The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.
With the introduction of mobile mapping technologies, geomonitoring has become increasingly efficient and automated. The integration of Simultaneous Localization and Mapping (SLAM) and robotics has effectively addressed the challenges posed by many mapping or monitoring technologies, such as GNSS and unmanned aerial vehicles, which fail to work in underground environments. However, the complexity of underground environments, the high cost of research in this area, and the limited availability of experimental sites have hindered the progress of relevant research in the field of SLAM-based underground geomonitoring. In response, we present SubSurfaceGeoRobo, a dataset specifically focused on underground environments with unique characteristics of subsurface settings, such as extremely narrow passages, high humidity, standing water, reflective surfaces, uneven illumination, dusty conditions, complex geometry, and texture less areas. This aims to provide researchers with a free platform to develop, test, and train their methods, ultimately promoting the advancement of SLAM, navigation, and SLAM-based geomonitoring in underground environments. SubSurfaceGeoRobo was collected in September 2024 in the Freiberg silver mine in Germany using an unmanned ground vehicle equipped with a multi-sensor system, including radars, 3D LiDAR, depth and RGB cameras, IMU, and 2D laser scanners. Data from all sensors are stored as bag files, allowing researchers to replay the collected data and export it into the desired format according to their needs. To ensure the accuracy and usability of the dataset, as well as the effective fusion of sensors, all sensors have been jointly calibrated. The calibration methods and results are included as part of this dataset. Finally, a 3D point cloud ground truth with an accuracy of less than 2 mm, captured using a RIEGL scanner, is provided as a reference standard.
Was versteht man unter Licht? Licht ist der sichtbare Teil des elektromagnetischen Spektrums. Die meisten Menschen können Wellenlängen zwischen circa 400 Nanometern ( nm ) und 780 nm mit dem Auge wahrnehmen. Die wichtigste natürliche Strahlenquelle für Licht ist die Sonne. Wenn bestimmte Wirkungsschwellen überschritten werden, kann auch Licht Schäden hervorrufen. Als Licht oder auch "sichtbares Licht" wird der sichtbare Teil des elektromagnetischen Spektrums bezeichnet, das heißt der Wellenlängenbereich, der beim Menschen Hell- und Farbempfindungen hervorruft. Er liegt zwischen der UV -Strahlung und der Infrarot-Strahlung. Licht und Auge Im Auge dringen die Wellenlängen des Lichts bis zur Netzhaut ( Retina ) vor. Die meisten Menschen können Wellenlängen zwischen circa 400 Nanometern ( nm ) und 780 nm mit dem Auge wahrnehmen. Die Grenzen des für Menschen sichtbaren Spektralbereichs sind jedoch nicht scharf zu ziehen, sondern die Übergänge sind fließend. Außerdem verändern sich die Sehfähigkeit und die Lichtempfindlichkeit aufgrund von Alterungsprozessen des Auges über die Lebenszeit hinweg. Insbesondere für den kurzwelligen Teil des sichtbaren Spektrums (Blaulicht) nimmt die Durchlässigkeit der Linse mit dem Alter ab. Die wichtigste natürliche Strahlenquelle für Licht ist die Sonne. Zusätzlich prägt eine Vielzahl künstlicher Lichtquellen unseren Alltag. Farbe und Wellenlänge* Farbe Wellenlänge ( nm ) Violett ≈ 380 - 420 Blau ≈ 420 - 490 Grün ≈ 490 - 575 Gelb ≈ 575 - 585 Orange ≈ 585 - 650 Rot ≈ 650 - 780 *Die Tabelle dient nur der Orientierung. Die Übergänge zwischen den Farben sind fließend. Bedeutung von Licht Licht ist nicht nur dafür verantwortlich, dass wir unsere Umwelt sehen können, es ist auch anderweitig biologisch wirksam und beeinflusst unter anderem den Schlaf-Wach-Rhythmus. Licht wird seit langem für medizinische und kosmetische Zwecke genutzt. Viele Laser und IPL -Geräte ("Blitzlampen") arbeiten mit unterschiedlichen Wellenlängen des Lichts. Licht mit relativ hohem Blaulichtanteil wird in Lichttherapiegeräten oder Tageslichtlampen genutzt, zum Beispiel, um eine sogenannte "Winterdepression" zu behandeln oder um im sonnenlichtarmen Alltag die "innere Uhr" zu stellen. Wenn die Intensität des Lichts bestimmte Wirkungsschwellen überschreitet, besteht das Risiko für Schäden, insbesondere an den Augen, unter Umständen auch an der Haut. Stand: 07.10.2025
Ziel diesen Antrags ist die Teilnahme der universitären Partner an den Messungen der Kampagne PGS (POLSTRACC/ GWLCYCLE/ SALSA), die im Winter 2015/2016 durchgeführt werden sollen. An der geplanten HALO Kampagne sind die Universitäten Frankfurt, Mainz, Heidelberg und Wuppertal beteiligt. Die Universität Mainz ist kein voller Partner dieses Antrages, da es kein Projekt der Universität Mainz (AG Prof. Peter Hoor) in der letzten Phase des Schwerpunktprogramms gab. Der finanzielle Teil der geplanten Aktivitäten der Universität Mainz soll daher über die Universität Frankfurt abgewickelt werden. Der wissenschaftliche Beitrag der Universität Mainz ist allerdings in einer ähnlichen Weise dargestellt wie für die anderen universitären Partner. Das Ziel von PGS ist es, Beobachtungen einer großen Zahl verschieden langlebiger Tracer zur Verfügung zu stellen, um chemische und dynamische Fragestellungen in der UTLS zu untersuchen (POLSTRACC und SALSA) und die Bildung und Propagation von Schwerwellen in der Atmosphäre zu untersuchen. (GWLCYCLE). Die Universitäten Frankfurt und Wuppertal schlagen vor hierfür GC Messungen von verschieden langlebigen Spurengasen und von CO2 (Wuppertal) durchzuführen. Die Universität Mainz schlägt den Betrieb eines Laser Spektrometers für schnelle Messungen von N2O, CH4 und CO vor und die Universität Heidelberg plant Messungen reaktiver Chlor und Bromverbindungen mit Hilfe der DOAS Technik. Die wissenschaftlichen Studien, die mit den gewonnen Daten durchgeführt werden sollen, werden im Antrag umrissen. Es sind Studien zu Herkunft und Transport von Luftmassen in der UTLS, zu Transportzeitskalen und zum chemischen Partitionierung. Es sei an dieser Stelle darauf hingewiesen, dass diese wissenschaftlichen Arbeiten zwar hier umrissen werden, die Studien selbst aber aufgrund der begrenzten Personalförderung und der kurzen Laufzeit nicht Teil dieses Antrags sind. Ziel dieses Antrags ist es, die Vorbereitung und Integration der Messgeräte zu ermöglichen, die Messungen durchzuführen und die Daten für die Datenbank auszuwerten. Wir beantragen daher hier den universitären Anteil an den Missionskosten (incl. Zertifizierung der Gesamtnutzlast und der Flugkosten), die Personalmittel, Reisekosten und Verbrauchskosten für die Durchführung der Messungen.
Nearly all processes in soils take place at biogeochemical interfaces. Until now, specific interfacial parameters which are able to link the chemical surface structure with physical interactions in the liquid phase (wettability, sorption) are still missing. Our hypothesis is that thermodynamically defined surface parameters like the contact angle and surface free energy components (dispersive and acid-base components) may be appropriate as effective parameters, complementary to soil properties like pH, texture or cation exchange capacity. To relate effective parameters to chemical structure, the contact angle relevant interphase will be analyzed by X-ray photoelectron spectroscopy. Knowledge of effective parameters should allow to detect relevant modifications of the interfaces or to explain interactions between surfaces and pore water (liquid penetration dynamics), solutes (pesticides) or dispersed particles (colloids). We will apply a thermodynamically-based concept to quantify the transition from hydrophilic to hydrophobic wetting systems. The significance of this transition i.e. on pore liquid distribution and geometry (film thickness and fragmentation), will be analyzed with confocal laser scanning microscopy. Modification of natural and model soils by chemical treatment and cation exchange will ensure a wide range of parameter variation.
Das Edelgasradioisotop 39Ar ist von großem Interesse für die Datierung in Ozeanographie, Glaziologie und Hydrogeologie, da es das einzige Isotop ist, das den wichtigen Altersbereich zwischen ca. 50 und 1000 Jahren abdeckt. Die fundamental neue Messmethode der Atom Trap Trace Analysis (ATTA), welche die 81Kr Datierung zum ersten Mal möglich gemacht hat, besitzt das Potenzial, die Anwendungen von 39Ar zu revolutionieren, indem sie die benötigte Probengröße um einen Faktor 100 bis 1000 reduziert. In einem Vorgängerprojekt haben wir zum ersten Mal gezeigt, dass die Messung von 39Ar an natürlichen Proben mit ATTA möglich ist, allerdings benötigten wir dazu immer noch Tonnen von Wasser. Vor kurzem haben wir anhand von Proben aus ersten Pilotprojekten mit Ozeanwasser und alpinem Eis gezeigt, dass die 39Ar-ATTA (ArTTA) Messung an Proben von ca. 25 L Wasser oder 10 mL Ar oder weniger möglich ist. Dieser Erfolg eröffnet komplett neue Perspektiven für die Anwendung der 39Ar-Datierung, die sehr wertvolle Information ergeben wird, die ansonsten nicht zugänglich wäre. Der Bedarf für solche Analysen, insbesondere im Gebiet der Spurenstoff-Ozeanographie, ist gut etabliert und dokumentiert durch Unterstützungsschreiben von unseren derzeitigen Partnern für ArTTA Anwendungen. Dieser Antrag wird es uns ermöglichen, die weltweit ersten ArTTA Geräte zu bauen, die auf Routinebetrieb mit kleinen Proben ausgelegt sind. Wir streben den Aufbau einer 39Ar-Datierungsplattform an, welche die Anforderungen für die Datierung in den Feldern der Grundwasserforschung, Ozeanographie und Gletscherforschung erfüllt. Um sinnvolle Anwendungen in der Tracerozeanographie zu ermöglichen, wird eine Kapazität von mindestens 200 Proben pro Jahr benötigt. Das neue Gerät für die Forschung wird damit lange angestrebte Anwendungen erlauben, die sonst nicht möglich wären. Basierend auf bisheriger Forschung haben wir einen klaren Plan für den Aufbau einer kompletten Plattform für den Betrieb von ArTTA: Eine neue Probenaufbereitungslinie basierend auf dem Gettern von reaktiven Gasen erlaubt die Abtrennung von bis zu 10 mL reinem Ar aus kleinen (kleiner als 25 L Wasser oder 10 kg Eis) Umweltproben in wenigen Stunden. Diese Proben werden zum ArTTA Gerät transferiert, welches aus zwei Modulen besteht: Das Optik-Modul erzeugt die benötigten Laserfrequenzen und Laserleistung, das Atom-Modul ist der Teil in dem die Atome mit atomoptischen Werkzeugen detektiert werden, die wir im Prototyp aus dem vorherigen Projekt realisiert haben. So weit als möglich wird die Anlage aus zuverlässigen, hochleistungsfähigen kommerziellen Teilen gebaut. Das System wird in einer hochkontrollierten Containerumgebung installiert, was einen modularen Aufbau gewährleistet, der in Zukunft an unterschiedlichen Orten aufgebaut werden kann.
Ziel des Vorhabens ist, neben der Aufnahme des systembestimmenden Wirkungsgefüges für die alpine Gebirgsstufe, vor allem ein möglichst wirklichkeitsnahes Landschaftsmodell aufzubauen, um prognostische Aussagen zu potentiellen Umweltveränderungen für die alpine Stufe der Alpen treffen zu können. Das geplante Vorhaben versucht daher, für den alpinen Raum möglichst präzise flächenrelevante Aussagen zu den Systemparametern Vegetation, Biomasse, Relief, Schneedecke, Bodenfeuchte und Bodenwärme zu treffen, um im landschaftsökologischen Sinne das signifikante Beziehungsgefüge dieser Größen herauszustellen. Im Vordergrund der Arbeiten steht vor allem der Einsatz eines neuen feldtauglichen Messprinzips zur Bestimmung des Bodenwassergehalts auf der Basis von Wärmekapazitätsmessungen. Infolge einer engen Bindung des Bodenfeuchteregimes an das Mikrorelief sowie an die hydrologisch bedeutsame Schneedecke, sollen auch diese beiden ökologisch wichtigen Kenngrößen mit Hilfe einer fortschrittlichen Erfassungsmethodik aufgenommen werden (lasergestützter Digitalkompaß, 3D-Software). Es ist insbesondere dieser neue methodische Ansatz, der das geplante Vorhaben klar von bereits durchgeführten landschaftsökologischen Arbeiten in vergleichbaren Räumen löst und daher vielversprechende ökologische Grundlagenergebnisse erwarten läßt. Die vergleichsweise exakten Punkt- und Flächenparameteraufnahmen können aber auch als Beschreibung des ökosystemaren Ist-Zustandes verstanden werden, so daß Aufnahmewiederholungen bereits stattgefundene Systemveränderungen dokumentierten können (Ökosystemmonitoring).
| Origin | Count |
|---|---|
| Bund | 1367 |
| Kommune | 2 |
| Land | 130 |
| Wissenschaft | 157 |
| Zivilgesellschaft | 9 |
| Type | Count |
|---|---|
| Daten und Messstellen | 120 |
| Ereignis | 4 |
| Förderprogramm | 1211 |
| Gesetzestext | 1 |
| Taxon | 7 |
| Text | 113 |
| Umweltprüfung | 1 |
| unbekannt | 181 |
| License | Count |
|---|---|
| geschlossen | 189 |
| offen | 1431 |
| unbekannt | 16 |
| Language | Count |
|---|---|
| Deutsch | 1284 |
| Englisch | 485 |
| Resource type | Count |
|---|---|
| Archiv | 41 |
| Bild | 10 |
| Datei | 114 |
| Dokument | 60 |
| Keine | 962 |
| Multimedia | 2 |
| Unbekannt | 7 |
| Webdienst | 23 |
| Webseite | 499 |
| Topic | Count |
|---|---|
| Boden | 995 |
| Lebewesen und Lebensräume | 979 |
| Luft | 867 |
| Mensch und Umwelt | 1617 |
| Wasser | 710 |
| Weitere | 1636 |