Background: Ghanas transition forests, neighbouring savannahs and timber plantations in the Ashanti region face a constant degradation due to the increased occurrence of fires. In most cases the fires are deliberately set by rural people for hunting purposes. Main target is a cane rat, here called grasscutter (Thryonomys swinderianus), whose bushmeat is highly esteemed throughout the country. The animal is a wild herbivorous rodent of subhumid areas in Africa south of the Sahara. The grasscutter meat is an important source of animal protein. Existing high-value timber plantations (mainly Teak, Tectona grandis) are affected by fires for hunting purposes. Thus resulting in growth reduction, loss of biomass or even complete destruction of the forest stands. It became obvious that solutions had to be sought for the reduction of the fire risk. Objectives: Since 2004 the Institute for World Forestry of the Federal Research Centre for Forestry and Forest Products, Hamburg, Germany is cooperating with a Ghanaian timber plantation company (DuPaul Wood Treatment Ltd.) the German Foundation for Forest Conservation in Africa (Stiftung Walderhaltung in Afrika) and the Center for International Migration with the purpose to improve the livelihood of the rural population in the surroundings of the forest plantation sites and simultaneously to safeguard and improve the timber plantations. The introduction of grasscutter rearing systems to local farmers accompanied by permanent agricultural and agroforestry practices appeared to be a promising approach for the prevention of fires in the susceptible areas. Additionally a functioning grasscutter breeding system could contribute to the improvement of food security, development of income sources and the alleviation of poverty. The following measures are implemented: - Identification of farmers interested in grasscutter captive breeding, - Implementation of training courses for farmers on grasscutter rearing, - Delivery of breeding animals, - Supervision of rearing conditions by project staff, - Development of a local extension service for monitoring activities, - Evaluation of structures for grasscutter meat marketing. Results: After identification of key persons for animal rearing training courses were successfully passed and animals were delivered subsequently. Further investigations will evaluate the effects of the grasscutter rearing in the project region. This will be assessed through the - Acceptance of grasscutter rearing by farmers, - Success of the animal caging, - Reproduction rate, - Meat quality, - Marketing success of meat, - Reduction of fire in the vicinity of the timber plantations, - Improvement of peoples livelihood.
The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.
This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).
This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).
This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).
This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).
Grain size composition of loess samples from LGM European loess sequences. Loess samples of about 200 g were prepared to extract the grain size fractions studied. Grain size separations were performed on at least 10 g of dry sample. First, the entire sample was sieved with demineralized water on 63 microns and 20 microns sieves. The rejects were collected, dried and weighed. The clay fraction was obtained by decanting the fraction below 20 microns. The rest of the sample was mixed and left to settle for 1 hour. This procedure is repeated until a transparent supernatant is obtained. The two fractions thus obtained are dried and weighed. The size of the different fractions was then checked by laser granulometry.
The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.
The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony. zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.
The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.
| Origin | Count |
|---|---|
| Bund | 1338 |
| Kommune | 1 |
| Land | 129 |
| Wissenschaft | 162 |
| Zivilgesellschaft | 13 |
| Type | Count |
|---|---|
| Daten und Messstellen | 124 |
| Ereignis | 4 |
| Förderprogramm | 1183 |
| Gesetzestext | 1 |
| Taxon | 7 |
| Text | 120 |
| Umweltprüfung | 1 |
| unbekannt | 177 |
| License | Count |
|---|---|
| geschlossen | 188 |
| offen | 1412 |
| unbekannt | 15 |
| Language | Count |
|---|---|
| Deutsch | 1258 |
| Englisch | 495 |
| Resource type | Count |
|---|---|
| Archiv | 41 |
| Bild | 10 |
| Datei | 117 |
| Dokument | 59 |
| Keine | 933 |
| Multimedia | 2 |
| Unbekannt | 7 |
| Webdienst | 22 |
| Webseite | 505 |
| Topic | Count |
|---|---|
| Boden | 991 |
| Lebewesen und Lebensräume | 962 |
| Luft | 856 |
| Mensch und Umwelt | 1595 |
| Wasser | 706 |
| Weitere | 1615 |