API src

Found 1646 results.

Similar terms

s/lager/Laser/gi

Turbomaschinen für die Transformation in das integrierte Energiesystem der Zukunft, Teilvorhaben: 4.5b und 4.6c

Grain size composition of LGM European loess samples

Grain size composition of loess samples from LGM European loess sequences. Loess samples of about 200 g were prepared to extract the grain size fractions studied. Grain size separations were performed on at least 10 g of dry sample. First, the entire sample was sieved with demineralized water on 63 microns and 20 microns sieves. The rejects were collected, dried and weighed. The clay fraction was obtained by decanting the fraction below 20 microns. The rest of the sample was mixed and left to settle for 1 hour. This procedure is repeated until a transparent supernatant is obtained. The two fractions thus obtained are dried and weighed. The size of the different fractions was then checked by laser granulometry.

Projekt zur Entwicklung einer laserbasierten Neutronenquelle für die zerstörungsfreie Prüfung von industriell relevanten Objekten (PLANET), Teilvorhaben: Systemintegration der Laserneutronenquelle und Demonstration der Anwendbarkeit

Strategien laserbasierter und mechanischer Regulierung nicht samenbürtiger Unkräuter, Teilprojekt F

Gebrauchsverhalten von Betonfahrbahnen mit Recyclingzuschlag

In enger Zusammenarbeit mit dem BMVBW und den Autobahnämtern der jeweiligen Bundesländer sollen alle wichtigen Daten bezüglich Herstellung und der dabei verwendeten Baustoffe von ein- und zweischichtigen Betonfahrbahndecken, bei denen RC-Betonzuschlag verwendet wurde, zusammengetragen und systematisch ausgewertet werden. Anschließend sollen die Betonfahrbahndecken augenscheinlich (Zustand der Oberflächen, Abwitterung bzw. Frost-Tausalz-Widerstand einschichtiger Decken, Dokumentation von Rissen, Fugenöffnungen und Unregelmäßigkeiten) in regelmäßigen Abständen untersucht werden. Um die in der Praxis auftretenden Verformungen (Aufwölben, Aufschüsseln) der Betonfahrbahndecken erfassen und mit Labormessungen vergleichen zu können, sollen orientierend Messungen mit einem am Baustoffinstitut entwickelten Lasermessgerät durchgeführt werden. In Laboruntersuchungen sollen darüber hinaus an Bohrkernen Materialkenndaten wie Feuchtigkeitsgehalt, Luftporengehalt und Verbundfestigkeit bestimmt werden.

Schwerpunktprogramm (SPP) 2451: Lebende Materialien mit adaptiven Funktionen, Teilprojekt Living Plasmonics: Verteilte Umweltsensorik mit photolumineszenten Sensor-ELM durch enzymatische Kopplung bakterieller Sensorik mit Nanoplasmonik

Bakterielle Sensoren mit genetisch programmierten Schaltkreisen erkennen Umweltschadstoffe wie Antibiotika mit hoher Selektivität und Sensitivität. Sie eignen sich für die effiziente Überwachung großer Flächen oder abgeschiedener Gebiete, weil die Bakterien keine elektrischen Energiequellen oder Wartung benötigen und ein einfacher Biofilm alle Elemente zur Detektion enthält. Diese hochattraktiven, nachwachsenden Sensoren werden heute oft deshalb nicht genutzt, weil die Auswertung bakterieller Sensor-Antworten aufwändige Infrastruktur erfordert, die im Feld nicht verfügbar ist. Andererseits wurden in den letzten Jahren hybride Sensor-Materialien für die Umweltanalytik auf Basis von Nanoplasmonik und Photolumineszenz (PL) entwickelt. Ihre optischen Eigenschaften hängen von der Konzentration bestimmter Analyten ab. Sie lassen sich effizient mit Laserdioden anregen und mit einfachen CCD-Kameras auswerten. Sensor-Materialien auf Basis anorganischer Materialien und Polymere sind robust und können z.B. von Drohnen ausgelesen werden. Sie reagieren aber weniger spezifisch und empfindlich als etablierte elektrochemische oder chromatographische Verfahren, was ihre Einsatzbereiche beschränkt. In diesem Projekt verbinden wir bakterielle Sensorik mit Plasmonenresonanz und Photonen-Hochkonversion in lebendigen Sensor-Materialien (ELM). Wir koppeln die Empfindlichkeit und Spezifizität der Bakterien mit der Robustheit und Intensität optisch aktiver Partikel. Zentrales Bindeglied ist das Enzym Goldreduktase GoIR, das vor kurzen erstmals in Bakterien beschrieben wurde. In dem Projekt stellen wir E. coli-Zellen her, die nur dann GoIR bilden, wenn die Bakterien Schadstoffe wie Tetrazykline oder Arsen detektieren. Ein Biofilm dieser Bakterien wird dann in einem Mehrschicht-ELM integriert. Wenn der Analyt den Biofilm erreicht, reduziert GoIR einen Gold-Komplex und bildet Nanopartikel mit starker Oberflächenplasmonenresonanz im Bakterium. Durch gezielt eingestellte Entmischung und Agglomeration der Partikel erreichen wir die Bildung resonanter plasmonischer Überstrukturen, welche die optische Dichte des bakteriellen Mikrofilms drastisch erhöhen. Damit wird die Emission eines photolumineszenten Films beim Auslesen moduliert und ein starkes PL-Signal erzeugt, das von der Konzentration des detektierten Analyten abhängt. Durch ratiometrische Auswertung der Emission bei zwei Wellenlängen können wir so die Gegenwart des Analyten schnell und aus Entfernung ermitteln. Der im Projekt verfolgte Ansatz ist modular, weil die für die Detektion verantwortlichen genetischen Schaltkreise unabhängig vom optischen System ausgetauscht werden können. Die Ergebnisse schaffen nicht nur einen Hybrid aus Bio- und plasmonischem Sensor. Sie lassen sich in anderen Projekten des SPP einsetzen, um den Zustand anderer ELM anzuzeigen.

Sonderforschungsbereich (SFB) 1537: Skalenübergreifende Quantifizierung von Ökosystemprozessen in ihrer räumlich-zeitlichen Dynamik mittels smarter autonomer Sensornetzwerke, Teilprojekt A04: Prozessbasierte Analyse von Ökosystem-Atmosphäre-Austauschs von CO2, H2O und flüchtigen organischen Verbindungen (VOC)

A4.1 Ökosystemreaktionen und Rückkopplungen im Ökosystem-Atmosphäre-Austausch von CO2, H2O und VOCs in einem heterogenen Waldökosystem Um die Lücke zwischen der relativ kleinen Skala eines einzelnen Baumes und einem Waldbestand zu schließen, analysiert A4.1 den Austausch zwischen Ökosystem und Atmosphäre durch Eddy-Kovarianz Messungen von H2O, CO2 und dessen Isoflux (13CO2). Somit lassen sich die Flüsse auf einer integrierten Skala in ihre Komponenten (Ökosystematmung und Bruttoprimärproduktion) auftrennen. Darüber hinaus messen wir die Aufnahme und Freisetzung von VOC durch unsere Wälder und bringen sie mit wichtigen Ökosystemfunktionen in Verbindung, die stark auf Umweltveränderungen reagieren. A4.2 Entwicklung eines auf einem Interbandkaskadenlaser basierenden Messsystems zur Untersuchung des Austauschs zwischen Ökosystem und Atmosphäre von VOCs. Hier entwickeln wir erstmals eine optische spektroskopische Sensortechnologie, um VOCs mit Hilfe der durchstimmbaren Laserabsorptionsspektroskopie (TLAS) zu messen. Dies soll entlang der Konzentrationsgradienten am Messturm und in Verbindung mit Einzelblattküvetten (A3.2) erfolgen.

Laser-Isotopen-Trennverfahren für Uran und Plutonium - Aktueller Stand und Perspektiven im zivilen und militärischen Bereich

Selektive Polysilizium Finger, Teilvorhaben: Strukturierte passivierte Kontakte für TOPCon und IBC Solarzellen

TOPCon Solarzellen (Tunnel Oxide Passivating Contact) wurden in den letzten Jahren von vielen Forschungsinstituten und Firmen entwickelt und werden nun zunehmend in industrieller Produktion hergestellt und kommerziell vertrieben. Dabei werden Zellspannungen von knapp über 700 mV erreicht und Wirkungsgrade von 23.0% bis 23.8% erzielt. Die Spannung solcher Zellen wird vor allem durch die Rekombination auf der Vorderseite limitiert, weshalb als nächster Schritt eine Verbesserung der Zellvorderseite notwendig ist. Um optische Verluste durch parasitäre Absorption zu vermeiden, sind dafür strukturierte passivierte Kontakte notwendig. Entwickelt werden soll eine Prozess-Sequenz zur kostengünstigen Herstellung solcher strukturieren passivierten Kontakte. Diese soll in den Standardprozess für TOPCon Solarzellen eingebunden werden und basiert auf lokaler Laserdotierung von poly-Silizium zur Herstellung von in alkalischer Lösung ätzstabilen p+ poly-Silizium-Bereichen. Auf diese Weise sollen auf der Vorderseite der Solarzelle lokale passivierte Kontakte implementiert werden, um den Wirkungsgrad der Solarzelle, vor allem durch eine erhöhte Zellspannung von 715-720 mV, deutlich zu steigern. Eine weitere Anwendungsmöglichkeit des Verfahrens zur Herstellung solcher lokalen Kontakte besteht bei IBC Solarzellen (interdigitated back contact). Hierbei ermöglicht die lokale Behandlung durch den Laser die Herstellung separater p+ dotierter poly-Silizium Bereiche. Im Teilprojekt des ISC werden vor allem die Schichtentwicklung, die Laserprozessentwicklung und die Entwicklung der Zellstrukturen bearbeitet. Das überragende Ziel des ISC ist es, kosteneffiziente Prozessfolgen für TOPCon und IBC Solarzellen mit strukturierten passivierten Kontakten zu entwickeln, die sich in die industrielle Fertigung überführen lassen.

Selektive Polysilizium Finger

TOPCon Solarzellen (Tunnel Oxide Passivating Contact) wurden in den letzten Jahren von vielen Forschungsinstituten und Firmen entwickelt und werden nun zunehmend in industrieller Produktion hergestellt und kommerziell vertrieben. Dabei werden Zellspannungen von knapp über 700 mV erreicht und Wirkungsgrade von 23.0% bis 23.8% erzielt. Die Spannung solcher Zellen wird vor allem durch die Rekombination auf der Vorderseite limitiert, weshalb als nächster Schritt eine Verbesserung der Zellvorderseite notwendig ist. Um optische Verluste durch parasitäre Absorption zu vermeiden, sind dafür strukturierte passivierte Kontakte notwendig. Entwickelt werden soll eine Prozess-Sequenz zur kostengünstigen Herstellung solcher strukturieren passivierten Kontakte. Diese soll in den Standardprozess für TOPCon Solarzellen eingebunden werden und basiert auf lokaler Laserdotierung von poly-Silizium zur Herstellung von in alkalischer Lösung ätzstabilen p+ poly-Silizium-Bereichen. Auf diese Weise sollen auf der Vorderseite der Solarzelle lokale passivierte Kontakte implementiert werden, um den Wirkungsgrad der Solarzelle, vor allem durch eine erhöhte Zellspannung von 715-720 mV, deutlich zu steigern. Eine weitere Anwendungsmöglichkeit des Verfahrens zur Herstellung solcher lokalen Kontakte besteht bei IBC Solarzellen (interdigitated back contact). Hierbei ermöglicht die lokale Behandlung durch den Laser die Herstellung separater p+ dotierter poly-Silizium Bereiche. Im Teilprojekt des ISC werden vor allem die Schichtentwicklung, die Laserprozessentwicklung und die Entwicklung der Zellstrukturen bearbeitet. Das überragende Ziel des ISC ist es, kosteneffiziente Prozessfolgen für TOPCon und IBC Solarzellen mit strukturierten passivierten Kontakten zu entwickeln, die sich in die industrielle Fertigung überführen lassen.

1 2 3 4 5163 164 165