Das Projekt "KMU-innovativ: Multi-Chromatische-LED Plattform (MuCh-LED Plattform)" wird/wurde ausgeführt durch: IST METZ GmbH & Co. KG.
Das Projekt "KMU-innovativ: Multi-Chromatische-LED Plattform (MuCh-LED Plattform), Teilvorhaben: Erforschung und Evaluierung einer Multi-Chromatischen-LED Plattform" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: IST METZ GmbH & Co. KG.
Das Projekt "Untersuchung ökotoxischer Effekte von faser- und plättchenförmigen neuartigen Materialien für die Ableitung angepasster Prüfstrategien" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Institut für Umwelt & Energie, Technik & Analytik e.V..Faser- und plättchenförmige neuartige Materialien wie beispielswiese Kohlenstoffnanoröhrchen, Graphene oder MXene weisen außergewöhnliche mechanische, elektronische, optische und chemische Eigenschaften auf. Sie werden daher für eine Vielzahl von Anwendungen untersucht. Diese umfassen beispielsweise optoelektronische Anwendungen (z.B. Solarzellen, Leuchtdioden), Sensortechnik, Verbundmaterialien (z.B. für elektrische Leitfähigkeit, EMV-Abschirmung), Energiespeicherung, Katalysatoren oder Textilien (z.B. für elektrische Leitfähigkeit, Flammschutz). Faser- und plättchenförmige neuartige Materialien können aufgrund ihrer Eigenschaften methodische Herausforderungen für die regulative Risikobewertung gemäß EU-Chemikalienrecht mit sich bringen. Welche Mechanismen zur ökotoxischen Wirkung dieser Materialien beitragen, ist wenig untersucht. Zudem besteht die Besorgnis, dass mögliche ökotoxische Wirkungen der Materialien über die klassischen Methoden nicht ausreichend aufgeklärt werden können. Somit besteht der Bedarf geeignete Prüfstrategien zu entwickeln, die es ermöglichen relevante Mechanismen und (sub)letale Effekte zu identifizieren, die eine spezifische Einschätzung des ökotoxischen Potentials faser- und plättchenförmiger neuartiger Materialien erlauben. In dem Vorhaben sollen daher besondere Wirkmechanismen und relevante (sub)letale Effekte dieser Materialien recherchiert werden. Davon ausgehend soll abgeleitet werden, welche Prüfsysteme zum Einsatz kommen müssen, um spezifische Aussagen zur Ökotoxikologie dieser Materialien vornehmen zu können. Ausgewählte Prüfsysteme sollen exemplarisch anhand von ausgewählten faser- und plättchenförmigen Materialien erprobt und adaptiert werden. Auf diese Weise sollen Empfehlungen abgeleitet werden, wie nicht-klassische Effekte im Rahmen der Umweltrisikobewertung solcher Materialien berücksichtigt werden könnten und welche weiteren Schritte vorgenommen werden müssten.
The SAEU31 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SA): Aviation routine reports A1A2 (EU): Europe (The bulletin collects reports from stations: LEMD;MADRID BARAJAS INT ;LROP;HENRI COANDA INT;LYBE;BELGRADE NIKOLA TESLA ;LEVC;VALENCIA ;LDZA;ZAGREB ;LEBL;BARCELONA INT ;LPPT;LISBON PORTELA ;LHBP;BUDAPEST LISTZ FERENC INTL ;) (Remarks from Volume-C: COMPILATION FOR REGIONAL EXCHANGE)
Die Berliner Verkehrsampeln werden von der Abt.Verkehrsmanagement überwacht. Die meisten Ampeln sind über Kabelverbindungen an einen Verkehrsrechner angeschlossen. Sie sammeln die Daten der Lichtsignalanlagen und leiten sie an die Verkehrsregelungszentrale der Abt. Verkehrsmanagement weiter. Verkehrsrechner In Berlin werden 12 Verkehrsrechner betrieben. Ampeln, die keine Kabelverbindung zu einem Verkehrsrechner haben, werden über Funk überwacht. Die Verkehrsrechner erfüllen aber noch eine andere Funktion. Bei modernen Lichtsignalanlagen laufen die Signalprogramme in einem eigenen Steuergerät. Bei älteren Ampeln fehlt dieses Gerät. Sie werden deshalb vom Verkehrsrechner gesteuert. Der Nachteil ist: Wird die Verbindung zum Verkehrsrechner unterbrochen, fällt die Ampel aus. Moderne Ampeln arbeiten dagegen auch bei solchen Störfällen weiter. Bei den meisten Ampeln in Berlin leuchten heute noch in Reflektoren eingesetzte Glühlampen hinter den farbigen Streuscheiben. Neuere Ampeln arbeiten dagegen mit Leuchtdioden oder LEDs (eine Abkürzung des englischen “Light Emitting Diode”). LED-Displays verbrauchen sehr viel weniger Energie und halten bis zu 20 Mal länger als herkömmliche Glühlampen. Das macht die Instandhaltung der Ampeln spürbar billiger. An LED-Displays können zudem keine Phantombilder entstehen. Um Phantombilder auch bei traditionellen Ampeln so gut als möglich zu verhindern, werden an Berliner Straßen, die in Ost-West-Richtung verlaufen, spezielle Blenden in den Signalgebern eingesetzt.
Bei der Verwertung von Bildschirmen sowie Gasentladungslampen („Energiesparlampen“) ist Sorgfalt geboten: Klassische Röhrenbildschirme enthalten Blei, Gasentladungslampen enthalten Quecksilber und sind häufig noch in alten Flachbildschirmen enthalten. Die Menge der verkauften Fernseher und Computermonitore sinkt seit 2020 deutlich. Die in Verkehr gebrachte Menge an Lampen ist ebenfalls gesunken. Bildschirmgeräte Die Flachbildschirmtechniken haben die klassischen Röhrenfernsehgeräte mit Kathodenstrahlröhren (Englisch: Cathode Ray Tube, CRT) abgelöst. CRT-Geräte werden in Deutschland nicht mehr auf den Markt gebracht. In Deutschland wurden im Jahr 2023 insgesamt ca. 4,36 Millionen (Mio.) Fernsehbildschirme mit Flüssigkristallanzeige (englisch: Liquid Crystal Display, LCD) sowie OLED-Technologie (englisch: Organic Light Emitting Diode, OLED) verkauft. Gegenüber dem Vorjahr ist dies eine Verringerung der Verkaufsmenge um 11 % ( HEMIX, GfU-Statistik ). Flachbildschirmgeräte mit Plasmaanzeige konnten sich nicht durchsetzen und werden seit dem Jahr 2016 in Deutschland nicht mehr verkauft. Die Absatzzahlen für Fernsehbildschirme werden seit dem Jahr 2017 nur noch für LCD- und OLED-Bildschirme zusammen ausgewiesen. Außerdem wurden 2023 rund 3,1 Mio. Computermonitore in Deutschland verkauft. Die Verkaufsmenge ging, nach einem sprunghaften Anstieg im Jahr 2020, um über 20 % im Vergleich zum aktuellen Jahr zurück (siehe Abb. „Absatz von Fernseh-Bildschirmen und Computer-Monitoren an Endverbraucher“). Mit der Änderung der Elektrogerätekategorien im August 2018 werden seit 2019 erstmals auch statistische Daten zur gesamten Menge der in Verkehr gebrachten und entsorgten Bildschirmgeräte ausgewiesen, da diese nun eine eigene Gerätekategorie darstellen. Hierzu zählen Bildschirme, Monitore und Geräte, die Bildschirme mit einer Oberfläche von mehr als 100 Quadratzentimeter enthalten (z.B. Fernsehgeräte, Flachbildschirme, digitale Foto- und Bilderrahmen, PC-Monitore, Laptops, Notebooks, Tablets und Tablet-PCs) (siehe Abb. „In Verkehr gebrachte und entsorgte Menge von Bildschirmgeräten“). So wurden im Jahr 2022 146.275 Tonnen (t) Bildschirmgeräte in Verkehr gebracht und 90.110 t Altgeräte gesammelt. Die Quote für die Vorbereitung zur Wiederverwendung + Recycling der Altgeräte betrug rund 89 %. Absatz von Fernseh-Bildschirmen und Computer-Monitoren an Endverbraucher Quelle: Gesellschaft für Unterhaltungs- und Kommunikationselektronik Diagramm als PDF Diagramm als Excel mit Daten In Verkehr gebrachte und entsorgte Menge von Bildschirmgeräten Quelle: BMUV Diagramm als PDF Diagramm als Excel mit Daten Lampen Im Jahr 2022 wurden in Deutschland 29.875 t Lampen (Gasentladungslampen, LED-Lampen und weitere; siehe auch hier ) in Verkehr gebracht. Bis zum Jahr 2018 wurden Gasentladungslampen in der statistischen Berichterstattung noch getrennt ausgewiesen. Zu den Gasentladungslampen zählen Kompaktleuchtstofflampen, auch als Energiesparlampen bekannt, Leuchtstoffröhren und einige andere Lampentypen. Seit mehreren Jahren werden Gasentladungslampen, insbesondere in privaten Haushalten, zunehmend durch LED-Lampen (engl.: Light Emitting Diode, LED) ersetzt und werden immer mehr vom Markt verdrängt. Die in Verkehr gebrachte Menge an Lampen, außer Gasentladungslampen (≙ LED-Lampen), die in privaten Haushalten genutzt werden können betrug 8.163 t im Jahr 2022. 2021 lag die Menge noch bei 8.673 t ( stiftung ear ) (siehe Abb. „In Verkehr gebrachte Menge an Lampen zur Nutzung in privaten Haushalten). Die Menge der gesammelten Alt-Lampen lag im Jahr 2022 bei 8.010 t. Von 2010 bis 2014 sind die Mengen der gesammelten und recycelten Gasentladungslampen kontinuierlich gesunken, bei zuerst ansteigender und später fast gleichbleibender Recyclingquote. Ein Grund dafür ist der steigende Einsatz von schadstofffreien LED-Lampen, wodurch Gasentladungslampen zusehends abgelöst werden. Im Vergleich zum Vorjahr blieb 2015 trotz eines starken Anstiegs der Sammelmenge (+ 19 %) die Recyclingmenge ungefähr gleich (+ 2,2 %), wodurch die Recyclingquote auf unter 80 % fiel. Ursache hierfür ist die höhere Menge die der energetischen Verwertung bzw. Beseitigung zugeführt wurde. Nach einer deutlichen Steigerung der Sammelmenge im Jahr 2017 gegenüber dem Vorjahr um 14 % ist die Sammelmenge der Gasentladungslampen 2018 auf den höchsten Wert seit Beginn der Datenerfassung gestiegen (+68 % gegenüber dem Vorjahr). Ein Grund hierfür war die in diesem Jahr sehr große Sammelmenge von Gasentladungslampen aus dem gewerblichen Bereich (b2b-Geräte). Mit der Änderung der Elektrogerätekategorien im August 2018, wurde zum Jahr 2019 auch das Berichtsformat geändert, indem Lampen nunmehr als Lampen insgesamt ausgewiesen werden und Gasentladungslampen nicht mehr getrennt. Die Recyclingquote ist 2022 mit rund 94 % etwa auf dem gleichen Niveau der Vorjahre 2011 bis 2021 (ausgenommen 2015 und 2017). Ursache der im Vergleich geringen Recyclingquote von 2017 ist, dass ein größerer Teil der Beseitigung zugeführt wurde als in den Vorjahren (siehe Abb. „Sammlung und Recycling von Gasentladungslampen und Lampen“). In Verkehr gebrachte Menge an Lampen zur Nutzung in privaten Haushalten Quelle: stiftung elektro-altgeräte register Diagramm als PDF Diagramm als Excel mit Daten Sammlung und Recycling von Gasentladungslampen und Lampen Quelle: BMUV Diagramm als PDF Diagramm als Excel mit Daten Sammlung, Entsorgung und umweltverträgliche Verwertung Bildschirmgeräte, Gasentladungslampen und LED-Lampen sind Elektrogeräte. Gemäß Elektro- und Elektronikgerätegesetz müssen ausgediente Elektrogeräte getrennt von anderen Abfällen gesammelt werden. Hinweise zur korrekten Entsorgung von Elektronikaltgeräten finden Sie in unseren UBA-Umwelttipps „Wohin mit dem Elektroschrott“ . Übrigens, obwohl Gasentladungslampen und LED-Lampen zusammen gesammelt werden, enthalten LED-Lampen kein Quecksilber. Hintergrund der gemeinsamen Sammlung ist die vorsorgliche Vermeidung von möglichen schädlichen Umweltauswirkungen durch versehentliche Quecksilberquerkontaminationen, da bei manchen Lampentypen nicht eindeutig zu unterscheiden ist, ob es sich um eine quecksilberhaltige Gasentladungslampe oder eine quecksilberfreie LED-Lampe handelt. Die Verwertungsvorgaben für Bildschirmgeräte und Lampen unterscheiden sich: Von Bildschirmgeräten müssen mindestens 80 % des durchschnittlichen Gewichtes (Gewichtsprozent) verwertet werden. Die Mindestquote für die Vorbereitung zur Wiederverwendung und das Recycling liegt bei 70 %. Bei Lampen beträgt die einzuhaltende Quote für das Recycling mindestens 80 % des durchschnittlichen Gewichts. Deutschland hält diese Quoten ein.
Das Projekt "CatMemReac: CO2 Reduktion in der Oxidation von Mikroverunreinigungen - Energieintensive Prozesse ersetzt durch neue Sonnenlicht basierte Prozesse (Deutsch-Israelische Wassertechnologie-Kooperation)" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik.
Das Projekt "Einzelvorhaben: Direkt gewachsenes PE-CVD Graphen als funktionale Schicht in AlxGa1-xN UV-LEDs (DiGraL)" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften, Lehrstuhl für Werkstoffe der Elektrotechnik.
Das Projekt "H2020-EU.3.3. - Societal Challenges - Secure, clean and efficient energy - (H2020-EU.3.3. - Gesellschaftliche Herausforderungen - Sichere, saubere und effiziente Energieversorgung), Application relevant validation of c-Si based tandem solar cell processes with 30 % efficiency target (SiTaSol)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein.Crystalline silicon wafer solar cells have been dominating the photovoltaic market so far due to the availability and stability of c-Si and the decades of Si technology development. However, without new ways to improve the conversion efficiencies further significant cost reductions will be difficult and the c-Si technology will not be able to maintain its dominant role. In the SiTaSol project we want to increase conversion efficiencies of c-Si solar cells to 30 % by combining it with III-V top absorbers. Such a tandem solar cell will result in huge savings of land area and material consumption for photovoltaic electricity generation and offers clear advantages compared to today's products. The III-V/Si tandem cell with an active Si bottom junction with one front and back contact is a drop-in-replacement for today's Si flat plate terrestrial PV. To make this technology cost competitive, the additional costs for the 2-5 mym Ga(In)AsP epitaxy and processing must remain below 1 Euro/wafer to enable module costs less than 0.5 Euro/Watt-peak. It is the intention of the SiTaSol project to evaluate processes which can meet this challenging cost target and to proof that such a solar cell can be produced in large scale. Key priorities are focused on the development of a new growth reactor with efficient use of the precursor gases, enhanced waste treatment, recycling of metals and low cost preparation of the c-Si growth substrate. High performance devices will be demonstrated in an industrial relevant environment. The project SiTaSol approaches these challenges with a strong industrial perspective and brings together some of the most well-known European partners in the field of Si PV and III-V compound semiconductors. Furthermore SiTaSol will support the competitiveness of the European industry by providing innovative solutions for lowering manufacturing costs of III-V materials which are essential in today's electronic products including laptops, photonic sensors and light emitting diodes.
Das Projekt "EnEff: Stadt ENQM - Energieeffiziente Wohnsiedlungen durch zukunftsfähige Konzepte für den denkmalgeschützten Bestand - Energieoptimiertes Quartier Margarethenhöhe Essen, Teilvorhaben: Elektronik für Energieeffiziente Wohnsiedlungen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Rheinisch-Westfälische Technische Hochschule Aachen University, Institut für Halbleitertechnik, Lehrstuhl für Integrierte Analogschaltungen.Im Verbundvorhaben EnQM soll gezeigt werden, wie durch energetische Sanierung, innovative Gebäudetechnik und intelligente elektrische, thermische und digitale Vernetzung denkmalgeschützte Quartiere energetisch optimiert werden. In der historischen Arbeitersiedlung Margarethenhöhe in Essen soll dieser Ansatz analysiert und mit den im Projekt entwickelten und angepassten Technologien beispielhaft umgesetzt werden. Dabei werden die Potentiale der Maßnahmen sowohl für einzelne Gebäude, als auch für die ganze Siedlung untersucht. TP 1 - Ganzheitliche Sanierungskonzepte für Baudenkmale: AP 1.1: Bestandsdatenanalyse Gebäude AP 1.2: Monitoring und Untersuchungen Bestand AP 1.3: Energiebedarfsberechnungen Bestand AP 1.4: Simulation Gebäudehülle AP 1.5: Thermische Gebäudesimulation AP 1.6: Sanierungskonzepte Gebäude TP 2 - Entwicklung und Erprobung denkmalgerechter Technologien AP 2.1: Energetische Ertüchtigung der Gebäudehülle mit Dämmputz AP 2.2: Wärmeübergabe bei niedrigen Heiztemperaturmedien AP 2.3: Wärmeerzeugung mittels Mikrowärmepumpe AP 2.4: Elektrische und thermische Energie durch aktivierte Dachsteine AP 2.5: Gebäudebezogene und quartiersintegrierte Speicherung von Strom AP 2.6: Gebäudebezogene und quartiersintegrierte Speicherung von Wärme AP 2.7: Kommunikationsnetze zur digitalen Quartiersvernetzung AP 2.8: Anpassung der Smart-Home-Komponenten auf den denkmalgeschützten Bestand AP 2.9: Energieeffiziente LED-Technologie TP 3 - Intelligente Quartiersvernetzung und Energieflussoptimierung: AP 3.1: Bestandsanalyse Energieversorgung Quartier AP 3.2: Potenzialanalyse KWK-Systeme AP 3.3: Externe Energiezufuhr AP 3.4: Modellbildung AP 3.5: Regelungskonzept AP 3.6: Geschäftsmodelle AP 3.7: Zusammenfassung, Empfehlungen und Übertragbarkeit TP 4 - Umsetzung im Quartier: AP 4.1: Planung, Ausschreibung und Überwachung der Sanierungsmaßnahmen AP 4.2: Ausführung der Maßnahmen AP 4.3: Begleitung der Planung und Umsetzung AP 4.4: Monitoring zur Einregulierung.
Origin | Count |
---|---|
Bund | 112 |
Land | 3 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 105 |
Text | 4 |
unbekannt | 4 |
License | Count |
---|---|
geschlossen | 7 |
offen | 105 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 106 |
Englisch | 10 |
Resource type | Count |
---|---|
Datei | 1 |
Dokument | 2 |
Keine | 31 |
Webseite | 81 |
Topic | Count |
---|---|
Boden | 74 |
Lebewesen & Lebensräume | 63 |
Luft | 45 |
Mensch & Umwelt | 114 |
Wasser | 42 |
Weitere | 114 |