API src

Found 808 results.

Related terms

METOP GOME-2 - Tropospheric Nitrogen Dioxide (NO2) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational NO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The operational NO2 tropospheric column products are generated using the algorithm GDP (GOME Data Processor) version 4.x for NO2 [Valks et al. (2011)] integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total NO2 column is retrieved from GOME solar back-scattered measurements in the visible wavelength region using the DOAS method. An additional algorithm is applied to derive the tropospheric NO2 column: after subtracting the estimated stratospheric component from the total column, the tropospheric NO2 column is determined using an air mass factor based on monthly climatological NO2 profiles from the MOZART-2 model. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Formaldehyde (HCHO) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational HCHO total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

Bodendauerbeobachtung im Land Brandenburg

Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg. Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg.

Forstliche Versuchsflächen des Landes Brandenburg (WMS gesamt)

Das Landeskompetenzzentrum Forst Eberswalde verwaltet Daten von fast 1000 im ganzen Land Brandenburg verteilten Versuchen mit über 3000 häufig sehr langfristig bearbeiteter Einzelflächen (teilweise seit 1870), von denen mehr als 1000 Flächen noch unter aktueller Beobachtung stehen. Die Digitalisierung der Lageskizzen älterer Flächen erfolgte 2013-2014. Neue Flächen werden mit Hilfe von GPS geografisch verortet. Die Daten werden in einer Datenbank der langfristigen forstlichen Versuchsflächen des Landes Brandenburg verwaltet.

Auerhuhn-Monitoring in den Chiemgauer Alpen

In einer Langzeitstudie werden in einem Modellgebiet der Chiemgauer Alpen seit 1990 und dann alljährlich seit 1997 nach einem standardisierten Rasterverfahren auf 2000 ha indirekte Nachweise von Auerhühnern (Losung, Mauserfedern etc.) kartiert. Die Ergebnisse liefern einen Index der Größe und Entwicklung der Population und ihrer räumlichen Verteilung. Alle 5 Jahre wird zudem eine Habitatbewertung aufgrund eines Habitat Suitability Index-Modells durchgeführt. Dies ist das einzige Gebiet der Bayerischen Alpen, in welchem nach einem standardisieren Verfahren alljährlichen Daten zur Populationsentwicklung des Auerhuhns (Auerhuhn-Monitoring) erhoben werden. Es zeigt sich, dass der Bestand langfristig von der Forstwirtschaft beeinflusst wird, was kurzfristig von den Zufälligkeiten des Wetters überlagert wird. Die Arbeiten sollen langfristig fortgeführt werden.

METOP GOME-2 - Bromine Monoxide (BrO) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational BrO (Bromine monoxide) total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. For more details please refer to https://atmos.eoc.dlr.de/app/missions/gome2

METOP GOME-2 - Ozone (O3) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational ozone total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The new improved DOAS-style (Differential Optical Absorption Spectroscopy) algorithm called GDOAS, was selected as the basis for GDP version 4.0 in the framework of an ESA ITT. GDP 4.x performs a DOAS fit for ozone slant column and effective temperature followed by an iterative AMF / VCD computation using a single wavelength. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Cloud Top Pressure (CTP) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks) are used for retrieving the following geophysical cloud properties from GOME and GOME-2 data: cloud fraction (cloud cover), cloud-top pressure (cloud-top height), and cloud optical thickness (cloud-top albedo). OCRA is an optical sensor cloud detection algorithm that uses the PMD devices on GOME / GOME-2 to deliver cloud fractions for GOME / GOME-2 scenes. ROCINN takes the OCRA cloud fraction as input and uses a neural network training scheme to invert GOME / GOME-2 reflectivities in and around the O2-A band. VLIDORT [Spurr (2006)] templates of reflectances based on full polarization scattering of light are used to train the neural network. ROCINN retrieves cloud-top pressure and cloud-top albedo. The cloud-top pressure for GOME scenes is derived from the cloud-top height provided by ROCINN and an appropriate pressure profile. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Cloud Optical Thickness (COT) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks) are used for retrieving the following geophysical cloud properties from GOME and GOME-2 data: cloud fraction (cloud cover), cloud-top pressure (cloud-top height), and cloud optical thickness (cloud-top albedo). OCRA is an optical sensor cloud detection algorithm that uses the PMD devices on GOME / GOME-2 to deliver cloud fractions for GOME / GOME-2 scenes. ROCINN takes the OCRA cloud fraction as input and uses a neural network training scheme to invert GOME / GOME-2 reflectivities in and around the O2-A band. VLIDORT [Spurr (2006)] templates of reflectances based on full polarization scattering of light are used to train the neural network. ROCINN retrieves cloud-top pressure and cloud-top albedo. The cloud optical thickness is computed using libRadtran [Mayer and Kylling (2005)] radiative transfer simulations taking as input the cloud-top albedo retrieved with ROCINN. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Cloud Fraction (CF) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks) are used for retrieving the following geophysical cloud properties from GOME and GOME-2 data: cloud fraction (cloud cover), cloud-top pressure (cloud-top height), and cloud optical thickness (cloud-top albedo). OCRA is an optical sensor cloud detection algorithm that uses the PMD devices on GOME / GOME-2 to deliver cloud fractions for GOME / GOME-2 scenes. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

1 2 3 4 579 80 81