API src

Found 3155 results.

Similar terms

s/lager/Lagern/gi

Related terms

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Untersuchungen von Änderungen der Klimavariabilität während der letzten 130 000 Jahre basierend auf einem Eisbohrkern von Skytrain Ice Rise, Westantarktis (CliVarSky130)

Die Westantarktis ist eine der Regionen der Erde, die am sensibelsten auf den aktuellen Klimawandel reagiert. Ein Zusammenbruch dieses Eisschildes in einem wärmeren Klima würde dramatische Folgen für den globalen Meeresspiegelanstieg haben. Dabei spielt nicht nur der Anstieg der globalen Mitteltemperatur eine Rolle, sondern in gleichem Maße auch Veränderungen der Klimavariabilität. Diese Veränderungen können das labile westantarktische System an Kipppunkte bringen, die wiederum zu unwiderruflichen eisdynamischen Prozessen führen. Um diese zum Teil abrupten Veränderungen in Zukunft besser einschätzen zu können, müssen diesbezügliche Modellprojektionen auf einer soliden Datenbasis stehen. Paläoklimatische Zeitreihen, in diesem Fall aus Eisbohrkernen, bieten solch eine Datengrundlage. Besonders interessant sind hierbei Zeitreihen, die zurückreichen in das letzte Glazial, oder idealerweise in die davorliegende letzte natürliche Warmzeit (ca. 110 000 - 130 000 Jahre vor heute). Solche langen Zeitreihen aus der Westantarktis sind allerdings bisher nur spärlich vorhanden. Im Rahmen des WACSWAIN Projekts (WArm Climate Stability of the West-Antarctic Ice sheet in the last iNterglacial) wurde kürzlich ein neuer Eiskern auf Skytrain Ice Rise gebohrt, der einen Zeitraum bis 126 000 Jahre vor heute abdeckt. Umfassende kontinuierliche Datensätze der stabilen Wasserisotope, der chemischen Spurenstoffe und der physikalischen Parameter wurden im Rahmen von WACSWAIN erhoben und stehen nun für weitere Analysen zur Verfügung. Außerdem wurden zum ersten Mal parallel zu den kontinuierlichen Messungen ausschnittweise Abschnitte des Kerns mit der ultra-hochauflösenden Methode der Laser Ablation (LA-ICP-MS) auf ihren Spurenstoffgehalt untersucht. Dies erlaubt die Analyse von Veränderungen in bisher nicht verfügbarer Detailliertheit. Das Ziel des hier vorgestellten Projektes ist es diese hochaufgelösten Signale zusammen mit den kontinuierlichen zu nutzen, um die Veränderungen der Klimavariabilität in dieser Region der Westantarktis in beispielloser Genauigkeit für den letzten glazialen Zyklus statistisch zu analysieren. Ein besonderer Fokus wird dabei auf Phasen mit abrupten Änderungen in den Temperatur- und Eisbedeckungsproxies, wie zum Beispiel einem signifikanten Anstieg der marinen Ionenkonzentration und der Wasserisotope im frühen Holozän, liegen. Die statistischen Analysen der vergangenen Klimavariabilität (Varianz, Amplitude, Skalierungsfaktoren) werden im Folgenden genutzt, um die aktuell zu beobachtenden Veränderungen in der Westantarktis besser verstehen zu können. Dies wird zusätzlich unterstützt durch das Testen der wissenschaftlichen Hypothesen über die Ursachen der Veränderungen mittels spezifischer, isotopengetriebener globaler Zirkulationsmodelle, sowie chemischer Transportmodelle atmosphärischer Spurenstoffe. Dieses Projekt wird somit einen wichtigen Beitrag zum Verständnis der westantarktischen Klimasystems in der Vergangenheit und Zukunft leisten.

Schutzmaßnahmen bei Laseranwendungen

Schutzmaßnahmen bei Laseranwendungen Optische Strahlung von Lasern und konventionellen Lichtquellen unterscheiden sich nicht grundsätzlich in ihren biologischen Wirkungen. Durch die starke Bündelung der Laserstrahlung können jedoch so hohe Intensitäten (Bestrahlungsstärken beziehungsweise Bestrahlungen) erreicht werden, dass damit spezielle Gewebereaktionen hervorgerufen werden können (siehe Biologische Wirkungen ). Bei der Anwendung von Laserstrahlung sind daher besondere Schutz- und Vorsichtsmaßnahmen erforderlich. Generell gilt für den sicheren Umgang mit Laserquellen Laserstrahl nicht auf andere Personen richten. Laserstrahl nicht auf reflektierende Oberflächen richten Nicht in den direkten oder reflektierten Strahl blicken. Wenn der Laserstrahl ins Auge trifft, Augen bewusst schließen und abwenden. Keine optischen Instrumente ( z.B. Lupe, Fernglas) zur Beobachtung der Laserquelle verwenden. Der Laserstrahl wird durch derartige Instrumente zusätzlich fokussiert. Gebrauchsanweisung beachten. Niemals die Laserquelle manipulieren. Lasergeräte werden vom Hersteller entsprechend ihrem Gefährdungspotenzial in verschiedene Klassen eingeteilt. Die Klassifizierung ist in der Regel so gewählt, dass mit zunehmender Klassenzahl die gesundheitliche Gefährdung steigt und umfangreichere Schutzmaßnahmen erforderlich sind. Maßgebend für die Klasseneinteilung ist die DIN-Norm EN 60825-1. Eine hilfreiche Handlungsanleitung für die Gefährdungsbeurteilung und Festlegung von Schutzmaßnahmen bieten die Technische Regel Laserstrahlung und die DGUV-Information 203-036 (BGI 5007) "Lasereinrichtungen für Show- und Projektionszwecke". Für die allgemeine Bevölkerung sind Schutzmaßnahmen vor allem bei der Anwendung von Lasern in Diskotheken und bei Veranstaltungen, sowie beim Gebrauch von Laserpointern von Bedeutung (siehe Anwendungen von Laserstrahlung in Alltag und Technik ). Für den privaten Gebrauch dürfen Laser und Laserprodukte nur in den Verkehr gebracht werden, wenn sie den Laserklassen 1, 2 oder einer eingeschränkten 3R entsprechen und als Verbraucher-Laser-Produkte gekennzeichnet sind. Laserklassen und ihre Gefährdung sowie typische Anwendungen Laserklasse Gefährdung beziehungsweise Schutzmöglichkeit Typische Anwendung 1 Bei bestimmungsgemäßem Gebrauch sicher. Ein direkter Blick in den Laserstrahl ist dennoch zu vermeiden. Laserpointer, Scanner-Kasse, CD- und DVD-Laufwerke Achtung: Wenn sich der Laser in einem geschlossenen Gehäuse befindet, kann im Gerät eine Laserstrahlungsquelle mit einer höheren Laserklasse verbaut sein. Daher gilt die Zuordnung zur Laserklasse 1 nur für das ungeöffnete Gerät als Gesamtheit. 1M Bei Einsatz von optisch sammelnden Instrumenten für das Auge gefährlich (sonst wie Klasse 1). Laserdrucker 1C* Vermeidung der Augengefährdung durch Kontaktschutz. Bei Verlust des Hautkontakts wird die zugängliche Strahlung gestoppt oder auf ein Niveau unterhalb von Klasse 1 reduziert. Ausschließlich für Anwendungen an der Haut im direkten Kontakt. Beispiel: Haarentfernungslaser Achtung: Verbaut sind in der Regel Laser der Klassen 3B und 4. 2 Der direkte Blick in den Strahl muss vermieden werden. Bei längerer Betrachtung (über 0,25 Sekunden hinaus) kann es zu Netzhautschäden kommen. Laserpointer, Ziel- und Richtlaser, zum Beispiel zur Landvermessung oder in Wasserwaagen 2M Bei Einsatz von optisch sammelnden Instrumenten für das Auge gefährlich (sonst wie Klasse 2). Lasertaschenlampen und Projektionslaser (zum Beispiel in Diskotheken) 3A Diese Laserklasse ist mit der Novellierung der DIN EN 60825-1 seit 2001 nicht mehr gültig. Es existieren jedoch immer noch Produkte, die mit dieser Laserklasse gekennzeichnet sind. Anmerkung: Lasereinrichtungen, die nur im sichtbaren Wellenlängenbereich emittieren, können wie Klasse 2M behandelt werden. Lasereinrichtungen, die nur im UV oder infraroten Bereich emittieren, können wie Klasse 1M behandelt werden. 3R Gefährlich für das Auge. Show- und Projektionslaser, Materialbearbeitungslaser, Laser in Medizin und Kosmetik 3B Gefährlich für das Auge und im oberen Leistungsbereich auch gefährlich für die Haut. 4 Immer gefährlich für das Auge und die Haut. Gilt auch für den reflektierten Strahl. Materialbearbeitungslaser, Show- und Projektionslaser, Laser in Medizin und Kosmetik, Laser in Wissenschaft und Forschung *Gerätespezifische Norm: IEC 60335-2-113; für Deutschland bisher Norm-Entwurf DIN EN 60335-2-113:2015-05; VDE 0700-113:2015-05 Für die Einhaltung der Schutzmaßnahmen ist die Person, die die Lasereinrichtung betreibt, verantwortlich. Sie hat unter anderem dafür Sorge zu tragen, dass die Lasergeräte korrekt klassifiziert und entsprechend gekennzeichnet sind. Beim Betrieb von Lasereinrichtungen der Klasse 3R und höher müssen für diese Lasereinrichtungen sachkundige Personen als Laserschutzbeauftragte nach Arbeitsschutzverordnung zu künstlicher optischer Strahlung ( OStrV ) bestellt werden. Weitere Informationen geben die Bundesanstalt für Arbeitsschutz und Arbeitsmedizin ( BAuA ) sowie Berufsgenossenschaften. Lasergeräte, die unter die Verordnung zum Schutz vor schädlichen Wirkungen nichtionisierender Strahlung bei der Anwendung am Menschen ( NiSV ) fallen, müssen gem. § 3 (3) NiSV bei der zuständigen Landesbehörde angezeigt werden. Berufsgenossenschaft informiert Betreiber*innen von Diskotheken und Ausrichter*innen von Außenveranstaltungen über den sachgemäßen Einsatz von Lasersystemen Um Licht-Shows interessanter zu gestalten, wurden in den letzten Jahren in Diskotheken und bei Außenveranstaltungen vermehrt Lasersysteme eingesetzt. Es gilt allerdings auch hier, dass die besonderen Lichteffekte bei unsachgemäßem Einsatz bei Beschäftigten und Besucher*innen bleibende Gesundheitsschäden hervorrufen können. Die DGUV-Information 203-036 (BGI 5007) "Laser-Einrichtungen für Show oder Projektionszwecke" soll dabei helfen, Anforderungen aus der Muster-Versammlungsstätten-Verordnung zu erfüllen. Weiterhin soll den Verantwortlichen eine Hilfestellung zur Gefährdungsbeurteilung nach dem Arbeitsschutzgesetz sowie der darauf erlassenen Verordnungen gegeben werden. Medizinische und kosmetische Anwendungen von Lasergeräten In der Medizin werden Lasergeräte mittlerweile für viele therapeutische und diagnostische Verfahren erfolgreich eingesetzt. Leichte Handhabe und günstiger Preis haben aber dazu geführt, dass leistungsfähige Laser (bis zur Klasse 4) auch für kosmetische Anwendungen genutzt werden, wie zum Beispiel zur Haarentfernung, zur Falten- und Pigmentbeseitigung oder zur Entfernung von Tätowierungen. Ohne das Wissen um die genaue Wirkung und geeignete Schutzvorkehrungen können Kund*innen so einem hohen gesundheitlichem Gefährdungspotenzial ausgesetzt werden. Strahlenschutzkommission fordert: Laseranwendungen an der menschlichen Haut nur durch ausgebildete Ärzt*innen Die Strahlenschutzkommission zeigt mit der Empfehlung "Gefahren bei Laseranwendung an der menschlichen Haut" die Gefahren für die Personen auf, die sich einer kosmetischen Behandlung von Hautveränderungen mit Lasern unterziehen wollen, und stellt Forderungen auf, um Abhilfe vor Gesundheitsgefahren zu schaffen. Die Hauptforderung besteht darin, gesetzliche Regelungen zu schaffen, die sicherstellen, dass Laseranwendungen an der menschlichen Haut ausschließlich durch speziell dafür ausgebildetes ärztliches Personal erfolgen. Mit Inkrafttreten der Verordnung zum Schutz vor schädlichen Wirkungen nichtionisierender Strahlung bei der Anwendung am Menschen ( NiSV ) wurden zum 31.12.2020 einige Anwendungen, wie z.B. die Tattooentfernung, unter Arztvorbehalt gestellt. Das bedeutet, dass die Entfernung von Tätowierungen mit Lasergeräten nur noch von approbierten Ärzt*innen mit entsprechender Fort- oder Weiterbildung durchgeführt werden darf. Seit dem 31.12.2022 müssen professionelle Anwender*innen auch bei Anwendungen wie der Epilation definierte Anforderungen an die Fachkunde erfüllen. Die Anforderungen an den Erwerb der Fachkunde wurden in einer Gemeinsamen Richtlinie des Bundes und der Länder, mit Ausnahme des Landes Sachsen-Anhalt, festgelegt. Stand: 03.12.2024

Gefahrstoffliste Bundeswehr. Analyse der chemischen Wirkung von Versorgungsartikeln

In einer netzwerkfaehigen, benutzerfreundlichen, menuegesteuerten Datenbank, die auf einem Personalcomputer (Betriebssystem MS-DOS) lauffaehig ist, werden Informationen zu Betriebsschutz (Arbeitssicherheit), Umweltschutz (einschl Abfallentsorgung) sowie Transport, Lagerung und Erste Hilfe gespeichert. Insbesondere werden Stoffeigenschaften, Sicherheitsmassnahmen fuer den Umgang und gesetzlich vorgeschriebene Kennzeichnungen angegeben. Diese Angaben beziehen sich zum einen auf reine Chemikalien und zum anderen auf Versorgungsartikel (Produkte, Zubereitungen) der Bundeswehr (zB Reinigungsmittel, Klebstoffe, Lacke etc ). Die Liste der Gefahrstoffe ermoeglicht es jeder Dienststelle, Betriebsanweisungen nach Paragraph 20 der Gefahrstoffverordnung (GefStoffV) zu erstellen. Die GefStoffLBw enthaelt derzeit Daten zu ca 900 reinen Stoffen und ca 2000 Versorgungsartikeln.

Laser Scanning im Dienste der Landschaftsforschung

Das Lasescanning als neues Fernerkundungsverfahren um Zeugen traditionneller Kulturlandschaften zu dokumentieren Die bereits im Rahmen des Projektes 'Wölbäcker von Rastatt' gewonnenen Erfahrungen zum Einsatz des Laser Scanning wurden auch 2007 und 2008 weiter ergänzt und vor allem in breiten Kreisen potentieller Anwender im In- und Ausland vorgestellt. Wölbäcker sind Zeugen früherer Formen des Ackerbaus, die sich als wellenartige Folge von Furchen und Scheiteln ausdrücken. Ein größeres Vorkommen solcher Reste einer mittelalterlichen Flur ist bei Rastatt unter Wald noch gut erhalten. Zur genauen Dokumentation wurde dabei erstmals das Laser Scanning eingesetzt. Mit diesem Verfahren, das auf einer flächenhaften Abtastung der Erdoberfläche von einem Flugzeug aus basiert, können Reliefunterschiede im Dezimeterbereich, selbst unter Wald aufgezeigt und vermessen werden. Die Daten stammen aus flächendeckenden Befliegungen des Landesvermessungsamtes Baden-Württemberg. Weitere Gebiete wurden auch auf das Vorkommen von Wölbäckern untersucht. So konnten dank Laser auch in der Rheinaue bzw. in Lagen wo sie nicht vermutet wurden, solche Altfluren ausfindig gemacht werden. Zu den wesentlichen Beiträgen in den beiden letzten Jahren zählt auch der erfolgreiche Abschluß des EU-Vorhabens Culture 2000 in dem wir Partner aus vielen europäischen Ländern an unseren Erfahrungen mit der Lasertechnologie teilhaben lassen konnten. Die Kooperation mit Frankreich insbesondere mit der Denkmalpflege Elsaß führte ferner zur Konkretisierung gezielter Laserprospektionen von 8 verschiedenen archäologischen Stätten in der Rheinebene und in den Vogesen, an deren Auswertungen wir ebenfalls beratend beteiligt sind.

Innovative Fügeprozesse und Additive Fertigung für den Laser im elektrifizierten Antriebsstrang, TP 4: in-line-Sensorik basierend auf OCT und LIBS für das Laser-Vakuumschweißen

Entwicklung von Prozesstechnologie für hocheffiziente langzeitstabile Perowskitsolarzellen nach dem PeroTecTM Verfahren, Teilvorhaben: Flexibler Hochleistungslaser mit GHz Burst Modus

Turbomaschinen für die Transformation in das integrierte Energiesystem der Zukunft, Teilvorhaben: 4.5a

Forscherguppe (FOR) 1536: INTERNANO: Mobility, aging and functioning of engineered inorganic nanoparticles at the aquatic-terrestrial interface, Aging of engineered inorganic nanoparticles in surface waters

When released into surface waters, engineered inorganic nanoparticles (EINP) can be subject to multiple transformations. The objectives of MASK are to understand under which conditions EINP in aquatic systems will attach to suspended matter, under which conditions and in which time scale EINP are coated by NOM present in freshwater systems, how these coated colloidal particles are stabilized in the aquatic system and to which extent the aquatic aging processes are reversible. Homo-aggregation, coating changes, biological interactions and hetero-aggregation are hypothesized as key processes governing EINP aging in water bodies. In process orientated laboratory incubation experiments (50 ml to 6 l) with increasing complexity, MASK unravels the relevance and the interplay of inorganic colloids, aquagenic and pedogenic organic matter and solution physicochemistry for stability of EINP. These systems will successively approach situations in real waters. MASK thus provides information on EINP fluxes in the aquatic compartment, their time scales, reversibility and relative relevance. EINP will be analysed by standard light scattering techniques, ICP-MS, ESEM/EDX, WetSTEM and AFM. A method coupling hydrodynamic radius chromatography (HDC) with ICPMS recently developed by K. Tiede for nAg0 will be optimized and developed for further EINP analysis, MASK is further responsible for the virtual subproject ANALYSIS, the development and optimization of joint research unit methods of EINP analysis, sample preparation and sample storage, the exchange of methods and coordinates the joint analyses and the central EINP database.

Ist-Analyse der VOC-Emissionen von Mineralölprodukten bei der Reinigung von Eisenbahnkesselwagen, Binnentankschiffen, Straßentankfahrzeugen, Pipelines, Lagertanks und Tankcontainern

Beim Umschlag, Transport und der Lagerung von Ottokraftstoffen und anderen Mineralölprodukten werden VOC-Emissionen in die Atmosphäre freigesetzt. Für den Transport kommen die Verkehrsträger See- und Binnentankschiffe, Rohrleitungen (Pipelines), Eisenbahnkesselwagen und Straßentankfahrzeuge zum Einsatz. Die Lagerung erfolgt in Lagertanks in Raffinerien und raffineriefernen Lagertanks sowie Tankcontainern. In diesem Vorhaben soll eine Ist-Analyse der VOC-Emissionen aus der Innenreinigung der Transportmittel und der Tanks erfolgen. Die Reinigung der VOC-beladenen Abluft ist wegen der hohen Konzentration ein besonderes Problem. Für einige Teilbereiche liegen bereits Daten vor, z. B. bei Eisenbahnkesselwagen aus dem Jahr 2004. Diverse Verbesserungen im Stand der Technik, aber auch der Bestimmung der Schadstoffkomponenten verlangen eine Aktualisierung in den Emissionsinventaren und eine Verifikation der Emissionsfaktoren für die Berichterstattung unter UNECE. Im Jahr 2004 wurde davon ausgegangen, dass etwa 1/3 der Transporte von Ottokraftstoffen per Bahn durchgeführt werden. Im Umkehrschluss bedeutet dies, dass etwa 2/3 der Transporte mit Straßentankfahrzeugen und Tankschiffen erfolgen. Diese Grundannahmen sind zu überprüfen. Im Bereich Binnentankschiffe wurden zwei Vorhaben zum Ventilieren/Entgasen durchgeführt. Es gibt keine Daten zur Reinigung. Auch zu den Straßentankfahrzeugen und Pipelines sind keine Daten vorhanden. Für die raffineriefernen Tanklager für Mineralölprodukte wird auf ein Vorhaben aus dem Jahr 2009 zurückgegriffen. Darin enthalten sind Daten der Emissionserklärungen gemäß 11. BImSchV von 2004. Es gibt keine separate Ausweisung von Reinigungsvorgängen.

Laser ablation inductively coupled mass spectrometry trace elements analyses of Li-rich micas of Pan-African pegmatites in Mozambique

This data report presents the in-situ LA-ICP-MS trace element geochemistry of the micas of the Pan-African rare-element pegmatites of the Alto Ligonha Pegmatite District in northern Mozambique. The pegmatites contain Li-rich micas and primary Li aluminosilicates, such as spodumene. Five Alto Ligonha pegmatites, Naípa, Muiâne, Napepesso West, Nanro, and Natxepo, were investigated to better understand the fractionation of pegmatite melts leading to Li enrichment, utilizing e.g. the trace element chemistry of mica from different parts of these pegmatites. Micas collected from the wall zone, intermediate zone and core zone of the studied pegmatites show high but also highly variable concentrations of the incompatible elements like Li, Rb, Cs, Be, and Ta. Very strong pegmatite-internal fractionation is recorded by the mica chemistry of the Naípa, Muiâne and Nanro pegmatites. In these pegmatites, Li2O in white micas measured with LA-ICP-MS increases from 0.1-1.4 wt.% in the wall zone, to 0.3-1.7 wt.% in the intermediate zone, 1.5-3.8 wt.% in the core zone and up to 5.4 wt.% in the pockets. The data record extreme Li enrichment during the final crystallization stage.

1 2 3 4 5314 315 316