Kohlendioxid besitzt in gewissen Temperatur- und Druckbereichen ein selektives Loesungsvermoegen fuer eine grosse Anzahl von Stoffen mit vorwiegend unpolarem Charakter. Das darauf aufbauende Verfahren ermoeglicht ausgehend von festen oder fluessigen Rohmaterialien die Gewinnung von loesungsmittelfreien Extrakten und Raffinaten. Vor allem durch die physiologische Unbedenklichkeit von CO2 ist ein Schwerpunkt dieser Anwendung in der Lebensmittel- und pharmazeutischen Industrie zu suchen und ersetzt dabei niedrigsiedende organische Loesungsmittel, wie etwa chlorierte Kohlenwasserstoffe, Methanol, Hexan, Essigester etc. Das entwickelte Hochdruck-Extraktionsverfahren ist aber nicht nur auf die Produktion von rueckstandsfreien Nahrungs- und Genussmitteln beschraenkt, sondern ist als Alternativverfahren vielseitig einsetzbar. Es wurde die Extraktion von pflanzlichen und tierieschen Fetten und Oelen, die Extraktion von physiologisch unbedenklichen Insektiziden und das Recycling von Loesungsmitteln in technisch-chemischen Prozessen untersucht. Das Hochdruck-Extraktionsverfahren mit CO2 ist ein semikontinuierlicher Prozess: der eingesetzte Rohstoff verbleibt waehrend der Extraktion im Extraktionsautoklaven, das CO2 als Loesungsmittel wird in einem geschlossenen Kreislauf gefuehrt.
Chemisches Recycling von Kunststoffabfällen wird seit Jahren intensiv diskutiert. In einem laufenden Refoplan-Vorhaben werden die thermochemischen Technologien des chemischen Recyclings (Pyrolyse, Verölung, Vergasung) evaluiert und mit dem werkstofflichen Recycling sowie der energetischen Verwertung verglichen. Neben diesen für gemischte Kunststoffabfälle eingesetzte Verfahren gibt es auch Verfahren die Lösemittel nutzen. Dabei bleiben entweder Polymere erhalten (lösemittelbasiertes Recycling) oder in Monomere zerlegt (Solvolyse). Solche Verfahren fokussieren im Regelfall auf bestimmte Kunststoffarten (z.B. PUR, PET). Mit diesem Vorhaben soll die Lücke geschlossen werden, die nach dem laufenden Refoplan-Vorhaben verbleibt, und auch diese Arten des Recyclings adressiert werden. Geeignete Technologien des solvolytischen und lösemittelbasierten Recyclings von Kunststoffabfällen sollen identifiziert und bewertet werden. Dafür sollen geeigneten Abfallströme identifiziert und die vorhandenen Mengen abgeschätzt werden. Hierbei muss eine eindeutige Abgrenzung zu den mittels herkömmlichen Methoden des werkstofflichen Recyclings ökologisch und ökonomisch sinnvoller zu behandelten Abfällen gezogen werden. Weiterhin sollen bereits existierende Anlagen/Techniken im Detail untersucht und deren Praxistauglichkeit evaluiert werden. Neben den Techniken für das Recycling sollen hierbei die notwendigen Vorbehandlungs- und Produktaufreinigungsschritte im Detail betrachtet werden. Anhand verfügbarer Daten sollen dann Energie- und Massenbilanzen für ausgewählte, als sinnvoll erachtete Prozesse erstellt werden. In einem weiteren Schritt solle Kriterien für die Feststellung der ökologischen Vorteilhaftigkeit der Verfahren anhand der detaillierten Energie- und Massenbilanzen abgeleitet werden. Auch die Behandlungs- und Investitionskosten für die im Detail betrachteten Verfahren sollen abgeschätzt werden.
Ueberpruefung und Festlegung der MAK-Werte und MIK-Werte durch chemische Untersuchungen am Arbeitsplatz und durch medizinische Untersuchungen am exponierten Menschen; Messmethoden.
Ionische Flüssigkeiten sind Salze, die unterhalb 100 Grad C flüssig sind und als unkonventionelle Lösungsmittel eingesetzt werden. Da sie keinen messbaren Dampfdruck besitzen, gelten sie als umweltfreundlich. Ihr hochpolarer Charakter wird genutzt, um Niedertemperatursynthesen für anorganische Materialien zu entwickeln, die energieaufwendige Hochtemperaturprozesse ersetzen sollen.
Die Extraktion ist als produktschonendes, niedrig-energetisches Trennverfahren prädestiniert für biotechnologische Prozesse. Die Anwendung der Extraktion im biotechnologischen Downstream kann eine Schlüsselrolle einnehmen, um den Weg zu Produkten und Produktionsprozessen der nächsten Generation zu ebnen. Im industriellen Maßstab wird die Extraktion vor allem in Gegenstromkolonnen realisiert, die häufig nur mit minimaler Instrumentierung ausgestattet sind. Daher fehlen Informationen über den inneren Zustand der Kolonne. Zusätzlich kann die obere Betriebsgrenze modellbasiert nur mit großen Unsicherheiten vorhergesagt werden. Dem entsprechend erfordern mögliche Unsicherheiten in der bisherigen Auslegung für einen stationären Betrieb signifikante Sicherheitsaufschläge und führen damit zu Effizienzverlusten, vor allem bei der nachgeschalteten, energetisch aufwendigen Regeneration des Lösungsmittels mittels Rektifikation. Im Hinblick auf biotechnologische Prozesse werden Schwankungen im Produktstrom die notwendigen Sicherheitsaufschläge und damit die Effizienzverluste deutlich erhöhen. Um die Anwendung der Extraktion im biotechnologischen Downstream zu realisieren und Effizienzverluste zu vermeiden, bedarf es einer Flexibilisierung des Betriebs und einer zuverlässigen Zustandsdiagnostik für Extraktionskolonnen. Ziel ist die Einhaltung der Produkt- bzw. Prozessspezifikationen bei optimalem Betrieb. Innerhalb des Projekts soll daher anhand einer Extraktionskolonne im technischen Maßstab ein optimaler und flexibler Betrieb realisiert werden. Dazu wird eine Kombination aus Messtechnik und schnellem, prädiktivem Modell die Kolonne zu einem smarten, gläsernen Apparat machen, der einen effizienten und autonomen Betrieb am energetischen Optimum (min. Lösemittelstrom) ermöglicht. Die enge Zusammenarbeit von Apparate- und Messtechnikherstellern, sowie Partnern aus der Prozessindustrie sichert außerdem die Übertragbarkeit der entwickelten Systematik in den industriellen Maßstab.
Zielsetzung: Ziel von PeroCycle ist es, ein industrietaugliches Recyclingverfahren für Perowskitmodule zu entwickeln. Da Perowskitmodule umwelt- und gesundheitsschädliches Blei enthalten, sollte bereits jetzt an die Entsorgung der Module nach Erreichen der Lebensdauer gedacht werden. In unserem Projekt sollen Perowskit-Minimodule am ZSW hergestellt und verkapselt werden. Dadurch, dass unterschiedliche Arten von Modulen recycelt werden sollen, wird gleichzeitig die Praxistauglichkeit des Recyclingverfahrens geprüft. Die verkapselten Perowskit-Module sollen bei der FLAXRES GmbH mittels Lichtpulstechnologie aufgetrennt werden. Getestet werden soll eine Auftrennung so, dass der Glas-Polymer-Verbund, und damit das Glas als Ganzes, effektiv vom Absorbermaterial getrennt wird. Somit soll im Gegensatz zum gängigen Schreddern keine Vermischung mit den anderen Materialien erfolgen. Das Glas kann daher erneut zu Flachglas verarbeitet werden. Das Perowskit-Absorbermaterial wird sortenrein eingesammelt und es muss lediglich 1/3000 der Gewichtsmenge eines Moduls chemisch aufbereitet werden. Nach der Trennung der Materialien erfolgt die Entwicklung und Optimierung eines Perowskit-Recyclingverfahrens beim assoziierten Partner Solaveni GmbH. Für den Recyclingprozess werden selbstentwickelte nicht brennbare, kostengünstige und umweltfreundliche Lösungsmittelsysteme eingesetzt, die den Einsatz von toxischen Lösungsmitteln obsolet machen und auf den Einsatz von extremen Bedingungen, wie bspw. hohe Temperaturen verzichten. Dieser Ansatz soll es ermöglichen, die Kosten und die Umweltauswirkungen zu minimieren, indem der Energieverbrauch und die Abfallproduktion reduziert und die Kreislaufwirtschaft gefördert wird. Das angedachte Verfahren umfasst chemische und physikalische Bearbeitungsverfahren, wobei mindestens 90% der alten Absorbermaterialien zurückgewonnen werden sollen, die nach dem Recyclingprozess eine Reinheit von >=99% aufweisen. Am ZSW sollen aus den recycelten Absorbermaterialien (sowie mit den recycelten TCO-beschichteten Gläsern) neue Perowskitmodule hergestellt werden. Die Module aus den recycelten Materialien sollen mindestens 90% des Wirkungsgrads der frisch hergestellten Referenzproben aufweisen.
| Origin | Count |
|---|---|
| Bund | 1691 |
| Kommune | 41 |
| Land | 1528 |
| Wirtschaft | 3 |
| Wissenschaft | 12 |
| Zivilgesellschaft | 20 |
| Type | Count |
|---|---|
| Chemische Verbindung | 224 |
| Daten und Messstellen | 1486 |
| Ereignis | 1 |
| Förderprogramm | 1342 |
| Gesetzestext | 203 |
| Text | 112 |
| Umweltprüfung | 15 |
| unbekannt | 46 |
| License | Count |
|---|---|
| geschlossen | 379 |
| offen | 2819 |
| unbekannt | 29 |
| Language | Count |
|---|---|
| Deutsch | 3106 |
| Englisch | 196 |
| Resource type | Count |
|---|---|
| Archiv | 1486 |
| Bild | 3 |
| Datei | 44 |
| Dokument | 81 |
| Keine | 1282 |
| Multimedia | 2 |
| Unbekannt | 2 |
| Webseite | 1868 |
| Topic | Count |
|---|---|
| Boden | 2676 |
| Lebewesen und Lebensräume | 2453 |
| Luft | 2456 |
| Mensch und Umwelt | 3227 |
| Wasser | 2322 |
| Weitere | 3067 |