Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.
This subproject aims to analyze the fragmentation of forest policy at both an international and national level for the selected countries, employing a discourse analysis approach. It is split into two sub-subprojects (SSPs). 'SSPa' conducts an analysis of discursive genealogies of forest policy in Germany, Sweden, and the US. 'SSPb' investigates the history of forest related discourses in three global environmental policy processes (UNFF, CBD, and UNFCCC). In doing so, both SSPs follow a three step procedure: In the first work package, relevant literature is reviewed and a theoretical and analytical framework is developed. In the second work package, empirical data (mostly formal and informal policy documents) are gathered and analyzed. In the third work package, emphasis is placed on the role of political 'elites' in the creation of fragmented forest policy discourses at different levels; in-depth interviews with policy stakeholders and experts add another perspective to the analysis in this work package. The project is expected to develop a new understanding not only of the fragmentation of multi-level and multi-sector forest policy discourses, but also of the way in which 'discourse elites' interact with and within these discourses. The results of the work packages will be published in peer reviewed journals and discussed with policy stakeholders and scientists in conferences and workshops.
Biogeochemical interfaces shape microbial community function in soil. On the other hand microbial communities influence the properties of biogeochemical interfaces. Despite the importance of this interplay, basic understanding of the role of biogeochemical interfaces for microbial performance is still missing. We postulate that biogeochemical interfaces in soil are important for the formation of functional consortia of microorganisms, which are able to shape their own microenvironment and therefore influence the properties of interfaces in soil. Furthermore biogeochemical interfaces act as genetic memory of soils, as they can store DNA from dead microbes and protect it from degradation. We propose that for the formation of functional biogeochemical interfaces microbial dispersal (e.g. along fungal networks) in response to quality and quantity of bioavailable carbon and/or water availability plays a major role, as the development of functional guilds of microbes requires energy and depends on the redox state of the habitat.To address these questions, hexadecane degradation will be studied in differently developed artificial and natural soils. To answer the question on the role of carbon quantity and quality, experiments will be performed with and without litter material at different water contents of the soil. Experiments will be performed with intact soil columns as well as soil samples where the developed interface structure has been artificially destroyed. Molecular analysis of hexadecane degrading microbial communties will be done in vitro as well as in situ. The corresponding toolbox has been successfully developed in the first phase of the priority program including methods for genome, transcriptome and proteome analysis.
Previous studies indicated that the development and biogeochemistry of paddy soils relates to the parent material, thus the original soil paddies derive from. The proposed research focuses on redox-mediated changes in mineral composition and mineral-associated organic matter (OM) during paddy transformation of different soils. We plan to subject soil samples to a series of redox cycles, in order to mimic paddy soil formation and development. Soils with strongly different properties and mineral composition as well as at different states of paddy transformation; ranging from unchanged soils to fully developed paddy soils, are to be included. We hypothesize that dissolved organic matter is one key driver in redox-mediated transformations, serving as an electron donator as well as interacting with dissolved metals and minerals. The extent of effects shall depend on the parent soil's original mineral assemblage and organic matter and their mutual interactions. The experimental paddy soil transformation will tracked by analyses of soil solutions, of the (re-)distribution of carbon (by addition of 13C-labelled rice straw), of indicative biomolecules (sugars, amino sugars, fatty acids, lignin) and of minerals (including the redox state of Fe). For analyses of organic matter as well as of mineral characteristics we plan to utilize EXAFS and XPS, for Fe-bearing minerals also Mößbauer spectroscopy. This approach of experimental pedology seems appropriate to give insight into the major factors during paddy soil formation and development.
Egypt passed a revolution and changed its political system, but many problems are still lacking a solution. Especially in the field of water the North African country has to face many challenges. Most urgent are strategies to manage the limited water resources. About 80% of the available water resources are consumed for agriculture and the rest are for domestic and industrial activities. The management of these resources is inefficient and a huge amount of fresh water is discarded. The shortage of water supply will definitely influence the economic and cultural development of Egypt. In 2010, Egypt was ranked number 8 out of 165 nations reviewed in the so-called Water Security Risk Index published by Maplecroft. The ranking of each country in the index depends mainly on four key factors, i.e. access to improved drinking water and sanitation, the availability of renewable water and the reliance on external supplies, the relationship between available water and supply demands, and the water dependency of each countrys economy. Based on this study, the situation of water in Egypt was identified as extremely risky. A number of programs and developed strategies aiming to efficiently manage the usage of water resources have been carried out in the last few years by the Egyptian Government. But all these activities, however, require the availability of trained and well-educated individuals in water technology fields. Unfortunately, the number of water science graduates are decreasing and also there are few teaching and training courses for water science offered in Egypt. However, there is still a demand for several well-structured and international programs to fill the gap and provide the Egyptian fresh graduates with the adequate and up-to-date theoretical and practical knowledge available for water technology. IWaTec is designed to fill parts of this gap.
In hydrology, the relationship between water storage and flow is still fundamental in characterizing and modeling hydrological systems. However, this simplification neglects important aspects of the variability of the hydrological system, such as stable or instable states, tipping points, connectivity, etc. and influences the predictability of hydrological systems, both for extreme events as well as long-term changes. We still lack appropriate data to develop theory linking internal pattern dynamics and integral responses and therefore to identify functionally similar hydrological areas and link this to structural features. We plan to investigate the similarities and differences of the dynamic patterns of state variables and the integral response in replicas of distinct landscape units. A strategic and systematic monitoring network is planned in this project, which contributes the essential dynamic datasets to the research group to characterize EFUs and DFUs and thus significantly improving the usual approach of subdividing the landscape into static entities such as the traditional HRUs. The planned monitoring network is unique and highly innovative in its linkage of surface and subsurface observations and its spatial and temporal resolution and the centerpiece of CAOS.
Soil organic matter (SOM) controls large part of the processes occurring at biogeochemical interfaces in soil and may contribute to sequestration of organic chemicals. Our central hypothesis is that sequestration of organic chemicals is driven by physicochemical SOM matrix aging. The underlying processes are the formation and disruption of intermolecular bridges of water molecules (WAMB) and of multivalent cations (CAB) between individual SOM segments or between SOM and minerals in close interaction with hydration and dehydration mechanisms. Understanding the role of these mediated interactions will shed new light on the processes controlling functioning and dynamics of biogeochemical interfaces (BGI). We will assess mobility of SOM structural elements and sorbed organic chemicals via advanced solid state NMR techniques and desorption kinetics and combine these with 1H-NMR-Relaxometry and advanced methods of thermal analysis including DSC, TGADSC- MS and AFM-nanothermal analysis. Via controlled heating/cooling cycles, moistening/drying cycles and targeted modification of SOM, reconstruction of our model hypotheses by computational chemistry (collaboration Gerzabek) and participation at two larger joint experiments within the SPP, we will establish the relation between SOM sequestration potential, SOM structural characteristics, hydration-dehydration mechanisms, biological activity and biogechemical functioning. This will link processes operative on the molecular scale to phenomena on higher scales.
We will compare the role of an RNA-binding protein in floral transition in Arabidopsis thaliana and Hordeum vulgare. The RNA-binding protein AtGRP7 promotes floral transition mainly by downregulating the floral repressor FLC via the autonomous pathway. Based on our observation that AtGRP7 affects the steady-state abundance of a suite of microRNA precursors, we will globally compare the small RNA component of the transcriptome during FTi regulation in wild type plants and AtGRP7 overexpressors by deep sequencing. This will extend the knowledge on small RNAs associated with floral transition and provide insights into the regulatory network downstream of this RNA-binding protein. Further, we will address the question how AtGRP7 orthologues function in crop species lacking FLC homologues. A barley line with highly elevated levels of the AtGRP7 orthologue HvGR-RBP1 shows accelerated FTi and preanthesis development when compared to a near-isogenic parent with very low expression of this gene. We will characterize in detail flowering of this line with respect to different photoperiods and its vernalization requirement. We will employ a TILLING approach to further delineate the function of HvGR-RBP1 in flowering. A candidate gene approach to identify downstream targets will provide insights into the signaling pathways through which HvGR-RBP1 influences FTi. This project contributes to the development of a functional cross-species network of FTi regulators, the major strategic aim of the SPP.
Magnetic properties of ferrimagnetic minerals depend on their crystal lattice, anisotropy, chemical composition and grain size. The latter parameter is strongly controlled by microstructures, which are significant for the interpretation of the magnetic properties of shocked magnetic minerals. Fracturing and lattice defects are the main causes for magnetic domain size reduction and generate an increase in coercivity and the suppression of magnetic transitions (e.g. 34 K transition in pyrrhotite, Verwey transition in magnetite).Especially for an adequate investigation of shock-induced modifications in ferromagnetic minerals, a combination of microstructural and magnetic measurements is therefore essential.This project focusses on two significant aspects of extreme conditions - the consequence of shock waves on natural material on Earth and on the magnetic mineralogy of exotic magnetic minerals in iron meteorites. In order to obtain general correlations between deformation structures and magnetic properties, the specific magnetic properties and carriers as well as microstructures of samples from two impact structures in marine targets (Lockne and Chesapeake Bay) will be compared with shocked magnetite ore and magnetite-bearing target lithologies from outside the crater (Lockne) as well as from undeformed megablocks within the crater (Chesapeake Bay). We will test the hypothesis if shock-related microstructures and associated magnetic properties can significantly be overprinted by postshock hydrothermal alteration. We especially want to focus on the Verwey transition (TV) as lower TVs are described for shocked impact lithologies. Hence, the main focus of this study lies on magneto-mineralogical investigations which combine low- and high-temperature magnetic susceptibility and saturation isothermal remanent magnetization with mineralogical and microstructural investigations. The same methods will then be used for the investigation of iron meteorites, whose magnetic properties are often controled by exotic magnetic minerals like cohenite, schreibersite and daubreelite in addition to the metal phases. Magnetic transition temperatures of those phases are poorly documented in relation to their chemical composition as well as to their crystallographic and microstructural configuration. For a general understanding of shock-related magnetization processes in extraterrestrial and terrestrial material, however, it is crucial to obtain a general correlation between the initial 'unshocked' state and the subsequent shock- and alteration-related overprints.
| Origin | Count |
|---|---|
| Bund | 207 |
| Type | Count |
|---|---|
| Förderprogramm | 207 |
| License | Count |
|---|---|
| offen | 207 |
| Language | Count |
|---|---|
| Deutsch | 14 |
| Englisch | 201 |
| Resource type | Count |
|---|---|
| Keine | 161 |
| Webseite | 46 |
| Topic | Count |
|---|---|
| Boden | 173 |
| Lebewesen und Lebensräume | 191 |
| Luft | 144 |
| Mensch und Umwelt | 207 |
| Wasser | 148 |
| Weitere | 207 |