutronen aktiviert werden. Im Unterschied zu herkömmlichen Analysemethoden für Actinide ist die prompte Gamma Neutronenaktivierungsanalyse ein zerstörungsfreies Verfahren. Die zu untersuchenden Proben müssen vor der Analyse nicht chemisch aufbereitet werden, es entstehen keinerlei Sekundärabfälle und auch das Personal wird nicht zusätzlich durch Umgang mit radioaktivem Material belastet. Neben der Bestimmung der Actinide werden mittels PGAA auch die Strukturen sowie die Nebenbestandteile des radioaktiven Abfalls erfasst. Im Rahmen des Projektes PGAA-Actinide werden zunächst mit hoher Präzision die prompten Gammasignaturen und Wirkungsquerschnitte ausgewählter Isotope bestimmt. Dazu werden speziell präparierte Proben am Budapester Forschungsreaktor (BNC) und an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) in Garching mit langsamen Neutronen bestrahlt und gemessen. Um Nachweisgrenzen und optimierte Messparameter zu bestimmen, werden mit Hilfe dieser Daten am Forschungszentrum Jülich anschließend PGAA-Spektren simuliert. Um das Messsystem für reale Proben und Gemische zu optimieren, werden dieselben Proben dann noch einmal mit schnellen Neutronen am Instrument Nectar, FRM II vermessen. Abschließend wird ein konkreter Vorschlag für eine Messanordnung zur quantitativen Bestimmung von Actiniden in nuklearem Abfall erarbeitet.

1 2 3 4