API src

Found 1648 results.

Similar terms

s/lager/Laser/gi

Geochemical parameters in peat depth profiles from ombrotrophic bogs in North and Central Europe. Fochteloër Veen, the Netherlands

This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).

Geochemical parameters in peat depth profiles from ombrotrophic bogs in North and Central Europe. Pichlmaier Moor, Austria

This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).

Geochemical parameters in peat depth profiles from ombrotrophic bogs in North and Central Europe. Drebbersches Moor, Germany

This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).

Geochemical parameters in peat depth profiles from ombrotrophic bogs in North and Central Europe. Pürgschachen Moor, Austria

This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).

Labor-und Praxisuntersuchungen des Aufschüsselns und Aufwölbens ein- und zweischichtiger Betonfahrbahndecken mit Recyclingzuschlag

Das Aufschüsseln bzw. Aufwölben ein- und zweischichtiger Betonfahrbahndecken soll im Labor überwiegend an 3,0 m langen einseitig eingespannten Betonbalken (freie Kraglänge 2,5 m) untersucht werden. Die Laboruntersuchungen sollen durch Verformungsmessungen mit einem Lasermessgerät in-situ an ein- und zweischichtigen Betonfahrbahndecken überprüft werden. Insbesondere sollen auch jahres- und tageszeitlich sowie witterungsbedingte Schwankungen (Feuchte bzw. Temperatureinfluss) der Verformungen mit erfasst werden. Mit Originalausgangsstoffen der jeweiligen Versuchsstrecken werden Laborprobekörper hergestellt. Der Einfluss des Feuchtezustands von RC-Betonzuschlag beim Einbau (kernfeucht bzw. trocken) auf das Aufschüsseln (Aufwölben) wird an ein- und zweischichtigen Betonbalken untersucht. Die Betonbalken werden an der Unterseite befeuchtet (schlechte Entwässerung) bzw. abgedichtet (gute Entwässerung). An der Oberseite können sie bei unterschiedlichen Luftfeuchten austrocknen und werden zyklisch wiederbefeuchtet, um den Einfluss von Niederschlägen zu erfassen.

Bau und Erprobung eines verkleinerten Prototypen eines laserunterstützten optischen Abwassermengenmessgerätes auf Basis der Ergebnisse des Projektes AZ 05807/01-/03

Zielsetzung und Anlass des Vorhabens: Die Messung von Abwassermengen wird bei steigenden Kosten der Aufbereitung und höheren Anforderungen an Leitungssysteme immer wichtiger. In dem von der DBU geförderten Projekt 05807/01-03 'Entwicklung eines Verfahrens zur Messung der Abwassermenge in teilgefüllten Gerinnen und Freispiegelleitungen' konnten nicht alle Auflagen erfüllt werden. Bedingt durch eine Geschäftsumorientierung nahm die Jüke Systemtechnik GmbH als rechtliche Nachfolgerin der ursprünglichen Antragstellerin Fa. meta GmbH in Altenberge Abstand davon, das Projekt fortzusetzen. Nach Diskussionen mit Fachleuten der Abwassertechnik stellte sich jedoch heraus, dass durchaus ein Interesse besteht, ein Gerät, das nach dem berührungslosen Laser-Korrelationsverfahren arbeitet, zu entwickeln. Zwischenzeitlich durchgeführte Versuche und Überlegungen führten zu einem deutlich verbesserten, leichter anwendbaren Konzept. Fazit: Es konnte gezeigt werden, dass das Korrelationsverfahren zur Messung der Abwassermenge grundsätzlich geeignet ist. Dies gilt sowohl für die Messung im Zulauf als auch im Auslauf. Dabei sind folgende positiven Eigenschaften hervorzuheben: - berührungslose Messung - großer Dynamikbereich - hohe Genauigkeit der Messung der Strömungsgeschwindigkeit und des Durchflusses - variabler Messquerschnitt. Die zu Beginn des Projektes genannte Zielvorstellung ' .. ohne größere bauliche Eingriffe' messen zu können, muss allerdings relativiert werden. Zur Messung ist auch beim Korrelationsverfahren eine halbwegs gleichgerichtete, zur Messanordnung parallele Strömung, frei von großvolumigen Wirbeln, erforderlich. Um dies zu erreichen, sollte das Gerinne über eine Strecke von etwa fünf- bis zehnfacher Gerinnebreite gerade und ohne Querschnittsveränderung ausgeführt sein. In einer für den Dauerbetrieb geeigneten Ausführung sollte anstelle des Schwimmers eine automatische Höhennachführung verwendet werden. Dabei steht dann auch die aktuelle Füllhöhe als Messwert zur Verfügung, so dass auch die jeweils aktuelle Strömungsquerschnittsfläche recht genau bestimmt werden kann. Das tatsächliche Strömungsprofil über den Querschnitt wird mit Hilfe eines Modells, in das die Gerinneabmessungen und die Beschaffenheit der Begrenzungsflächen eingeht, berechnet.

Laborexperimente zum Wärme- und Gasaustausch an der Wasser-/Luftgrenzfläche angetrieben durch Oberflächenkühlung: innovative simultane Wärmebild- und optische Sauerstoffkonzentrationsmessungen

Für eine zuverlässige Modellierung des globalen Kohlenstoffkreislaufs (und somit des globalen Wärmehaushalts) sind detaillierte Kenntnisse über die Menge an Treibhausgasemission/-absorption durch die Wasseroberfläche erforderlich. Die meisten Modelle zur Vorhersage des Gastransferkoeffizienten an der Wasser-/Luftgrenzfläche beruhen nach wie vor hauptsächlich auf empirisch ermittelten Gleichungen, in denen nur die Windgeschwindigkeit als Parameter in Betracht gezogen wird, obwohl der Beitrag des temperaturbedingten Auftriebs zum Gesamttransfer signifikant ist, vor allem bei niedrig bis mittleren Windbedingungen. Um die Genauigkeit der Bestimmung des Gastransferkoeffizienten an der Grenzfläche zu verbessern, wird eine detaillierte Beschreibung des auftriebsgesteuerten Gasaustausches in tiefen Wasserkörpern benötigt. Da bei mäßig bis schwer löslichen Gasen (z.B. Kohlendioxid, Sauerstoff, Methan) der Stofftransfer in einer sehr dünnen Schicht an der Wasseroberfläche stattfindet, ist es eine besondere Herausforderung die Transportprozesse innerhalb dieser dünnen Schicht aufzulösen. Trotz fortgeschrittener Entwicklung der optischen Messtechnik, liegen keine Daten von simultanen Vermessungen der Temperatur- und Gaskonzentrationsfelder unter gut-kontrollierten Laborbedingungen vor. In diesem Projekt wird der Transferprozess von Wärme- und Gas, induziert durch Oberflächenkühlung bei gleichzeitigem Messen der dynamischen Verteilung von Temperatur- und Gaskonzentration (i) auf der Wasseroberfläche und (ii) in einem vertikalen Schnitt im Wasserkörper, untersucht. Hierzu wird ein komplettes lifetime-based laser induced fluorescence System, geeignet um die Sauerstoffdynamik auch innerhalb der dünnen Grenzschicht aufzulösen, entwickelt. Um die Dynamik der Wärmestrukturen an der Oberfläche zu erfassen, wird eine hochpräzise Infrarot Kamera eingesetzt. Für die Ermittlung der 2D Wärmestrukturen im Wasserkörper wird eine intensitätsbasiertes LIF-Thermometrie System angewendet. Neue erste synoptische Labordaten von Wärme- und Gaskonzentrationsfeldern unter konvektionsinduzierter Strömung im relativ tiefen Wasser können damit dargestellt werden. Die Korrelation zwischen thermal und gas Plumes wird bestimmt und deren geometrischen Merkmale sowohl an der Wasseroberfläche als auch im Wasserkörper ermittelt. Des Weiteren wird der Zusammenhang zwischen diesen Merkmalen und der Wärme- und Gasflüsse ermittelt. Eine Reihe von Messungen im Wasserkörper werden zur Bestimmung der Transfergeschwindigkeit (k) über eine große Bandbreite von Temperaturunterschieden zwischen Wasserkörper und Luft durchgeführt. Dies ermöglicht den Zusammenhang zwischen k und der Rayleighzahl des Wasserkörpers zu bestimmen und mit den k-Werten, die durch direkte Quantifizierung anhand der detaillierten simultanen Messungen ermittelt werden, zu vergleichen. Dazu, werden für ausgewählte Fälle PIV- Messungen durchgeführt, um Informationen zum overall Geschwindigkeitsfeld zur Verfügung zu stellen.

Entwicklung von Prozesstechnologie für hocheffiziente langzeitstabile Perowskitsolarzellen nach dem PeroTecTM Verfahren, Teilvorhaben: Technologie-Entwicklung einer UKP-Laserglasbearbeitung für Perowskit-Solarzellen

Beiträge für eine Normentwurfsvorlage im Hinblick auf die Erzeugung unerwünschter Röntgenstrahlung bei der Ultrakurzpulslaser-Materialbearbeitung, Beiträge für eine Normentwurfsvorlage im Hinblick auf die Erzeugung unerwünschter Röntgenstrahlung bei der Ultrakurzpulslaser-Materialbearbeitung

Mikroanalyse mit der laserinduzierten Plasmaspektroskopie (LIPS) und einem VUV-optimierten Echelle-Spektrographen

Ziel des Antrages ist der Einsatz der laserinduzierten Plasmaspektroskopie (LIPS) zur quantitativen orts- und tiefenaufgelösten Mikroanalyse mit einem neu zu entwickelnden VUV-Echelle-Spektrographen. LIPS erlaubt eine schnelle elementaranalytische Kartierung von Oberflächen ohne aufwendige Probenvorbereitung mit einer lateralen Auflösung von 3 bis 10 my m. Durch die Analyse der Spektren von einzelnen Pulsen kann eine Ortsauflösung mit einer entsprechenden Tiefenauflösung kombiniert werden. Die Verwendung eines Echelle-Spektrographen gestattet eine umfassende qualitative und quantitative multivariante Analyse von einzelnen Pulsen mit hoher spektraler Auflösung (l/dl größer als 10000) über einen Spektralbereich von 150 nm. Für den zu konzipierenden Echelle-Spektrographen wird ein Arbeitsbereich von 150 bis 300 nm angestrebt, so dass erstmals eine Multielement-VUV-Emissionsspektroskopie mit Laserplasmen für Nichtmetalle (S, P, N, O, C, As) oder metallische Elemente (Hg, Zn) möglich wird. Erste Anwendungen werden sich besonders auf geochemische und werkstoffwissenschaftliche Fragestellungen konzentrieren.

1 2 3 4 5163 164 165