<p>Die Kraft des Wassers zu nutzen hat eine lange Tradition und ist bis heute als erneuerbare Energiequelle von Bedeutung. Gleichzeitig hat die Energiegewinnung aus Flüssen vielfältige sozioökonomische und ökologische Wirkungen, die es zu beachten gilt.</p><p>Vom Wasser zum Strom</p><p>Das physikalische Grundprinzip der Wasserkraftnutzung ist, die Bewegungsenergie und die potenzielle Energie des Wassers in nutzbare Energie umzuwandeln. Der Energiegewinn aus Wasserkraft ist umso höher, je mehr Wasser aus möglichst großer Fallhöhe auf die Schaufeln einer Turbine oder eines Wasserrads trifft. Bergige Landschaften mit viel Wasser aus Niederschlägen sind daher besonders für die Wasserkraftnutzung geeignet.</p><p>Bei der Erzeugung von Wasserkraft wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Ein Laufwasserkraftwerk nutzt die augenblicklich verfügbare Wassermenge eines Flusses oder Bachs. Speicherkraftwerke halten das Wasser zurück. Es wird dann zu Zeiten höheren Strombedarfes durch die Turbinen geleitet.</p><p>Pumpspeicherkraftwerke sind eine Sonderform der Speicherkraftwerke. Hierbei wird Wasser in ein höher gelegenes Speicherbecken gepumpt, um es bei Strombedarf nutzen zu können.</p><p>Auswirkungen der Wasserkraftnutzung auf die Gewässerökologie</p><p>Die Wasserkraftnutzung greift erheblich in Natur und Landschaft ein. Aus der Berichterstattung zur EU-<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserrahmenrichtlinie#alphabar">Wasserrahmenrichtlinie</a> ist bekannt, dass in 37 Prozent aller berichteten <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserkrper#alphabar">Wasserkörper</a> – das sind über 51.000 Flusskilometer – die Wasserkraftnutzung Gewässer signifikant belastet. Dadurch werden die Gewässerschutzziele – der gute ökologische Zustand – nahezu vollständig verfehlt. Zu den gravierendsten Auswirkungen der Wasserkraft auf die Gewässer und Auen zählen:</p><p>Wasserkraftanlagen neu zu bauen oder zu betreiben, ist deshalb kritisch zu bewerten. Die Mehrzahl der existierenden Anlagen in Deutschland ist aus ökologischer Sicht dringend modernisierungsbedürftig. In den kommenden Jahren müssen Durchgängigkeit, Mindestwasserführung, hydrologische Situation und Fischschutz verbessert werden – auch um die gesetzlichen Ziele der Wasserrahmenrichtlinie zu erreichen.</p><p>Leitplanken für die Stromerzeugung aus Wasserkraft und Erneuerbare Energien Gesetz</p><p>Das Umweltbundesamt empfiehlt folgende Leitplanken für die Stromerzeugung aus Wasserkraft:</p><p>Mit dem „Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor“ wurde dem Ausbau der erneuerbaren Energien ein überragendes öffentliches Interesse eingeräumt. Im Rahmen der Abwägung verschiedener Interessen und Schutzgüter erhalten die erneuerbaren Energien damit ein besonders hohes Gewicht. Insgesamt verfolgt das EEG dennoch einen einheitlichen Ansatz, um <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>-, Umwelt- und Naturschutz miteinander zu verbinden. Wichtige Belange sollen nicht gegeneinander ausgespielt werden. Zur Frage wie weit das überragende Interesse reicht hat das Umweltbundesamt ein<a href="https://www.umweltbundesamt.de/dokument/die-besondere-bedeutung-der-erneuerbaren-energien">Factsheet</a>erstellt.</p><p>Wasserkraftnutzung in Deutschland</p><p>Die Wasserkraft ist mit einem Anteil von etwa 15 Prozent an der weltweiten Stromversorgung eine bedeutende erneuerbare Energiequelle. Im globalen Vergleich zählen China, Kanada, Brasilien, USA, Russland und Indien zu den größten Erzeugern von Strom aus Wasserkraft. In Europa sind Norwegen, Frankreich, Schweden, Türkei und Italien die größten Produzenten.</p><p>In Deutschland wird Wasserkraft vorwiegend in den abfluss- und gefällereichen Regionen der Mittelgebirge, der Voralpen und Alpen sowie an allen größeren Flüssen genutzt. Daher werden über 80 Prozent des Wasserkraftstroms in Bayern und Baden-Württemberg erzeugt. Etwa 86 Prozent des gesamten Leistungsvermögens der großen Wasserkraftanlagen liegt an neun großen Flüssen vor: Inn, Rhein, Donau, Isar, Lech, Mosel, Main, Neckar und Iller.</p><p>Wasserkraftanlagen in Deutschland</p><p>Gegenwärtig werden in Deutschland etwa 8.300 Wasserkraftanlagen betrieben. Vor allem kleine Anlagen mit einer installierten Leistung von höchstens einem Megawatt dominieren den Anlagenbestand mit 95 Prozent; ihr Anteil an der Stromerzeugung ist jedoch gering (s.u.). Den verbleibenden Anteil teilen sich große Wasserkraftanlagen mit einer installierten Leistung über einem Megawatt (436 Anlagen) und Pumpspeicherkraftwerke (31 Anlagen).</p><p>Die Nutzung der Wasserkraft erfolgt in Deutschland vor allem über Laufwasserkraftwerke. Speicherkraftwerke haben demgegenüber einen viel geringeren Anteil von etwa 2,5 Prozent.</p><p>Stromproduktion aus Wasserkraft in Deutschland</p><p>In das öffentliche Stromnetz speisen etwa 7.300 Wasserkraftanlagen ein. Sie decken über die Jahre je nach Wasserführung 2,9 bis 3,8 Prozent des jährlichen Bruttostromverbrauchs bei. Über 90 Prozent des Wasserkraftstromes stammt aus großen Wasserkraftanlagen.</p><p>Der Anteil der Wasserkraft an der Stromerzeugung aus erneuerbaren Energien ist über die Jahre gesunken und liegt gegenwärtig noch bei ca. 8 Prozent. Dieser Anteil wird in Zukunft weiter sinken, da die Potenziale der Wasserkraftnutzung in Deutschland weitgehend erschlossen sind, während andere erneuerbare Energieträger größere Potenziale aufweisen und weiter ausgebaut werden. Darüber hinaus kann sich die durch den <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> bedingte Zunahme von Trockenperioden negativ auf den Energieertrag von Wasserkraftanlagen auswirken.</p><p><a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Aktuelle Zahlen</a>zur Wasserkraftnutzung werden regelmäßig von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) veröffentlicht. Über die Umsetzung des Erneuerbare-Energien-Gesetzes (EEG) im Bereich Wasserkraft unterrichten die<a href="https://www.bmwk.de/Redaktion/DE/Downloads/S-T/schlussbericht-wasserkraft-231027.pdf?__blob=publicationFile&v=6%20l">EEG-Erfahrungsberichte</a>. Anlagendaten sind über das Marktstammdatenregister der Bundesnetzagentur recherchierbar.</p><p>Wasserkraftpotenzial in Deutschland</p><p>Das technisch-ökologische Potenzial der Wasserkraftnutzung in Deutschland wird auf etwa 25 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Strom pro Jahr beziffert. In den vergangenen zehn Jahren wurden bereits bis zu 23 TWh Strom pro Jahr aus Wasserkraft gewonnen. Damit ist das Wasserkraftpotenzial zu großen Teilen erschlossen. Zwischenzeitlich haben viele Bundesländer die Potenziale der Energiegewinnung aus Wasserkraft weiter konkretisiert. Dafür wurden fast 40.000 Standorte bestehender Querbauwerke und Wasserkraftanlagen sowie auch frei fließende Gewässerstrecken in Hinblick auf noch zu erschließende Wasserkraftpotenziale analysiert. Auf dieser Basis gehen die Länder derzeit von einem grundsätzlich noch erschließbaren Wasserkraftpotenzial von 1,3 bis 1,4 TWh aus. Etwa 70 Prozent dieses Potenzials entfallen auf die Modernisierung bestehender Wasserkraftanlagen.</p><p>Die Rolle der Wasserkraft bei der Energiewende</p><p>In den letzten Jahren wurden die Rahmenbedingungen einer vollständig auf erneuerbaren Energien basierenden Stromversorgung in Deutschland in verschiedenen Studien analysiert, so auch in der Studie "<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/szenarien-konzepte-fuer-die-klimaschutz/rescue-wege-in-eine-ressourcenschonende">RESCUE – Wege in eine ressourcenschonende Treibhausgasneutralität</a>" des Umweltbundesamtes. Sowohl die progressiven als auch die konservativen Szenarien unterscheiden sich hinsichtlich der künftigen Entwicklung der Wasserkraft nur geringfügig. Demnach wird die Wasserkraft keinen großen Beitrag zur deutschen Bruttostromerzeugung leisten. Alle Szenarien zeigen einheitlich, dass die Wasserkraft ihr technisch-ökologisches Potenzial im Großen und Ganzen bereits ausschöpft.</p><p>Wasserkraft und Klimawandel</p><p>Bei der Abschätzung der zukünftigen Stromerzeugung aus Wasserkraft ist der Klimawandel mit zu betrachten, denn die Höhe des Stromertrags hängt u.a. von der Wassermenge ab. Das Umweltbundesamt hat die möglichen Effekte des Klimawandels auf die Ertragssituation der Wasserkraft<a href="https://www.umweltbundesamt.de/publikationen/klimafolgen-fuer-wasserkraftnutzung-in-deutschland">untersuchen lassen</a>. Demnach kann bis zur Hälfte des 21. Jahrhunderts mit einer Mindererzeugung aus Wasserkraft um ein bis vier Prozent und für den Zeitraum danach um bis zu 15 Prozent gerechnet werden.</p><p>So zeigen Berechnungen an ausgewählten Wasserkraftanlagen an Hochrhein, Lech und Main Schwankungen in der Stromerzeugung von plus/minus neun Prozent in Abhängigkeit des Wasserdargebots. Um mögliche Mindererzeugungen der Wasserkraft zu kompensieren, empfiehlt es sich, die Anlagen zu optimieren und die Vorhersagemodelle für den Oberflächenabfluss weiter zu verbessern.</p><p>Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert.</p><p>Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert.</p><p>Wasserkraftanlage in der Sieg (Unkelmühle).</p><p>Demonstration der Nutzung von Wasserkraft.</p><p>Wasserkraftanlage in der Saale bei Öblitz.</p><p>Wasserkraftanlage in der Saale unterhalb von Jena.</p><p>Wasserkraftnutzung im Bayerischen Wald.</p><p>Ausleitungswehr für die Wasserkraftnutzung bei Tübingen.</p><p>Literatur</p><p>Anderer Pia, Dumont Ulrich, Linnenweber Christof, Schneider Bernd (2009): Das Wasserkraftpotenzial in Rheinland-Pfalz. In: KW Korrespondenz Wasserwirtschaft 2009 (2) Nr. 4. 223-227.</p><p>Anderer, Pia; Heimerl, Stephan; Raffalski, Niklas; Wolf-Schumann, Ulrich (2018): Potenzialstudie Wasserkraft in Nordrhein-Westfalen. WasserWirtschaft 5 – 2018. 33-39.</p><p><a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMU#alphabar">BMU</a> (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2010): Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland als Grundlage für die Entwicklung einer geeigneten Ausbaustrategie. Aachen. 2010.</p><p>Helbig, Ulf; Stiller, Felix (2020): Potentialstudie WKA Brandenburg. Institut für Wasserbau und technische Hydromechanik TU Dresden. Vortrag. (Unveröffentlicht).</p><p>International Hydropower Association (IHA) 2022: Hydropower Status Report. Sector trends and insights.</p><p>Kraus Ulrich, Kind Olaf, Spänhoff Bernd (2011): Wasserkraftnutzung in Sachsen – aktueller Stand und Perspektiven. 34. Dresdner Wasserbaukolloquium 2011: Wasserkraft – mehr Wirkungsgrad + mehr Ökologie = mehr Zukunft. Dresdner Wasserbauliche Mitteilungen. 11-18.</p><p>LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) [Hrsg.] (2017): Potenzialstudie Erneuerbare Energien NRW Teil 5 – Wasserkraft. LANUV-Fachbericht 40. Pia Anderer, Edith Massmann (Ingenieurbüro Floecksmühle GmbH), Dr. Stephan Heimerl, Dr. Beate Kohler (Fichtner Water & Transportation GmbH), Ulrich Wolf-Schumann, Birgit Schumann (Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH). Recklinghausen 2017.</p><p>LfU - Bayerisches Landesamt für Umwelt (2020). Energieatlas Bayern.<a href="https://www.energieatlas.bayern.de/thema_wasser/daten.html">https://www.energieatlas.bayern.de/thema_wasser/daten.html</a>. Zugriff am 04.05.2021.</p><p>MWAG - Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern [Hrsg.] (2011): Landesatlas Erneuerbare Energien Mecklenburg-Vorpommern 2011. Projektbearbeitung: Energie-Umwelt-Beratung e.V./Institut Rostock. Schwerin – Neubrandenburg.</p><p>Naumann, S. (2022): Aktueller Gewässerzustand und Wasserkraftnutzung. In Korrespondenz Wasserwirtschaft 2022 (15) Nr. 12. 743-748.</p><p>Radinger, J., van Treeck R., Wolter C. (2021). Evident but context-dependent mortality of fish passing hydroelectric turbines. conservation biology. Volume36, Issue3. DOI: 10.1111/cobi.13870.</p><p>Reiss, J.; Becker, A.; Heimerl S. (2017): Ergebnisse der Wasserkraftpotenzialermittlung in Baden-Württemberg. In: WasserWirtschaft 10/2017. 18-23.</p><p>Theobald, Stephan (2011): Analyse der hessischen Wasserkraftnutzung und Entwicklung eines Planungswerkzeuges „WKA-Aspekte“. Universität Kassel. Fachgebiet Wasserbau und Wasserwirtschaft. Erläuterungsbericht i.A. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Wiesbaden. August 2011.</p><p>TMWAT - Thüringer Ministerium für Wirtschaft, Arbeit und Technologie [Hrsg.] (2011): Neue Energie für Thüringen Ergebnisse der Potenzialanalyse. Thüringer Bestands- und Potenzialatlas für erneuerbare Energien. Studie im Auftrag des Thüringer Ministeriums für Wirtschaft, Arbeit und Technologie 2010–2011.</p><p><a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> - Umweltbundesamt [Hrsg.] (1998): Umweltverträglichkeit kleiner Wasserkraftwerke – Zielkonflikte zwischen <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>- und Gewässerschutz. Meyerhoff J., Petschow U.. Institut für ökologische Wirtschaftsforschung GmbH, Berlin, UFOPLAN 202 05 321, UBA-FB 97-093, In: UBA Texte 13/98, 1-150.</p><p>UBA -Umweltbundesamt [Hrsg.] (2001): Wasserkraftanlagen als erneuerbare Energiequelle –rechtliche und ökologische Aspekte. BUNGE T. et. al.. In: UBA Texte 01/01, 1-88.</p>
In der Kulisse werden AUKM zur Anwendung nachhaltiger Produktionsverfahren zur Verbesserung der natürlichen und wirtschaftlichen Produktionsbedingungen durch die extensive Bewirtschaftung von Ackerflächen an Gewässern, in Auen und in wassersensiblen Gebieten gefördert. Die extensiv bewirtschafteten Ackerflächen, die in unmittelbarer Nähe von Seen, Flüssen, Bächen, Gräben sowie in Auen- und Flussniederungsgebieten liegen, dienen insbesondere dem Schutz der Wasserqualität, der Verbesserung des Zustands der Oberflächengewässer und darüber hinaus dem Schutz der Böden vor Wassererosion. In der Kulisse werden AUKM zur Anwendung nachhaltiger Produktionsverfahren zur Verbesserung der natürlichen und wirtschaftlichen Produktionsbedingungen durch die extensive Bewirtschaftung von Ackerflächen an Gewässern, in Auen und in wassersensiblen Gebieten gefördert. Die extensiv bewirtschafteten Ackerflächen, die in unmittelbarer Nähe von Seen, Flüssen, Bächen, Gräben sowie in Auen- und Flussniederungsgebieten liegen, dienen insbesondere dem Schutz der Wasserqualität, der Verbesserung des Zustands der Oberflächengewässer und darüber hinaus dem Schutz der Böden vor Wassererosion.
La presence de polychlorobiphenyles (pcb) a ete etudiee dans les sediments et un ecosysteme lemanique: Le site des grangettes. La concentration en pcb dans les sediments cotiers de la rive suisse du leman peut etre consideree comme elevee, en particulier en face de l'agglomeration lausannoise et de montreux. Des echantillons de sediment ont presente jusqu'a 540 microg. Par kg de matiere seche de pcb. La bioaccumulation des pcb au long des etages trophiques representes par des especes du site des grangettes est particulierement nette. Les deux phenomenes d'accumulation trophique et par partition semblent devoire etre mis en cause, le premier etant plus net en ce qui concerne les especes predatrices (lottes, truites, grebes huppes). La modeliation des phenomenes d'eutrophisation est entreprise en comparant les resultats obtenus sur la truite entre la bioaccumulation des pcb et celle d'en metal lourd.Il sera teste la validite du modele de norstrom. Nature du projet: Recherche appliquee et fondamentale. (FRA)
<p>Die Hochwassergefahrenkarte Wuppertal ist eine im Auftrag der Stadt Wuppertal von der Firma cismet GmbH betriebene interaktive Internet-Kartenanwendung zur Information der Öffentlichkeit über Überflutungsrisiken im Zusammenhang mit Hochwasserereignissen. Sie stellt hierzu die Maximalwerte von Wassertiefen dar, die im Verlauf der drei vom Land NRW für die Wuppertaler Risikogewässer (Wupper, Schwelme, Mirker Bach, Morsbach, Hardenberger Bach, Deilbach) simulierten Hochwasser-Szenarien auftreten. Dazu wird ein Raster mit einer Kantenlänge von 1 m benutzt. Die Wassertiefen werden in der 2D-Kartendarstellung mit einem Farbverlauf visualisiert. In der 3D-Ansicht wird die Wasseroberfläche in den überfluteten Bereichen wie eine zweite digitale Geländeoberfläche in einem transparenten Blauton dargestellt. Sobald die Hochwassergefahrenkarte und die Starkregengefahrenkarte auf einem Endgerät in zwei Fenstern desselben Browsers gestartet werden, sind ihre 2D-Kartenausschnitte (Position und Maßstab) standardmäßig miteinander gekoppelt. Die Implementierung erfolgte ebenfalls durch die Firma cismet als Applikation innerhalb des Urbanen Digitalen Zwillings der Stadt Wuppertal (DigiTal Zwilling). Im Konzept des DigiTal Zwillings implementiert die Hochwassergefahrenkarte einen Teilzwilling, der dem Fachzwilling Klimawandel zuzuordnen ist. Die Hochwassersimulationen des Landes NRW erfolgen nach den Vorgaben der EU-Hochwasserrisikomanagement-Richtlinie (EU-HWRM-RL) in einem Turnus von sechs Jahren für die Risikogewässer des Landes. Derzeit sind die im Dezember 2019 vorgelegten Ergebnisse des zweiten Umsetzungszyklus der EU-HWRM-RL verfügbar. Für die Hintergrundkarten nutzt die Hochwassergefahrenkarte Internet-Kartendienste (OGC-WMS) des Regionalverbandes Ruhr zur Stadtkarte 2.0, des Bundesamtes für Kartographie und Geodäsie zur basemap.de sowie der Stadt Wuppertal (True Orthophoto, Amtliche Basiskarte ABK und Hillshade). Technisch basiert die Hochwassergefahrenkarte auf Open-Source-Komponenten, insbesondere den JavaScript-Bibliotheken React, Leaflet und CesiumJS. Die Hochwassergefahrenkarte Wuppertal ist frei zugänglich für beliebige interne Nutzungen. Die Integration in eine eigene online-Applikation oder Website des Anwenders ist generell vertrags- und kostenpflichtig.</p> <p> </p>
Methan (CH4) ist ein potentes Treibhausgas, das zur globalen Erwärmung beiträgt und eine wichtige Rolle in der Atmosphärenchemie spielt. Aquatische Systeme wurden kürzlich als bedeutende Quellen von CH4 identifiziert, die bis zu 50 % zu den globalen CH4-Emissionen ausmachen. Es besteht jedoch weiterhin erhebliche Unsicherheit über das Ausmaß dieser Emissionen, insbesondere über deren räumliche und zeitliche Treiber. Dies gilt besonders für CH4-Emissionen aus den aquatischen Systemen der Arktis, die bisher kaum untersucht wurden. Um das Verständnis des globalen CH4-Budgets zu verbessern, ist es daher entscheidend die Quellen von CH4 in aquatischen Systemen genau zu charakterisieren und zu klassifizieren. Aktuelle Methoden zur Klassifizierung von CH4-Quellen nutzen stabile Isotopenverhältnisse wie stabile Kohlenstoff- (delta13C) und Wasserstoff- (delta2H) Isotopenwerte von CH4 (13C vs. 2H Diagramme) sowie geochemische Bernard-Verhältnisse, welche die molaren Verhältnisse von CH4 zu Ethan und Propan gegen delta13C-CH4 Werte darstellt (Bernard-Diagramme). Beide Diagramme werden verwendet, da verschiedene CH4-Quellen durch spezifische Bereiche von delta13C- und delta2H-CH4-Werten sowie Bernard-Verhältnissen charakterisiert sind. Eine wesentliche Einschränkung ergibt sich aus der CH4-Oxidation (MOx) durch methanotrophe Bakterien, die in aquatischen Umgebungen weit verbreitet sind. Dieser Prozess verändert die CH4-Konzentrationen und stabilen Isotopenwerte sowie die Ethan- und Propankonzentrationen, wobei die Oxidation dieser Gase bezüglich der CH4-Quellenklassifizierung bisher unberücksichtigt bleibt. Dies kann zu einer erschwerten Klassifizierung von CH4-Quellen bis hin zu Fehlinterpretationen führen. Ein vielversprechender neuer Parameter, um die Klassifizierung von CH4-Quellen in dieser Hinsicht zu verbessern, ist der sogenannte Delta(2,13)-Parameter, der auf den delta13C- und delta2H-Werten von CH4 basiert, jedoch zusätzlich für die durch MOx verursachte Isotopenfraktionierung korrigiert. Derzeit beeinträchtigen jedoch die begrenzte Nutzung des Delta(2,13) Parameters sowie fehlendes Wissen über potenzielle Einflussfaktoren seine Zuverlässigkeit und erfordern eine systematische Untersuchung. Das Ziel von AMIOX ist es, das Verständnis des aquatischen CH4-Kreislaufs zu vertiefen, indem die Klassifizierung von CH4-Quellen und -Senken in gemäßigten und arktischen aquatischen Systemen verbessert wird. Dies soll durch die Einführung des neuen Delta(2,13)-Parameters in Kombination mit Bernard- und 13C vs. 2H-CH4 Diagrammen erreicht werden. Um diese Ziele zu erreichen, werde ich den Einfluss von MOx auf die Delta(2,13)-Werte und Bernard-Verhältnisse durch drei weit verbreitete methanotrophe Spezies in Laborstudien unter verschiedenen Umweltbedingungen untersuchen. Schließlich werde ich die erworbenen Erkenntnisse im Feld anwenden, um das Verständnis des CH4-Kreislaufs in Seen in gemäßigten Breiten in Deutschland und arktischen Seen in Grönland zu verbessern.
Fließgewässer gelten als Haupteintragspfad von Mikroplastik (MP) in marine Ökosysteme. Allerdings ist über das Transportverhalten und den Verbleib von MP in Flüssen und Bächen nur sehr wenig bekannt. Ebenso bestehen große Wissenslücken bezüglich der Migration von MP an der Schnittstelle zwischen Oberflächenströmung und der hyporheischen Zone (HZ, Grenzzone zwischen Fließgewässern und angrenzenden Grundwasserleitern), sowie der Mobilität von MP innerhalb der HZ. In B03 wollen wir das hydrodynamische Transportverhalten von MP in fluvialen Systemen einschließlich der HZ erforschen. Darüber hinaus soll auch der Einfluss biotischer Tranportmechanismen auf das Sedimentationsverhalten von MP erforscht werden. In der ersten Phase des SFB wollen wir diesen Themenbereich zunächst für einfache Modellsysteme untersuchen.
Für den vorbeugenden Hochwasserschutz sind Gebiete und Räume, die bei Hochwasser überschwemmt und die für Hochwasserrückhaltung beansprucht werden, als Überschwemmungsgebiete festgesetzt und gesetzlich geschützt. Die wesentlichen Verbote der Bebauung und der Bodenaufbringung in Überschwemmungsgebieten sollen die Gefahren bei Hochwasser verringern und die Funktion der Hochwasserrückhaltung nachhaltig gewährleisten. Eigentümer von Flächen in Überschwemmungsgebieten können sich gerne über weitere Verbote aber auch Genehmigungsmöglichkeiten von Vorhaben auf ihren Flächen erkundigen. Im Landkreis Oldenburg bestehen bisher 9 Überschwemmungsgebiete: Überschwemmungsgebiet des Bümmersteder Fleths Hochwasserrückhaltebecken der Delme Überschwemmungsgebiet der Delme von Holzkamp bis Harpstedt Überschwemmungsgebiet der Delme von Harpstedt bis zur Kreisgrenze Überschwemmungsgebiet des Dünsener Baches Überschwemmungsgebiet der Hunte unterhalb der Stadt Oldenburg Überschwemmungsgebiet der Hunte von Goldenstedt bis Höven Überschwemmungsgebiet des Klosterbachs Überschwemmungsgebiet der Lethe Überschwemmungsgebiet des Randgrabens mit Polder Weitere Überschwemmungsgebiete sind für die Berne mit Kimmer Bäke, die Heidkruger Bäke und die Welse vorgesehen.
Ziel des Projektes ist es, die Bedeutung wandernder Sandrippel für das mikrobielle Nahrungsnetz, den Kohlenstofffluss und den Metabolismus in Fließgewässerökosystemen aufzuklären. Die etablierten Konzepte zur Sedimentstörung in der Fließgewässerökologie fokussieren auf katastrophale Hochwasserereignisse, die tiefe Erosionen und drastische Verlagerungen der Sedimente bewirken. In Gewässern mit einem hohen Anteil sandiger Sedimente kommt es allerdings bereits bei geringen Abflüssen zu einer periodischen Umlagerung der Bettsedimente in Form wandernder Sandrippel. Diese Sandrippel bedecken, abhängig von der Sedimentfracht, zunehmende Bereiche der Gewässersohle, streckenweise sogar bis zu 100%. Aufgrund des weltweit zunehmenden Feinsedimenteintrags aus den Einzugsgebieten sind Sandrippel ein weit verbreitetes Phänomen in Bächen und Flüssen. Dennoch gibt es zum Einfluss der Sandrippel auf die Fließgewässerökologie nur sehr wenige Untersuchungen, deren Ergebnisse sich teilweise widersprechen. Wir postulieren, dass wandernde Sandrippel abhängig von ihrem Deckungsgrad auf der Sohle das mikrobielle Nahrungsnetz, den Kohlenstofffluss und den Metabolismus des gesamten Gewässers bestimmen. In originären experimentellen Ansätzen untersuchen wir i) die Auswirkungen der Sedimentumlagerung innerhalb wandernder Sandrippel, ii) die Interaktion der Rippelbereiche mit den umliegenden stabilen Sohlbereichen eines Gewässerabschnitts und den Gesamtmetabolismus im Abschnitt und iii) den Return (= Dynamik nach Beendigung der Sedimentumlagerung). Die Bewegung der Sande in wandernden Sandrippeln wird in einer Mikrokosmenanlage simuliert und der Einfluss von Umlagerungsfrequenz, Licht- und Nähstoffregime auf die Respiration, die Primärproduktion und das mikrobielle Nahrungsnetz untersucht. Die Auswirkungen zunehmender Bedeckung der Sohle mit wandernden Sandrippeln auf nahe stabile Sohlbereiche und den Gesamtmetabolismus von Gewässerabschnitten werden in 16 Rinnen einer Fließgewässersimulationsanlage erforscht. In diesen Experimenten werden zudem der Return von mikrobiellen Gemeinschaften und Gesamtmetabolismus mit erfasst. Die Experimente werden ergänzt und validiert durch in situ Messungen in Bächen und Flüssen. Dabei werden die abiotisch Bedingungen im Porenraum wandernder Sandrippel und naheliegender stabiler Sande sowie der lokale Metabolismus mit einer neu entwickelten Sonde gemessen und das mikrobielle Nahrungsnetz und der Kohlenstofftransfer in diesen Sohlbereichen erfasst. Die Synthese der Ergebnisse wird Klarheit schaffen über die Bedeutung wandernder Sandrippel für die mikrobiellen Gemeinschaften und den Stoffumsatz in Fließgewässern. Die zu erwartenden Erkenntnisse werden auch eine bessere Bewertung wandernder Sandrippel ermöglichen und sind somit Grundlage für Schutz und Management der Gewässerfunktionen.
Zielsetzung: Angaben ueber physiologische Wirkung wasserloeslicher Fraktionen von Rohoelen im Hinblick auf Synergismus mit 'natuerlichen' entwicklungserschwerenden Umweltbedingungen. 1. Laborexperimente zur Abgrenzung von sublet. und subterratogenen Konzentrationen und Dosen. Registrierung von embryonaler Sterblichkeit, Missbildung, Schluepferfolg und Vitalitaet der Larven. Vergleichsbeobachtungen ueber Schwimmverhalten, Nahrungsaufnahme und Wachstumsraten. 2. Chemische Analysen der Organismen: Backgroundkontamierung der Fischovarien. Messung der Ad- und Absorption am Chorion und im Gewebe. Messung der physiologischen Belastungen (Gesamtstoffwechsel), spezielle Untersuchungen ueber Einfluss adsorbierter Stoffe. Untersuchungen ueber ontogenetische Entwicklung der Faehigkeiten zur Metabolierung und Exkretion von Kohlenwasserstoffen. Messungen ueber Rohoel-Loesungskinetik und Alterung von Rohoel-Seewasser-Extrakten.
| Origin | Count |
|---|---|
| Bund | 9340 |
| Kommune | 54 |
| Land | 2802 |
| Wirtschaft | 11 |
| Wissenschaft | 44 |
| Zivilgesellschaft | 25 |
| Type | Count |
|---|---|
| Chemische Verbindung | 21 |
| Daten und Messstellen | 1073 |
| Ereignis | 29 |
| Förderprogramm | 1473 |
| Gesetzestext | 8 |
| Infrastruktur | 97 |
| Kartendienst | 8 |
| Lehrmaterial | 3 |
| Software | 1 |
| Taxon | 137 |
| Text | 951 |
| Umweltprüfung | 342 |
| WRRL-Maßnahme | 7282 |
| unbekannt | 738 |
| License | Count |
|---|---|
| geschlossen | 1697 |
| offen | 10067 |
| unbekannt | 104 |
| Language | Count |
|---|---|
| Deutsch | 11725 |
| Englisch | 7796 |
| Leichte Sprache | 1 |
| andere | 2 |
| Resource type | Count |
|---|---|
| Archiv | 655 |
| Bild | 112 |
| Datei | 444 |
| Dokument | 1141 |
| Keine | 8805 |
| Multimedia | 7 |
| Unbekannt | 18 |
| Webdienst | 201 |
| Webseite | 1782 |
| Topic | Count |
|---|---|
| Boden | 3516 |
| Lebewesen und Lebensräume | 5643 |
| Luft | 2947 |
| Mensch und Umwelt | 11752 |
| Wasser | 11108 |
| Weitere | 5809 |