API src

Found 11 results.

SAFOD Main Hole downhole logging data phase 1.2 2124-2353m, year: 2004

SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 2124-2353m (rel. to rig floor, 9,45m abv gnd)

SAFOD Main Hole downhole logging data phase 1.2 1894-2123m, year: 2004

SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 1894-2123m (rel. to rig floor, 9,45m abv gnd)

SAFOD Main Hole downhole logging data phase 1.2, 2583-2812m

SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 2583-2812m (rel. to rig floor, 9,45m abv gnd)

SAFOD Main Hole downhole logging data phase 1.2, 2353-2582m

SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 2353-2582m (rel. to rig floor, 9,45m abv gnd)

SAFOD Main Hole downhole logging data phase 1.2, 2812-3043m

SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 2812-3043m (rel. to rig floor, 9,45m abv gnd)

SAFOD Main Hole downhole logging data phase 1.2 1556-1744m

SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 1556-1744m (rel. to rig floor, 9,45m abv gnd)

SAFOD Main Hole downhole logging data phase 1.2 1744-1932m

SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 1744-1932m (rel. to rig floor, 9,45m abv gnd)

SAFOD Main Hole downhole logging data phase 1.2 1932-2041m

SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 1932-2041m (rel. to rig floor, 9,45m abv gnd)

Downhole Resistivity log for HSDP-2-A

The GFZ Potsdam started a log interpretation study in cooperation with the Technical University of Aachen. As a first result, the logged profile allows for a subdivision of the lithological profile into at least two major zones: (1) a subaerial zone (1900-3600ft) and (2) a submarine zone (3600-6100ft). In addition, the geophysical measurements indicate a further subdivision into the Log Units 1-4 , each unit distinguished by different geophyshical log responses: (Fig.2) (Fig.4) The basaltic lava flows of the first unit (Log Unit1), consisting of Aa-and Pahoehoe-Lavas, show high total GR and low resistivity values in general. These flows do not only reveal large variations in resistivity and gamma ray activity between different flow types but also within single lava flows. This internal variation seems to be controled by vesicularity and alteration of the single lava flows. High total GR values appear in rocks with low olivine content and sparse vesicularity.

SAFOD Main Hole downhole logging data phase 1.2 1368-1556m

SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 1368-1556m (rel. to rig floor, 9,45m abv gnd)

1 2