API src

Found 13 results.

Radiogenic isotope compositions of eruption products from the 2019 paroxysmal eruptions at Stromboli Volcano

Other

U-Pb data from cherts (Onverwacht Group) and strain data from conglomerates (Moodies Group) from the southern margin of the Archean Barberton Greenstone Belt, Eswatini

The southern margin of the Barberton Greenstone Belt in Eswatini limits one of the world’s oldest well-preserved sedimentary and volcanic sequences, 3.57 to 3.2 Ga old. In a segment along that margin, older mafic and ultramafic volcanic rocks were thrust over the youngest strata (quartz-rich sandstones and conglomerates) before being folded and imbricated in thrust slices. Samples described in this publication comprise tabular data of (1) sample locations and crystallization ages of zircons which were extracted from thin tuffaceous units in the thrust sheet, (2) analytical data from laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS), supporting these ages, and (3) quantitative measurements of ductily deformed conglomerate clasts. Field data were collected 2012-2019; U-Pb analyses performed in 2020. The data presented here are the basis for geological maps and cross sections, and are visualized as concordia diagrams form part of in the related publication (Heubeck et al.. 2023).

LA-ICP-MS data (Mg/Ca, Sr/Ca and Mn/Ca) of foraminifera from controlled growth experiments

LA-ICP-MS data from three different experiments including five foraminiferal species: Ammonia confertitesta (Bourgenuf, France), Bulimina marginata, Cassidulina laevigata (Gullmard Fjord, Sweden), Amphistegina lessonii and Operculina ammonoides (Eilat, Israel). Foraminifera were cultured at different oxygen concentrations (30% and 100% oxygen saturation). Element to calcium ratio (E/Ca) and partition coefficients (D) of Mg, Mn and Sr are noted for individual laser ablation measurements per specimen.

Data set of major, minor and trace elements in Co-coloured Egyptian glass objects from the 18th dynasty workshops at Amarna, Egypt

During the Egyptian 18th dynasty (c. 1550–1292 BC), cobalt ore was mined, processed and used as a colourant for glass, faience and blue-painted pottery. Co-coloured glass objects have a mid- to dark blue colour and were produced in order to imitate the semi-precious stone lapis lazuli. During this period, the glass objects were manufactured predominantly at two sites: Malqata (25°42'51.2"N 32°35'33.4"E) and Amarna (27°38'40.3"N 30°53'55.0"E).Major, minor and trace element concentration data from 38 blue glass objects from Amarna in the collection of Egyptian Museum and Papyrus Collection in Berlin are reported in this data publication. For comparison, glass objects from the same period and location, but of different colours (one red, two each of colourless, green and turquoise-blue glass) were analysed with the same method. These objects were originally brought to Berlin subsequent to the 1911–1914 excavations at Amarna carried out under the direction of Ludwig Borchardt on behalf of the Deutsche Orient-Gesellschaft. Unfortunately, most of these have by now lost their specific finds location. In addition, two recent samples of cobalt ore from the region of Ain Asil, near the Dakhla oasis (25°30'59.6"N 29°09'59.8"E), were included in the analysis.

Trace element contents in white mica and tourmaline from the Panasqueira W-Sn-Cu deposit (Portugal)

Analyzing the chemical composition of rocks and minerals is an important tool for exploring and understanding mineral resources. Typically, hydrothermal ore deposits are characterized by primary alteration halos. At the world-class Panasqueira W-Sn-Cu deposit, the hydrothermal alteration of the wall rocks produced concentric zones with progressively greater distance from the veins, consisting of a proximal tourmaline-quartz-muscovite zone and a distal muscovite-quartz zone.Tourmaline and mica are ubiquitous minerals at Panasqueira W-Sn-Cu and coexist in many other hydrothermal ore deposits worldwide. Both minerals are well-known to host variable amounts of trace elements and to have potential as pathfinder minerals as well as fluid monitors.We analyzed major, minor and trace element contents of altered and unaltered metasediments from the Panasqueira by XRF and ICP-MS and tourmaline and white mica major, minor and trace element compositions by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in previously well-characterized samples from different locations/setting in the mine (greisen, vein-selvages, wall-rock alteration zones, fault zone, and late vugs).Detailed information about the samples used, the location, and general geological background of the samples, and the analytical method is provided in the data description "2020-002_Codeco-et-al_data-description.pdf ".Detailed information about the the samples used, the location and general geological background of the samples and the analytical methods are provided in the data description file (2020-002_Codeco-et-al_data-description.pdf).

Water salinity and oxygen isotopes from cruise Maria S. Merian MSM50

Deoxygenation affects many continental shelf seas across the world today and results in increasing areas of hypoxia (dissolved oxygen concentration ([O2]) <1.4 ml/L). The Baltic Sea is increasingly affected by deoxygenation. Deoxygenation correlates with other environmental variables such as changing water temperature and salinity and is directly linked to ongoing global climate change. To place the ongoing environmental changes into a larger context and to further understand the complex Baltic Sea history and its impact on North Atlantic climate, we investigated a high accumulation‐rate brackish‐marine sediment core from the Little Belt (Site M0059), Danish Straits, NW Europe, retrieved during the Integrated Ocean Drilling Program (IODP) Expedition 347. We combined benthic foraminiferal geochemistry, faunal assemblages, and pore water stable isotopes to reconstruct seawater conditions (e.g., oxygenation, temperature, and salinity) over the past 7.7 thousand years (ka). Bottom water salinity in the Little Belt reconstructed from modeled pore water oxygen isotope data increased between 7.7 and 7.5 ka BP as a consequence of the transition from freshwater to brackish‐marine conditions. Salinity decreased gradually (from 30 to 24) from 4.1 to ~2.5 ka BP. By using the trace elemental composition (Mg/Ca, Mn/Ca, and Ba/Ca) and stable carbon and oxygen isotopes of foraminiferal species Elphidium selseyensis and E. clavatum, we identified that generally warming and hypoxia occurred between about 7.5 and 3.3 ka BP, approximately coinciding in time with the Holocene Thermal Maximum (HTM). These changes of bottom water conditions were coupled to the North Atlantic Oscillation (NAO) and relative sea level change.

Foraminiferal geochemistry and assemblage data, and pore water oxygen data of IODP Site 347-M0059

The dataset includes foraminiferal geochemistry and assemblage data, and pore water oxygen isotopes. The samples were collected during IODP Expedition 347 from Site M0059, located in the southern section of the Little Belt in the Baltic Sea. We have measured trace element concentrations (by LA-ICP-MS), oxygen and carbon isotopes of foraminiferal calcite, and fauna assemblage, for reconstruction of past environmental conditions over the past ~7.5 thousand years. We have also measured pore water oxygen isotopes from the same site. In the dataset we also present the trace element concentrations of foraminiferal calcite from IODP347 Site M0059 measured by solution-based ICP-OES. In addition, we include the measurement of water column salinity and oxygen isotopes data from cruise MSM 50 between the Skagerrak and the southern Baltic Sea.

Stable oxygen isotope ratios of pore water from IODP Site 347-M0059

Geochemistry of benthic foraminifera from IODP Site 347-M0059

Solution based trace element concentration of IODP Site 347-M0059

1 2