The product shows tree canopy cover loss in Germany between January 2018 and April 2021 at monthly temporal and 10 m spatial resolution. The basic principle behind this map is to compute monthly composites of the disturbance index (DI, Healey et al. 2005), a spectral index sensitive to forest disturbance, from all available Sentinel-2 and Landsat-8 data with less than 80 % cloud cover. These monthly composites are then compared to a median composite of the DI for 2017, which serves as a reference. After applying a threshold to the difference image, the time series of detected losses is checked for consistency. Only losses recorded continuously in all observations of a pixel until the end of the time series are considered. The dataset does not differentiate between the drivers of the losses. It depicts areas of natural disturbances (windthrow, fire, droughts, insect infestation) as well as sanitation and salvage logging, and regular forest harvest. The full description of the method and results can be found in Thonfeld et al. (2022).
The product contains information of tree canopy cover loss in Germany per district (Landkreis) between January 2018 and April 2021 at monthly temporal resolution. The information is aggregated at from the 10 m spatial resolution Sentinel-2 and Landsat-based raster product (Tree Canopy Cover Loss Monthly - Landsat-8/Sentinel-2 - Germany, 2018-2021). The method used to derive this product as well as the mapping results are described in detail in Thonfeld et al. (2022). The map depicts areas of natural disturbances (windthrow, fire, droughts, insect infestation) as well as sanitation and salvage logging, and regular forest harvest without explicitly differentiating these drivers. The vector files contain information about tree canopy cover loss area per forest type (deciduous, coniferous, both) and per year (2018, 2019, 2020, January-April 2021, and January 2018-April 2021) in absolute numbers and in percentages. In addition, the vector files contain the district area and the total forest area per district.
The World Settlement Footprint (WSF) 2019 is a 10m resolution binary mask outlining the extent of human settlements globally derived by means of 2019 multitemporal Sentinel-1 (S1) and Sentinel-2 (S2) imagery. Based on the hypothesis that settlements generally show a more stable behavior with respect to most land-cover classes, temporal statistics are calculated for both S1- and S2-based indices. In particular, a comprehensive analysis has been performed by exploiting a number of reference building outlines to identify the most suitable set of temporal features (ultimately including 6 from S1 and 25 from S2). Training points for the settlement and non-settlement class are then generated by thresholding specific features, which varies depending on the 30 climate types of the well-established Köppen Geiger scheme. Next, binary classification based on Random Forest is applied and, finally, a dedicated post-processing is performed where ancillary datasets are employed to further reduce omission and commission errors. Here, the whole classification process has been entirely carried out within the Google Earth Engine platform. To assess the high accuracy and reliability of the WSF2019, two independent crowd-sourcing-based validation exercises have been carried out with the support of Google and Mapswipe, respectively, where overall 1M reference labels have been collected based photointerpretation of very high-resolution optical imagery. Starting backwards from the year 2015 - for which the WSF2015 is used as a reference - settlement and non-settlement training samples for the given target year t are iteratively extracted by applying morphological filtering to the settlement mask derived for the year t+1, as well as excluding potentially mislabeled samples by adaptively thresholding the temporal mean NDBI, MNDWI and NDVI. Finally, binary Random Forest classification in performed. To quantitatively assess the high accuracy and reliability of the dataset, an extensive campaign based on crowdsourcing photointerpretation of very high-resolution airborne and satellite historical imagery has been performed with the support of Google. In particular, for the years 1990, 1995, 2000, 2005, 2010 and 2015, ~200K reference cells of 30x30m size distributed over 100 sites around the world have been labelled, hence summing up to overall ~1.2M validation samples. It is worth noting that past Landsat-5/7 availability considerably varies across the world and over time. Independently from the implemented approach, this might then result in a lower quality of the final product where few/no scenes have been collected. Accordingly, to provide the users with a suitable and intuitive measure that accounts for the goodness of the Landsat imagery, we conceived the Input Data Consistency (IDC) score, which ranges from 6 to 1 with: 6) very good; 5) good; 4) fair; 3) moderate; 2) low; 1) very low. The IDC score is available on a yearly basis between 1985 and 2015 and supports a proper interpretation of the WSF evolution product. The WSF evolution and IDC score datasets are organized in 5138 GeoTIFF files (EPSG4326 projection) each one referring to a portion of 2x2 degree size (~222x222km) on the ground. WSF evolution values range between 1985 and 2015 corresponding to the estimated year of settlement detection, whereas 0 is no data. A comprehensive publication with all technical details and accuracy figures is currently being finalized. For the time being, please refer to Marconcini et al,. 2021.
The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.
The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.
The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.
The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.
The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.
The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.
The "Germany Mosaic" is a time series of Landsat satellite images and vectorized segments covering the entirety of Germany from 1984 to 2023. The image data are divided into TK100 sheet sections (see further details: Blattschnitt der Topographischen Karte 1:100 000). The dataset provides optimized 6-band imagery for each year, representing summer (May to July) and autumn (August to October) seasons, along with vegetation indices such as NDVI (Normalized Difference Vegetation Index) and NirV (Near-Infrared Reflectance of Vegetation) for the same periods. Additionally, vectorized "zones" of approximately homogeneous pixels are available for each year. The spectral properties of the image data and the morphological characteristics of these zones are included as vector attributes (see Documentation: "Mosaic (1984–2023) - Data Description"). An overview of the coverage and quality of all sheet sections is provided as a vector layer titled D-Mosaik_Sheet-Sections within this document. The Germany Mosaic can also be considered a spatial-temporal Data Cube, enabling advanced analysis and integration into workflows requiring multi-dimensional data. This structure allows users to perform operations such as querying data across specific time periods, analyzing trends over decades, or aggregating spatial information to generate tailored insights for a wide range of research applications. In mid-latitudes, seasonal variations in vegetation—and consequently in the image data—are typically more pronounced than changes occurring over several years. The temporal segmentation of the dataset has been designed to encompass the entire vegetation period (May to October), with the division into summer and autumn periods capturing seasonal metabolic shifts in natural biotopes. This segmentation also records most agricultural changes, including sowing and harvesting activities. Depending on weather conditions, the individual image data represent either the median, mean value, or the best available image for the specified time period (see Documentation: "Mosaic (1984–2023) - Data Description). Remote sensing has become an indispensable tool for environmental research, particularly in landscape analysis. Beyond conventional applications, the Germany Mosaic supports the development of digital twins in environmental system research. By providing detailed spatial and temporal data, this dataset enables the modeling of virtual ecosystems, facilitating simulations, scenario testing, and predictive analyses for sustainable management. Moreover, the spatial and temporal trends captured by remotely sensed parameters complement traditional approaches in biological, ecological, geographical, and epidemiological research.
Origin | Count |
---|---|
Bund | 10 |
Land | 7 |
Wissenschaft | 214 |
Type | Count |
---|---|
Förderprogramm | 3 |
Messwerte | 212 |
Strukturierter Datensatz | 213 |
unbekannt | 8 |
License | Count |
---|---|
offen | 224 |
Language | Count |
---|---|
Deutsch | 3 |
Englisch | 221 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 212 |
Keine | 2 |
Webdienst | 3 |
Webseite | 9 |
Topic | Count |
---|---|
Boden | 10 |
Lebewesen & Lebensräume | 223 |
Luft | 216 |
Mensch & Umwelt | 224 |
Wasser | 3 |
Weitere | 224 |