API src

Found 222 results.

Tree Canopy Cover Loss Monthly - Landsat-8/Sentinel-2 - Germany, 2018-2021

The product shows tree canopy cover loss in Germany between January 2018 and April 2021 at monthly temporal and 10 m spatial resolution. The basic principle behind this map is to compute monthly composites of the disturbance index (DI, Healey et al. 2005), a spectral index sensitive to forest disturbance, from all available Sentinel-2 and Landsat-8 data with less than 80 % cloud cover. These monthly composites are then compared to a median composite of the DI for 2017, which serves as a reference. After applying a threshold to the difference image, the time series of detected losses is checked for consistency. Only losses recorded continuously in all observations of a pixel until the end of the time series are considered. The dataset does not differentiate between the drivers of the losses. It depicts areas of natural disturbances (windthrow, fire, droughts, insect infestation) as well as sanitation and salvage logging, and regular forest harvest. The full description of the method and results can be found in Thonfeld et al. (2022).

Tree Canopy Cover Loss Yearly per District - Germany, 2018-2021

The product contains information of tree canopy cover loss in Germany per district (Landkreis) between January 2018 and April 2021 at monthly temporal resolution. The information is aggregated at from the 10 m spatial resolution Sentinel-2 and Landsat-based raster product (Tree Canopy Cover Loss Monthly - Landsat-8/Sentinel-2 - Germany, 2018-2021). The method used to derive this product as well as the mapping results are described in detail in Thonfeld et al. (2022). The map depicts areas of natural disturbances (windthrow, fire, droughts, insect infestation) as well as sanitation and salvage logging, and regular forest harvest without explicitly differentiating these drivers. The vector files contain information about tree canopy cover loss area per forest type (deciduous, coniferous, both) and per year (2018, 2019, 2020, January-April 2021, and January 2018-April 2021) in absolute numbers and in percentages. In addition, the vector files contain the district area and the total forest area per district.

Satellite Color Images, Vegetation Indices, and Metabolism Indices from Bad Tölz, Germany from 1984 – 2023

The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.

Satellite Color Images, Vegetation Indices, and Metabolism Indices from Fall, Germany from 1984 – 2023

The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.

Satellite Color Images, Vegetation Indices, and Metabolism Indices from Köln, Germany from 1985 – 2023

The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.

Satellite Color Images, Vegetation Indices, and Metabolism Indices from Suhl, Germany from 1986 – 2023

The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.

Satellite Color Images, Vegetation Indices, and Metabolism Indices from Selb, Germany from 1985 – 2023

The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.

Satellite Color Images, Vegetation Indices, and Metabolism Indices from Gartz, Germany from 1984 – 2023

The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.

Satellite Color Images, Vegetation Indices, and Metabolism Indices from Kiel, Germany from 1984 – 2023

The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.

Satellite Color Images, Vegetation Indices, and Metabolism Indices from Hof, Germany from 1984 – 2023

The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.

1 2 3 4 521 22 23