Gehört zur Hauptkarte 3 der Landschaftsrahmenpläne der Planungsräume I, II und III des Landes S.-H. (Stand: 1/2020) Die Hochwassergefahrenkarten (HWGK) stellen für alle in Schleswig-Holstein festgelegten Szenarien der Hochwasserrisikogebiete die Gefährdung durch ein Hochwasserereignis durch Küstenhochwasser als Zusammenwirken von Eintrittswahrscheinlichkeit und Intensität dar. Die Darstellung beinhaltet die räumliche Ausdehnung der Überflutung und die Wassertiefe durch eine Verschneidung mit dem digitalen Geländemodell Schleswig-Holsteins (DGM1). Ergänzend bitten wir Sie, folgende Angaben zur Erläuterung der Karteninhalte zu beachten: Die Hochwassergefahrenkarten gemäß Art. 6 Abs. 3 HWRL erfassen die geografischen Gebiete, die nachfolgenden Szenarien überflutet werden könnten. a) Hochwasser mit niedriger Wahrscheinlichkeit (HW200) oder Szenarien für Extremereignisse b) Hochwasser mit mittlerer Wahrscheinlichkeit (HW100) c) Hochwasser mit hoher Wahrscheinlichkeit (HW20). HW200: Sturmflut mit einem Wiederkehrintervall von 200 Jahren. HW100: Sturmflut mit einem Wiederkehrintervall von 100 Jahren. HW20: Sturmflut mit einem Wiederkehrintervall von 20 Jahren. In den Hochwassergefahrenkarten werden für die einzelnen Szenarien angegeben (Abs. 4): a) Ausmaß der Überflutung b) Wassertiefe bzw. gegebenenfalls Wasserstand. Für bereits ausreichend geschützte Küstengebiete (Abs. 6) wird die Erstellung von Hochwassergefahrenkarten auf ein Extremszenario beschränkt. Ergänzend bitten wir Sie, folgende Angaben zur Erläuterung der Karteninhalte zu beachten: Hochwasserrisikokarten werden auf der Grundlage der Hochwassergefahrenkarten für die gleichen Hochwasserszenarien und Hochwasserrisikogebiete des Küstenhochwassers erstellt. In ihnen werden die hochwasserbedingten nachteiligen Auswirkungen (Signifikanzkriterien) dargestellt. In Artikel 6 Abs. 5 der HWRL sind die erforderlichen Angaben aufgeführt: a) Anzahl der potenziell betroffenen Einwohner, b) Art der wirtschaftlichen Tätigkeiten in dem potenziell betroffenen Gebiet, c) Anlagen der Richtlinie 2010/75/EU über Industrieemissionen (IED) und potenziell betroffene Schutzgebiete gemäß Anhang IV Nummer 1 Ziffern i, iii und v der Richtlinie 2000/60/EG In Schleswig-Holstein werden folgende Ergebnisse dargestellt: a) Menschliche Gesundheit o Anzahl der potenziell betroffenen Einwohner o Gebäude für öffentliche Zwecke b) Art der wirtschaftlichen Tätigkeiten o Siedlungsflächen, o Gewerbe- und Industriegebiete, o Verkehrsflächen und o landwirtschaftlichen Flächen / Wald c) Umwelt o Anlagen gemäß IED-Richtlinie / Störfall-Verordnung o Vogelschutzgebiete o FFH-Gebiete o Badegewässer d) UNESCO-Weltkulturerbestätten e) weitere Kriterien o Hochwasserabwehrinfrastruktur
Der Landkreis Harburg zeichnet sich durch vielfältige Landschafts- räume aus. Sie weisen in Teilen eine besondere Bedeutung für Arten und Biotope auf und sind gleichzeitig höchst attraktive Naherholungsräume. Die unmittelbare Lage am Ballungsraum Hamburg, die Dynamik der wirtschaftlichen Entwicklung und Veränderungen in der Landwirtschaft führen zu einem enormen Veränderungsdruck. Hieraus erwächst eine besondere Verantwortung gegenüber den natürlichen Lebensgrundlagen, den Arten und Biotopen, unserem Naturerbe, der sich die Landschaftsrahmenplanung widmet.
Der Landkreis Harburg zeichnet sich durch vielfältige Landschafts- räume aus. Sie weisen in Teilen eine besondere Bedeutung für Arten und Biotope auf und sind gleichzeitig höchst attraktive Naherholungsräume. Die unmittelbare Lage am Ballungsraum Hamburg, die Dynamik der wirtschaftlichen Entwicklung und Veränderungen in der Landwirtschaft führen zu einem enormen Veränderungsdruck. Hieraus erwächst eine besondere Verantwortung gegenüber den natürlichen Lebensgrundlagen, den Arten und Biotopen, unserem Naturerbe, der sich die Landschaftsrahmenplanung widmet.
Der Landkreis Harburg zeichnet sich durch vielfältige Landschafts- räume aus. Sie weisen in Teilen eine besondere Bedeutung für Arten und Biotope auf und sind gleichzeitig höchst attraktive Naherholungsräume. Die unmittelbare Lage am Ballungsraum Hamburg, die Dynamik der wirtschaftlichen Entwicklung und Veränderungen in der Landwirtschaft führen zu einem enormen Veränderungsdruck. Hieraus erwächst eine besondere Verantwortung gegenüber den natürlichen Lebensgrundlagen, den Arten und Biotopen, unserem Naturerbe, der sich die Landschaftsrahmenplanung widmet.
Der sogenannte S-Wert ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Nährstoffhaltes und wird über die Nährstoffverfügbarkeit bewertet. Der S-Wert ist die Menge an Nährstoffen (Kationen, nicht z. B. Nitrat), die ein Boden austauschbar an Ton-, Humusteilchen, Oxiden und Hydroxiden binden bzw. sorbieren kann (Kationenaustauschkapazität). Der S-Wert ist somit gut geeignet, die Nährstoffverfügbarkeit zu beschreiben. Ähnlich wie bei der Feldkapazität im effektiven Wurzelraum (FKwe) bedingen hohe Gehalte an Ton, Humus, sowie ein großer effektiver Wurzelraum einen hohen S-Wert und umgekehrt. Auch der pH-Wert hat einen großen Einfluss auf den S-Wert. Der pH-Wert kann in Abhängigkeit von der Nutzung in einem weiten Bereich schwanken. Je höher der S-Wert, desto mehr Nährstoffe kann der Boden an Austauschern binden. Nährstoffeinträge über Luft oder Düngung werden so vor einem Austrag mit dem Sickerwasser geschützt. Gleichzeitig wird dadurch eine gleichmäßigere Nährstoffversorgung der Pflanzen sichergestellt. Mit dem S-Wert wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium ist die Nährstoffverfügbarkeit mit dem Kennwert S-Wert. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der S-Wert landesweit einheitlich klassifiziert. Unter dem Titel "Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum (SWE), regionalspezifisch bewertet" gibt es noch eine naturraumbezogene Klassifikation des S-Wertes, die den S-Wert regional differenzierter darstellt.
Die Sickerwasserrate ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Wasserhaushaltes und beschreibt diejenige Wassermenge, die der Boden aufgrund seines beschränkten Wasserhaltevermögens nicht mehr halten kann und welche daher den Wurzelraum verlässt bzw. versickert (Grundwasserneubildung). Laterale Abflüsse (Drainage, Grabenentwässerung) werden an dieser Stelle nicht betrachtet. Sandige Böden können weniger Wasser halten als lehmige oder tonige Böden, so dass (unter sonst gleichen Bedingungen) die Sickerwasserrate unter sandigen Böden größer ist als unter lehmigen/tonigen Böden. In niederschlagsreichen Gebieten versickert mehr Wasser als in niederschlagsärmeren Gebieten. Mit der Sickerwasserrate wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium sind die allgemeinen Wasserhaushaltsverhältnisse mit dem Kennwert Sickerwasserrate. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird die Sickerwasserrate landesweit einheitlich klassifiziert. Unter dem Titel "Bodenbewertung - Feldkapazität im Sickerwasserrate (SWR), regionalspezifisch bewertet" gibt es noch eine naturraumbezogene Klassifikation der Sickerwasserrate, die die Sickerwasserrate regional differenzierter darstellt.
Der Bodenwasseraustausch ist ein Kennwert zur Bewertung des Bodens als Filter für nicht sorbierbare Stoffe und kennzeichnet das Verlagerungsrisiko für nicht oder kaum sorbierbare Stoffe wie Nitrat (Nitratauswaschungsgefährdung). Die Nährstoffe verbleiben fast vollständig in gelöster Form im Bodenwasser und werden bei Versickerung mit diesem verlagert (Bodenwasseraustausch). Das Verlagerungsrisiko ist hoch bei Böden mit geringem Wasserrückhaltevermögen, bei hohen Niederschlägen und bei geringer Evapotranspiration. Das Verlagerungsrisiko ist umso höher, je höher der Bodenwasseraustausch ist, weil das ausgetauschte Bodenwasser mit den darin gelösten Nitraten versickert. Mit dem Bodenwasseraustausch wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.c) als Abbau-, Ausgleichs- und Aufbaumedium für stoffliche Einwirkungen auf Grund der Filter-, Puffer- und Stoffumwandlungseigenschaften, insbesondere auch zum Schutz des Grundwassers. Das hierfür gewählte Kriterium ist das Rückhaltevermögen des Bodens für nicht sorbierbare Stoffe mit dem Kennwert Bodenwasseraustausch. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der Bodenwasseraustausch regionalspezifisch klassifiziert. Unter dem Titel "Bodenbewertung - Nitratauswaschungsgefährdung/Bodenwasseraustausch (NAG), landesweit bewertet" gibt es noch eine Klassifikation des Bodenwasseraustausches, die den Bodenwasseraustausch über die Naturraumgrenzen hinweg landesweit einheitlich darstellt.
Abfaelle aus polyolefinischen Materialien fallen einerseits in grossen Mengen in Form von Verpackungsmaterial oder Ein-Weg-Gebrauchsgegenstaenden beim Endverbraucher an. Andererseits werden auch bei der Herstellung von Polyolefinen, je nach Herstellungsverfahren und -bedingungen niedermolekulare und wachsartige Nebenprodukte erhalten, die nur zum geringen Teil Verwendung finden. Diese Abfaelle - sowohl die Nebenprodukte aus der Produktion als auch die Abfaelle aus dem Endverbrauch - werden zum groessten Teil verworfen und finden nur zum geringen Teil Anwendung, z.B. bei der Dampferzeugung in Kraftwerken oder Muellverbrennungsanlagen. Mit dem Forschungsprojekt soll daher geprueft werden, wie weit aus diesen Polyolefinabfaellen die Rohstoffe - Aethylen oder Propylen - oder andere Komponenten der chemischen Grundstoffproduktion - z.B. Acetylen - gewonnen werden koennen.Bei den entwickelten Verfahren wurden, im Gegensatz zu den mechanisch-thermischen Aufbereitungsverfahren, die Polyolefine einer partiellen Oxidation unterworfen. Bei dem Forschungsprojekt wurde zunaechst von ataktischem Polypropylen ausgegangen. Dies wurde aufgeschmolzen und in einem Injektionsbrenner zerstaeubt und anschliessend in einer Brennkammer mit Sauerstoff partiell oxidiert. Der Oxidationsvorgang wird dabei durch die Eigenschaften des Brennstoffnebels - Troepfchengroesse, Relativgeschwindigkeit Troepfchen/Gas- und durch die Menge des im Unterschuss eingesetzten Sauerstoffs beeinflusst. Hierdurch laesst sich die Produktverteilung bei der partiellen Oxidation, insbesondere die Konzentration an Olefinen und Acetylen, in relativ weiten Grenzen steuern.
Zielsetzung: Batterien spielen eine entscheidende Rolle in der Transformation der (Strom-)Wirtschaft zu einer CO2 neutralen Zukunft. Die Emissionsreduktion hängt primär vom vorliegenden Strom- bzw. Energiemix ab. Einerseits für den Energieaufwand während der Erzeugung, andererseits während ihres Betriebs. Überdies dürfen CO2 Emissionen für die Erzeugung, Raffinierung und den Transport von Grundmaterialien nicht vernachlässigt werden. Hier setzen die in diesem Projekt beschriebenen Innovationen an. Aktuelle State-of-the-Art LIB Batterien verwenden einerseits nicht weltweit geläufige Rohstoffe, wie Lithium, Kobalt, Nickel, Mangan und Graphit. Diese Rohstoffe werden primär in China raffiniert. Die so hergestellten Ausgangsmaterialien werden dann ihrerseits erneut über weite Strecken transportiert. Anodenseitig wird aktuell Graphit verwendet. Beispielsweise stammen sowohl natürlicher (74%) als auch synthetischer Graphit (51%) primär aus China, weswegen chinesische Exportrestriktionen auf diesen essentiellen Zellbestandteil ein zusätzliches Hemmnis für die europäische LIB Technologie darstellen. Zusätzlich bedürfen LIB Batterien deutlich mehr CO2 in der Herstellung aufgrund der Anforderung an die Trockenräume, was bei NIB zumindest mit zusätzlicher Forschung deutlich reduzierbar wäre. Im Gegensatz dazu beruhen die Materialien für hier entworfene NIB auf weltweit geläufigen Mengenrohstoffen, was sowohl Kosten, CO2 Emissionen, Umweltbelastungen, und eben auch Abhängigkeiten von außereuropäischen Ländern minimiert. Für eine Transformation hin zu einer nachhaltigen, erneuerbaren Wirtschaft sind billige Energiespeicher essenziell. Seit langem werden in den Roadmaps NIB als die beste Zukunftstechnologie bezeichnet, um möglichst kostengünstige Energiespeicher zu bauen. Daher wurde ein Konzept der vertikalen Integration entlang der Wertschöpfungskette erarbeitet, dass mit hoher Erfolgswahrscheinlichkeit, binnen von zwei Jahren zu einem NI-Batteriepack Prototyp führen soll. Der große Vorteil darin besteht in der raschen Weitergabe von Innovationssprüngen an den Prototypen und eventuellen Produkten. Die Zielsetzung ist eine Zelle mit einer Energiedichte von 180 Wh/kg zu entwickeln, welche dann in Endanwendungen wie Gabelstapler, Heimspeicher, und stationäre Speicher eingesetzt werden kann. Durch den angestrebten niedrigen Preis pro kWh für NIB’s sind alle Anwendungen mit einer niedrigen bis mittleren Energiedichte denkbar. Fazit: In diesem Projekt wurde eine Methode entwickelt, um Mangan-dotiertes preussisch Weiss deutlich langlebiger zu machen - mit Zyklenzahlen, die man auch von Lithium-Eisen-Phosphat Akkus kennt, die schon bisher als sehr langlebig gelten. Durch die Erhöhung Spannung können der wesentliche Nachteil der geringeren Energiekapazität von preussisch Weiss mitigiert werden. Das so entstandene Material kann nicht nur LFP, sondern auch NiCd und Blei-Säure Batterien ersetzen.
Die LEIPA Georg Leinfelder GmbH ist ein führender Papierhersteller im Europäischen Markt. Am Standort in Schwedt werden jährlich ca. 1,195 Millionen Tonnen Papier und Verpackungen aus 100 Prozent Altpapier produziert. Am Standort wird bisher eine konventionelle lineare Altpapiersortierung bestehend aus den Stufen Aufgabebunker, Grobsieb, Feinsieb, PaperSpike/NIR-Spektroskopie und Sortierkabine betrieben. Durch die Sortierung erhält man drei wesentliche Altpapierströme. Darunter die Deinkingware, welche für die Herstellung von hochwertigen weißen Papieren eingesetzt wird, die OCC-Ware (old corrugated containerboard), welche als braune Fasern für Kartonagen und Pappe verwendet wird und die Mischware, welche ebenfalls in die Herstellung von Kartonagen und Pappe fließt. Das übergeordnete Ziel der Sortierung ist es, möglichst hochwertige Deinkingware sowie OCC-Ware in einer hohen Sortenreinheit zu sortieren. Bisher landen jedoch große Mengen hochwertigerer Deinkingware im Mischpapier und in den Sortierresten und gehen damit für eine höherwertige Verwertung verloren. Vorversuche des Unternehmens haben erhebliche Potentiale von hochwertigen weißen Altpapieren im Mischpapier und auch in anderen bisher unwirtschaftlichen Altpapierströmen wie Papier, Karton und Pappe (PPK) aus der Erfassung von Leichtverpackungen, Altpapier aus dem Restabfall und Gewerbeabfall aufgezeigt, die mit den konventionellen Systemen noch nicht stofflich verwertet werden können. Im Rahmen dieses Vorhabens möchte die LEIPA Georg Leinfelder GmbH in eine innovative Anlage zur hocheffizienten und sortenreinen Sortierung von Altpapier investieren. Die neue Anlage mit einer jährlichen Kapazität von 120.000 Tonnen soll einerseits die Sortierausbeute, insbesondere der hochwertigen Deinkingware für grafische Papiere, deutlich steigern und andererseits auch alternative Altpapierquellen erschließen. Als Herz der Sortieranlage ermöglicht die NIR-Sortierung mit GAIN-Technologie zusätzlich zur Nahinfrarotspektroskopie eine Bilderkennung mit deep-learning-Funktion. Diese Bilderkennung stellt eine absolute Neuheit im Bereich der Papiersortierung dar. Sie ist in der Lage, durch eine moderne Sensorik Bilddaten (Form/Textur) zu sammeln und diese zu klassifizieren. So können beispielsweise komplexe Verpackungsreste wie Kartonagen mit weißer Außenschicht und grauen oder braunen Fasern im Inneren erkannt werden. In der Folge entstehen im Sortierprozess ein weitaus reineres Deinkinggut und zugleich eine höhere Ausbeute. Eine Innovation liegt auch in der geplanten Vernetzung der Anlage bzw. der Anlagenkomponenten untereinander. Mit der Software Insight von TOMRA werden sämtliche NIR/GAIN-Systeme untereinander vernetzt, die Software stellt eine leistungsfähige Industrie 4.0-Datenplattform zur Verbesserung der Sortier- und Klassifizierungseffizienz dar. Durch die innovative Sortiertechnik soll die Sortierquote für weiße Altpapiere (Deinkingware) aus Haushaltssammelware um ca. 10 Prozent gesteigert werden. Jährlich können mit der neuen Anlagen 8.640 Tonnen Deinkingware aus Haushaltssammelware und 6.435 Tonnen Deinkingware aus Leichtverpackungen für das stofflich hochwertige Recycling zurückgewonnen werden. Insgesamt können jährlich 15.075 Tonnen Deinkingware zurückgewonnen werden, die Frischfaser substituieren können. Durch die Digitalisierung und automatische Steuerung der Prozesse in der Altpapieraufbereitung und der Papierproduktion können im weiteren Verlauf weitere Energie und Chemikalieneinsparungen erreicht werden. Vor dem Hintergrund, dass die Menge an weißen Papierfasern im Altpapier stetig abnimmt und daher in der Zukunft Beschaffungsprobleme entstehen können, ist die Steigerung der Sortierquote für deinkbare Fasern von zentraler Bedeutung, um auch in Zukunft auf den Einsatz von Frischfasern verzichten zu können und die 100prozentige Altpapierquote in LEIPAs Papierproduktion zu erhalten. So gelingt langfristig auch die Vermeidung eines höheren Energie- und Ressourceneinsatzes in der Erzeugung von Frischfasern. Branche: Papier und Pappe Umweltbereich: Ressourcen Fördernehmer: LEIPA Georg Leinfelder GmbH Bundesland: Brandenburg Laufzeit: seit 2023 Status: Laufend
| Origin | Count |
|---|---|
| Bund | 1857 |
| Kommune | 111 |
| Land | 4222 |
| Wirtschaft | 4 |
| Wissenschaft | 90 |
| Zivilgesellschaft | 59 |
| Type | Count |
|---|---|
| Bildmaterial | 1 |
| Chemische Verbindung | 177 |
| Daten und Messstellen | 3283 |
| Ereignis | 4 |
| Förderprogramm | 1172 |
| Gesetzestext | 94 |
| Hochwertiger Datensatz | 16 |
| Text | 304 |
| Umweltprüfung | 478 |
| unbekannt | 592 |
| License | Count |
|---|---|
| geschlossen | 2767 |
| offen | 2341 |
| unbekannt | 920 |
| Language | Count |
|---|---|
| Deutsch | 5846 |
| Englisch | 938 |
| Resource type | Count |
|---|---|
| Archiv | 843 |
| Bild | 23 |
| Datei | 435 |
| Dokument | 590 |
| Keine | 3262 |
| Unbekannt | 9 |
| Webdienst | 204 |
| Webseite | 1964 |
| Topic | Count |
|---|---|
| Boden | 4627 |
| Lebewesen und Lebensräume | 5110 |
| Luft | 4338 |
| Mensch und Umwelt | 6014 |
| Wasser | 4012 |
| Weitere | 5857 |