During the Egyptian 18th dynasty (c. 1550–1292 BC), cobalt ore was mined, processed and used as a colourant for glass, faience and blue-painted pottery. Co-coloured glass objects have a mid- to dark blue colour and were produced in order to imitate the semi-precious stone lapis lazuli. During this period, the glass objects were manufactured predominantly at two sites: Malqata (25°42'51.2"N 32°35'33.4"E) and Amarna (27°38'40.3"N 30°53'55.0"E).Major, minor and trace element concentration data from 38 blue glass objects from Amarna in the collection of Egyptian Museum and Papyrus Collection in Berlin are reported in this data publication. For comparison, glass objects from the same period and location, but of different colours (one red, two each of colourless, green and turquoise-blue glass) were analysed with the same method. These objects were originally brought to Berlin subsequent to the 1911–1914 excavations at Amarna carried out under the direction of Ludwig Borchardt on behalf of the Deutsche Orient-Gesellschaft. Unfortunately, most of these have by now lost their specific finds location. In addition, two recent samples of cobalt ore from the region of Ain Asil, near the Dakhla oasis (25°30'59.6"N 29°09'59.8"E), were included in the analysis.
The southern margin of the Barberton Greenstone Belt in Eswatini limits one of the world’s oldest well-preserved sedimentary and volcanic sequences, 3.57 to 3.2 Ga old. In a segment along that margin, older mafic and ultramafic volcanic rocks were thrust over the youngest strata (quartz-rich sandstones and conglomerates) before being folded and imbricated in thrust slices. Samples described in this publication comprise tabular data of (1) sample locations and crystallization ages of zircons which were extracted from thin tuffaceous units in the thrust sheet, (2) analytical data from laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS), supporting these ages, and (3) quantitative measurements of ductily deformed conglomerate clasts. Field data were collected 2012-2019; U-Pb analyses performed in 2020. The data presented here are the basis for geological maps and cross sections, and are visualized as concordia diagrams form part of in the related publication (Heubeck et al.. 2023).
LA-ICP-MS data from three different experiments including five foraminiferal species: Ammonia confertitesta (Bourgenuf, France), Bulimina marginata, Cassidulina laevigata (Gullmard Fjord, Sweden), Amphistegina lessonii and Operculina ammonoides (Eilat, Israel). Foraminifera were cultured at different oxygen concentrations (30% and 100% oxygen saturation). Element to calcium ratio (E/Ca) and partition coefficients (D) of Mg, Mn and Sr are noted for individual laser ablation measurements per specimen.
Analyzing the chemical composition of rocks and minerals is an important tool for exploring and understanding mineral resources. Typically, hydrothermal ore deposits are characterized by primary alteration halos. At the world-class Panasqueira W-Sn-Cu deposit, the hydrothermal alteration of the wall rocks produced concentric zones with progressively greater distance from the veins, consisting of a proximal tourmaline-quartz-muscovite zone and a distal muscovite-quartz zone.Tourmaline and mica are ubiquitous minerals at Panasqueira W-Sn-Cu and coexist in many other hydrothermal ore deposits worldwide. Both minerals are well-known to host variable amounts of trace elements and to have potential as pathfinder minerals as well as fluid monitors.We analyzed major, minor and trace element contents of altered and unaltered metasediments from the Panasqueira by XRF and ICP-MS and tourmaline and white mica major, minor and trace element compositions by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in previously well-characterized samples from different locations/setting in the mine (greisen, vein-selvages, wall-rock alteration zones, fault zone, and late vugs).Detailed information about the samples used, the location, and general geological background of the samples, and the analytical method is provided in the data description "2020-002_Codeco-et-al_data-description.pdf ".Detailed information about the the samples used, the location and general geological background of the samples and the analytical methods are provided in the data description file (2020-002_Codeco-et-al_data-description.pdf).