The PAGC51 TTAAii Data Designators decode as: T1 (P): Pictorial information (Binary coded) T1T2 (PA): Radar data (The bulletin collects reports from stations: 10410;Essen-Bredeney;) (Remarks from Volume-C: RADAR SWEEPS DATA, 10 ELEVATION ANGELS)
Passatwindkumuli spielen eine essentielle Rolle im Strahlungshaushalt der Erde und sind verantwortlich für bis zu 20 % des tropischen Niederschlags. Noch ist nicht bekannt, wie Passatwindkumuli auf die globale Erwärmung reagieren werden. Durch Niederschlag verändern sich Wolkeneigenschaften, aber auch die Grenzschichtstruktur und -dynamik. Aufgrund der Vielzahl der beteiligten Prozesse ist die Niederschlagsentwicklung in Modellen ist unsicher. Die Konfiguration der Simulationen und Wahl der Parameterisierung, wie das Autokonversionsschema, beeinflussen Niederschlagsfluss, Wolkenstruktur und â€Ìorganisation. Bisher konnten Vergleiche mit Beobachtungen noch nicht zur Reduktion der Unsicherheit des Autokonversionsschemas beitragen. Radarreflektivität, die mit Standardmethoden aus bodengebundenen Messungen abgeleitet wird, erkennt Niederschlag erst in einem fortgeschrittenen Stadium, was es schwierig macht, die verschiedenen, den Regen verursachenden Faktoren zu entflechten. Durch die Verdunstung des Niederschlags unterhalb der Wolkenunterkante (WUK) bestimmt dieser die Stärke der Coldpools und ist so bedeutend für die Organisation von Konvektion und somit die Klimasensitivität: Daher ist es essentiell Verdunstungsraten zu bestimmen und deren räumlich-zeitliche Variabilität zu verstehen. Zwar gibt es Parameterisierungen der Verdunstung unterhalb der WUK, allerdings sind diese von der Größe der Regentropfen abhängig, welche jedoch schlecht direkt zu beobachten ist.Ziel dieses Antrages ist die Bestimmung von Faktoren, welche die Niederschlagsformation in Passatwindkumuli beeinflussen. Dazu werden neuartige Radarbeobachtungen dieser Prozesse zur genaueren Beschreibung der Niederschlagsentwicklung in Grobstruktursimulationen (LES) herangezogen. Die räumlich-zeitliche Verdunstungsverteilung wird unterhalb der WUK in den Passatwindkumuli untersucht und treibende Faktoren identifiziert. Das Forschungsvorhaben ergänzt die bevorstehende EUREC4A (A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation) Kampagne und nutzt die langjährige Datenreihe des Barbados Cloud Observatory (BCO).Die synergetischen bodengebundenen Beobachtungen und der neue Ansatz, Niederschlag in Wolken mit Hilfe höherer Momente des Wolkenradardopplerspektrums zu bestimmen, werden erstmalig zur Beobachtungen von Passatwindkumuli und der Charakterisierung des Niederschlagslebenszyklus zu angewendet. Damit wird es möglich die Niederschlagsentwicklung in den hochauflösenden ICON-LEM und DHARMA-LES Modellen zu evaluieren. Für einen statistischen Vergleich der Simulationen und der Beobachtungen wird der Vorwärtsoperator PAMTRA verwendet, so dass im Beobachtungsraum untersucht werden kann, inwiefern die Modelle die beobachteten, mittleren Werte und Abhängigkeiten reproduzieren können und systematischen Fehler identifiziert werden. Damit trägt das Vorhaben zum Grand Challenge on Cloud Circulation and Climate Sensitivity des Weltklimaforschungsprogramm WRCP bei.
Radardaten nach Aneichung mit der gewichteten Mittelung aus zwei Standardverfahren, aufsummiert auf sechs Stunden
Die genaue Vorhersage von Gewittern ist sowohl für die Wissenschaft als auch für die Öffentlichkeit ein wichtiges Anliegen, da konvektive Ereignisse im Sommer zu den größten Naturgefahren in unseren Breiten gehören. Um die Entstehungsprozesse von Gewittern genauer zu verstehen, ist eine Untersuchung von Konvektion auf einer hoch auflösenden Skala nötig. Nur damit kann man den heutigen Anforderungen an die Vorhersage (in Bezug auf Zeit, Raum und Intensität) gerecht werden. Zu diesem Zweck wird im nächsten Jahr im Rahmen von zwei internationalen Projekten (COPS und MAP D-PHASE) im Süden von Deutschland eine groß angelegte Messkampagne durchgeführt. Das Hauptziel dieser Kampagne ist die Erstellung eines hochwertigen Datensatzes für die Untersuchung konvektiver Prozesse, von der Auslösung von Konvektion über die Wolken- und Niederschlagsbildung bis hin zur Untersuchung von Wolkenchemie und Hydrometeoren. Damit sollen meteorologische (und hydrologische) Vorhersagen für konvektive Ereignisse verbessert werden. Sowohl bei COPS (Convective and Orographically-induced Precipitation Study; Teil des Priority Program SSP 1167 der Deutschen Forschungsgemeinschaft) als auch bei MAP D-PHASE (Mesoscale Alpine Program Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region, ein von der Welt-Meteorologischen Organisation gefördertes Projekt) ist das Institut für Meteorologie und Geophysik in der Planungsphase vertreten. Im Rahmen des vorgeschlagenen Projektes soll die Messkampagne durch den Einsatz eines eigenen Meso-Messnetzes und Personal unterstützt werden, womit ein wichtiger Beitrag zu dem einmaligen Datensatz, der durch den Einsatz verschiedenster Messsysteme (Bodenstationen, Dopplerradar, Lidar, Satelliten, Flugzeuge, Radiosonden, ...) zu Stande kommt, geleistet wird. Mit Hilfe der Daten aus der Feldkampagne soll im Zuge des Projektes das Analyseverfahren VERA, das im Rahmen von FWF-Projekten am Institut entwickelt worden ist, einerseits für das Nowcasting von Gewittern, andererseits zur genaueren Niederschlagsanalyse, weiterentwickelt werden. Für beide Entwicklungsschritte wird dem Fingerprint-Ansatz, mit dem Zusatzinformation für das Downscaling meteorologischer Felder in die VERA-Analyse implementiert werden kann, eine wichtige Rolle zukommen. Dieser Ansatz wird für 3 Dimensionen, mehrere Fingerprints und höhere Auflösungen (bis 1km Gitterdistanz) erweitert. Mittels des Datensatzes werden neue Fingerprints entwickelt, die dazu beitragen werden, die Analysegenauigkeit für den Niederschlag und die Vorhersagbarkeit von Gewittern in Echtzeit mit Routinedaten zu verbessern. Das fertig entwickelte Analyseverfahren soll dann in einem weiteren Schritt zur Echtzeit-Validierung von hoch auflösenden Wettermodellen verwendet werden, wobei ein neuer Ansatz des Vergleiches zum Tragen kommt. Auch dadurch wird ein Beitrag zur besseren Vorhersagbarkeit von Gewittern geleistet.
The Tree Species Germany product provides a map of dominant tree species across Germany for the year 2022 at a spatial resolution of 10 meters. The map depicts the distribution of ten tree species groups derived from multi-temporal optical Sentinel-2 data, radar data from Sentinel-1, and a digital elevation model. The input features explicitly incorporate phenological information to capture seasonal vegetation dynamics relevant for species discrimination. A total of over 80,000 training and test samples were compiled from publicly accessible sources, including urban tree inventories, Google Earth Pro, Google Street View, and field observations. The final classification was generated using an XGBoost machine learning algorithm. The Tree Species Germany product achieves an overall F1-score of 0.89. For the dominant species pine, spruce, beech, and oak, class-wise F1-scores range from 0.76 to 0.98, while F1-scores for other widespread species such as birch, alder, larch, Douglas fir, and fir range from 0.88 to 0.96. The product provides a consistent, high-resolution, and up-to-date representation of tree species distribution across Germany. Its transferable, cost-efficient, and repeatable methodology enables reliable large-scale forest monitoring and offers a valuable basis for assessing spatial patterns and temporal changes in forest composition in the context of ongoing climatic and environmental dynamics.
Die kürzeste Route zwischen Brutgebiet und Überwinterungsquartier liegt auf einem Großkreis und sollte von den Vögeln bevorzugt werden. Danach müssten europäische Singvögel in ihre südlich gelegenen Winterquartiere direkt nach Süden ziehen. Jede Abweichung von dieser Route bedeutet, dass die Vögel einen Umweg machen. Offensichtlich ziehen die meisten europäischen Singvögel nicht nach Süden, sondern in südwestliche und südöstliche Richtung und meiden auf diese Weise die Überquerung der Alpen. Das Zugverhalten in Bezug zur Barriere der Alpen ist gut untersucht, nicht dagegen zu weiter südlich gelegenen Barrieren. Völlig unerforscht ist der Atlas in seiner Wirkung auf den Vogelzug. Für ihn liegen sich widersprechende Hypothesen vor, nach denen er auf dem Herbstzug entweder überquert oder umflogen wird. Auf dem Frühjahrszug lassen die mittleren Zugrichtungen in Gibraltar die Überquerung des Atlas erwarten, doch ist wegen der Größe der ökologischen Barriere ebenso eine Umgehung denkbar. Mit Hilfe von Radarstationen, die entlang einer W-E gerichteten Achse im Norden des Atlas errichtet werden, sollen die Zugrichtungen der nächtlich ziehenden paläarktischen Singvögel untersucht werden.
Mit dem 2019 ins Leben gerufenen europäischen Green Deal und den damit verbundenen nationalen Programmen wurde ein Maßnahmenpaket beschlossen, welches einen Transformationsprozess der europäischen Wirtschaft mit dem Ziel eines nachhaltigen und integrativen Wachstums vorsieht. In diesem Zusammenhang kommt der Energiegewinnung aus Windkraft eine herausragende Bedeutung zu. In Deutschland schlägt sich dies im Koalitionsvertrag der Bundesregierung nieder, in dem ambitionierte Ziele für den Ausbau der Windenergie sowohl onshore als auch offshore verfolgt werden. Um dem hohen Kostendruck in der elektrischen Energieerzeugung zu begegnen, wurden in der Windenergie in den letzten Jahren bereits große Erfolge erzielt und die Energieentstehungskosten konnten signifikant gesenkt werden. Bei Fortschreiten dieses Wegs kommt den Rotorblättern eine Schlüsselrolle zu, da sie die Windenergie in mechanisch nutzbare Energie überführen, mit rund 20% direkt zu den Anlagenkosten beitragen und die mechanischen Anlagenlasten signifikant beeinflussen. Für die optimierte Betriebsführung der Windenergieanlagen (WEA) sind jedoch neuartige Ansätze des 'Structural Health Monitorings (SHM)' erforderlich. Insbesondere bei der anwendungsorientierten Entwicklung solcher Systeme gibt es hohen Entwicklungsbedarf! IMST beteiligt sich am Verbundprojekt mit seinem Know-how im Bereich der Radarelektronik. Gemeinsam mit dem Partner TUHH wird ein bestehender Sensorknoten mit 60 GHz Radartechnik erweitert. Dazu gab es bereits Voruntersuchungen der Partner TUHH und GUF auf deren Basis der Radarsensor entwickelt wird. Die neue Antenne soll einen breiteren Beam ermöglichen, um mehr Fläche des Rotorblatts abzudecken. Ziel ist es, mit 4 Sensorknoten ein Rotorblatt zu erfassen. IMST entwickelt neben der Radarelektronik eine passende Antenne und ein Gehäuse, in dem alle elektrischen Komponenten des Sensorknotens eingebaut werden. Für einen Feldversuch in 3 WEAs wird IMST 44 Sensorknoten mit Radar aufbauen.
Bilder für Gesamtdeutschland - Images of the German area as a whole
High resolution radar data (lmax) of Neuhaus
| Origin | Count |
|---|---|
| Bund | 1412 |
| Europa | 1 |
| Kommune | 18 |
| Land | 230 |
| Wirtschaft | 2 |
| Wissenschaft | 86 |
| Zivilgesellschaft | 10 |
| Type | Count |
|---|---|
| Daten und Messstellen | 49 |
| Ereignis | 6 |
| Förderprogramm | 1083 |
| Text | 132 |
| Umweltprüfung | 1 |
| unbekannt | 257 |
| License | Count |
|---|---|
| geschlossen | 71 |
| offen | 1273 |
| unbekannt | 184 |
| Language | Count |
|---|---|
| Deutsch | 1062 |
| Englisch | 593 |
| Resource type | Count |
|---|---|
| Archiv | 29 |
| Bild | 5 |
| Datei | 50 |
| Dokument | 32 |
| Keine | 876 |
| Webdienst | 14 |
| Webseite | 574 |
| Topic | Count |
|---|---|
| Boden | 831 |
| Lebewesen und Lebensräume | 874 |
| Luft | 1015 |
| Mensch und Umwelt | 1500 |
| Wasser | 683 |
| Weitere | 1528 |