API src

Found 889 results.

Related terms

METOP GOME-2 - Formaldehyde (HCHO) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational HCHO total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

METOP GOME-2 - Cloud Fraction (CF) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks) are used for retrieving the following geophysical cloud properties from GOME and GOME-2 data: cloud fraction (cloud cover), cloud-top pressure (cloud-top height), and cloud optical thickness (cloud-top albedo). OCRA is an optical sensor cloud detection algorithm that uses the PMD devices on GOME / GOME-2 to deliver cloud fractions for GOME / GOME-2 scenes. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

Untersuchungen ueber die Eignung von Wildrasenmischungen zur Begruenung extremer Standorte

Zweck und Ziel: Extreme Standorte, die haeufig in Zusammenhang mit der Lagerung von Baggergut, dem Anschuetten von Daemmen usw entstehen, koennen oft nur durch eine Rasenansaat rasch wieder in die umgebende Landschaft eingegliedert und gleichzeitig vor Erosion geschuetzt werden. Ziel dieser Untersuchungen ist die Ermittlung geeigneter, vor allem trockenheitsvertragender Wildrasenmischungen zur pflegeextensiven Begruenung und dauerhaften Festlegung unterschiedlicher Bodensubstrate. Ausfuehrung: Durchfuehrung von Gelaendeversuchen mit langfristiger Beobachtung, Untersuchung und nachfolgender Auswertung. Ergebnisse: Der im Rahmen dieses Forschungsvorhabens 1983 durchgefuehrte Versuch auf einer Materialdeponie (Buntsandstein, Muschelkalk) am Neckar laesst aus Entwicklungszeitgruenden noch keine endgueltige Beurteilung zu. Es konnte bisher festgestellt werden, dass der hohe Kleeanteil im Saatgut fuer den Buntsandsteinbereich zunaechst eine Verdraengung anderer Arten bewirkte und das Ziel, einen Trockenrasen anzusiedeln, nicht erreicht wurde. In der Zwischenzeit verzeichnen jedoch auch andere Gras- und Kraeuterarten wieder hoehere Anteile im Bestand. Das hat insgesamt zu einer vollstaendigen Begruenung dieser Flaechen gefuehrt. Im Muschelkalk breitet sich der Trockenrasen weiterhin nur langsam aus, was aber vor allem auf den hohen Anteil an grobkoernigen Substrat zurueckzufuehren ist. Wo sich feinteiliges Material hinter groberem Substrat ansiedeln kann, setzt unmittelbar auch eine Vegetationsentwicklung ein. Hier sind es vor allem die Graeser und einige wenige Kraeuter, die unter den exponierten Bedingungen hoehere Anteile am Bestand einnehmen.Die Untersuch

Wachstumsmonitoring im borealen Wald: Das Stammdickenwachstum von Fichte, Kiefer, Aspe und Birke im Jahresverlauf - Wann beginnt es, wie ist der Verlauf, wann endet es?

In Kooperation mit Partnern aus Russland und Finnland haben wir in einem naturnahen Mischbestand in der mittleren Taiga in NW-Russland (forstliche Versuchsstation Lyaly, Republik Komi) eine ökologische Freilandmessstation installiert. Dort werden die Radialveränderungen der Baumschäfte von Fichten (Picea obovata), Kiefern (Pinus sylvestris), Aspen (Populus tremulus) und Birken (Betula spec.) mit Punkt-Dendrometern zeitlich hochaufgelöst registriert. An einem Teilkollektiv der Untersuchungsbäume wird zusätzlich die elektrische Leitfähigkeit der Baumstämme kontinuierlich gemessen. An der Messstation ist auch ein Magnetometer installiert, der Änderungen im Erdmagnetfeld aufzeichnet. Mit dieser speziellen Messeinrichtung ist es möglich, Auswirkungen von Schwankungen des Erdmagnetfeldes auf die Hydrologie und das Baumwachstum zu erkennen und zu analysieren. Das Wachstumsmonitoring liefert Informationen über die Bedeutung verschiedener Standorts- und Umweltfaktoren auf das kurz-, mittel- und langfristige Wuchsverhalten der Bäum im borealen Wald. Damit werden wichtige Grundlagen für die Abschätzung der Potenziale und Risiken vorhergesagter Umweltveränderungen geschaffen.

Faunistische Dauerbeobachtung fuer Zwecke des Naturschutzes

Erster Schritt (1988): Erstellung einer Konzeptstudie durch Prof M Muehlenberg, Universitaet Wuerzburg, Lehrstuhl fuer Tieroekologie. Zweiter Schritt (1989/90): Entwicklung eines Systems der Langzeitbeobachtung von Charakterpopulationen zur Beurteilung der Lebensraeume und Habitatqualitaeten am Beispiel a) des mittleren Saaletales, b) der Auen-Systeme der Mittleren Salzach, Habitat- und Strukturanalyse des Untersuchungsgebietes, Sammlung von Artnachweisen aufgrund vorhandener Kartierungen, Auswahl repraesentativer Biotop-Komplexe, Zonations-Biozoenosen, Umweltgradienten, Festlegung zu beobachtender Charakterpopulationen und Beobachtungsmethoden, Monitoring der Charakterpopulationen, Habitat-Nutzungsanalyse, Gefaehrdungsanalyse, Bewertung Untersuchungsansatz und Pruefung Uebertragbarkeit. 1991 Weiterfuehrung.

Vergleich der inter- und intra-annuellen Wachstumsdynamik und der Reaktion auf Trockenstress von Rotbuche (Fagus sylvatica L.) und Fichte (Picea abies (L.) Karst.) entlang eines Höhengradienten

Die Auswirkung der prognostizierten Klimaveränderungen auf Wachstum und Produktivität von Fichte und Buche werden aktuell noch immer kontrovers diskutiert. Die Analyse der inter- und intraannuellen Wachstumsdynamik unter verschiedenen ökologischen Bedingungen wird detaillierte Einblicke zu Resilienz- und Anpassungspotential des Dickenwachstums im Hinblick auf klimatische Extremereignisse und Umweltveränderungen bereitstellen. Diese Studie basiert auf der geplanten Auswertung von einzigartig langen Zeitreihen von Dendrometermessungen, welche in drei dendroökologischen Messstationen des Instituts für Waldwachstum, entlang eines Höhengradienten im südwestlichen Deutschland gesammelt wurden. In den drei Versuchsflächen wird durch automatische Präzisions-Dendrometer die Radialveränderungen der Schäfte von Buchen- und Fichtenuntersuchungsbäumen kontinuierlich seit 1990 (in 1250 m Höhenlage) und 1997 (in 450 m und 750 m Höhenlage) in hoher zeitlicher Auflösung (alle 15 Minuten) aufgezeichnet. Für den gleichen Zeitram werden in diesen Versuchsflächen auch meteorologische und pedologische Parameter erfasst. Ergänzende Umweltdaten stehen von der nahegelegenen Messstation des deutschen Umweltbundesamt es zur Verfügung, welche außerdem hochauflösende Zeitreihen der troposphärischen CO2 Konzentration beinhalten. Zur Erweiterung der retrospektiven Analyse werden Stammscheiben und Bohrkerne von Dendrometerbäumen und deren Nachbarbäumen entnommen. Der innovative Ansatz, lange Dendrometerzeitreihen mit Parametern wie Jahrringbreite, Zellstruktur, intra-annuellem Dichteprofil sowie mit Daten aus eingehenden Studien zur kambialen Aktivität und Jahrringbildung zu kombinieren, bietet eine einmalige Gelegenheit unser Verständnis und das Wissen über Interaktionen von verschiedenen Umweltfaktoren mit der kurz-, mittel- und langfristigen Wachstumsdynamik von den zwei wichtigen Baumarten der deutschen Forstwirtschaft zu vertiefen.

Continuous recordings of environmental parameters at station 1, Falshöft (2019-09 - 2024-03)

Additionally, at four shallow water stations (Booknis Eck, Buelk, Behrensdorf and Katharinenhof) temperature, salinity and dissolved oxygen are continuously logged at 2-3 m depth by self-contained data loggers. These are: (I) MiniDOT loggers (Precision Measurement Engineering; http://pme.com; ±10 µmol L-1 or ±5 % saturation) including copper antifouling option (copper plate and mesh) to measure dissolved oxygen concentration and (II) DST CT salinity & temperature loggers (Star-Oddi; http://star-oddi.com; ±1.5 mS cm-1) to record the conductivity. Both sensor types additionally record water temperature with an accuracy of ± 0.1 °C. The sampling interval was set to 30 minutes for all parameters. In context of the long-term monitoring project RegLocDiv (Regional-Local-Diversity) by M. Wahl (Franz, M. et al. 2019a), another seven stations were equipped with the same two types of sensors at 4-6 m depth to continuously record environmental parameters (again: temperature, salinity, dissolved oxygen) and included into this data set. These stations are at: Falshoeft, Booknis Eck, Schoenberg, Westermarkelsdorf, Staberhuk, Kellenhusen and Salzhaff (abandoned in 2023). Since 2021, in the context of implementing a reef monitoring to fulfil obligations by the EU Habitats Directive, step-by-step, eleven further stations were installed at reefs in the Schleswig-Holstein Baltic Sea. These are at: Platengrund (14 m depth) and Mittelgrund (8 m) (both since 2021), at Walkyriengrund (9 m), Brodtener Ufer (8 m), Außenschlei (11 m), Kalkgrund (8 m), Stollergrund (7.5 m) and Flueggesand (10 m) (all since 2022), as well as at Gabelsflach (10 m), Sagasbank (8.5 m) and Stabehuk (11.5 m) (all since 2023). Again, at all of these 11 stations, temperature, salinity and dissolved oxygen are continuously logged by self-contained data loggers: Conductivity (and temperature) is logged by HOBO® Salt Water Conductivity/Salinity Data Logger (Onset Computer Corporation, Bourne, MA, USA; https://www.onsetcomp.com) using the U2X protective housing to prevent fouling on the sensors. The same MiniDOT loggers (Precision Measurement Engineering) as at the above mentioned more shallow stations (including antifouling copper plate and mesh) are used to measure dissolved oxygen concentration. Dissolved oxygen concentration data measured by the MiniDOT loggers are corrected for a depth of 10 m (or 2,5 m on the shallow stations) using the software provided by the manufacturer. Additionally, a manual compensation for salinity was calculated (see details in Franz, M. et al. 2019b). Quality control was carried out by spike and gradient tests, following recommendations of SeaDataNet quality control procedures (see https://seadatanet.org/Standards/Data-Quality-Control). All data values were flagged according to applied quality checks using the following flags: 1 = Pass, 2 = Suspect, 3 = Fail, 4 = Visually suspect, 5 = Salinity compensation fail (further explanations can be found in Franz, M. et al. 2019b).

Continuous recordings of environmental parameters at station 2, Booknis Eck (2019-09 - 2024-03)

Additionally, at four shallow water stations (Booknis Eck, Buelk, Behrensdorf and Katharinenhof) temperature, salinity and dissolved oxygen are continuously logged at 2-3 m depth by self-contained data loggers. These are: (I) MiniDOT loggers (Precision Measurement Engineering; http://pme.com; ±10 µmol L-1 or ±5 % saturation) including copper antifouling option (copper plate and mesh) to measure dissolved oxygen concentration and (II) DST CT salinity & temperature loggers (Star-Oddi; http://star-oddi.com; ±1.5 mS cm-1) to record the conductivity. Both sensor types additionally record water temperature with an accuracy of ± 0.1 °C. The sampling interval was set to 30 minutes for all parameters. In context of the long-term monitoring project RegLocDiv (Regional-Local-Diversity) by M. Wahl (Franz, M. et al. 2019a), another seven stations were equipped with the same two types of sensors at 4-6 m depth to continuously record environmental parameters (again: temperature, salinity, dissolved oxygen) and included into this data set. These stations are at: Falshoeft, Booknis Eck, Schoenberg, Westermarkelsdorf, Staberhuk, Kellenhusen and Salzhaff (abandoned in 2023). Since 2021, in the context of implementing a reef monitoring to fulfil obligations by the EU Habitats Directive, step-by-step, eleven further stations were installed at reefs in the Schleswig-Holstein Baltic Sea. These are at: Platengrund (14 m depth) and Mittelgrund (8 m) (both since 2021), at Walkyriengrund (9 m), Brodtener Ufer (8 m), Außenschlei (11 m), Kalkgrund (8 m), Stollergrund (7.5 m) and Flueggesand (10 m) (all since 2022), as well as at Gabelsflach (10 m), Sagasbank (8.5 m) and Stabehuk (11.5 m) (all since 2023). Again, at all of these 11 stations, temperature, salinity and dissolved oxygen are continuously logged by self-contained data loggers: Conductivity (and temperature) is logged by HOBO® Salt Water Conductivity/Salinity Data Logger (Onset Computer Corporation, Bourne, MA, USA; https://www.onsetcomp.com) using the U2X protective housing to prevent fouling on the sensors. The same MiniDOT loggers (Precision Measurement Engineering) as at the above mentioned more shallow stations (including antifouling copper plate and mesh) are used to measure dissolved oxygen concentration. Dissolved oxygen concentration data measured by the MiniDOT loggers are corrected for a depth of 10 m (or 2,5 m on the shallow stations) using the software provided by the manufacturer. Additionally, a manual compensation for salinity was calculated (see details in Franz, M. et al. 2019b). Quality control was carried out by spike and gradient tests, following recommendations of SeaDataNet quality control procedures (see https://seadatanet.org/Standards/Data-Quality-Control). All data values were flagged according to applied quality checks using the following flags: 1 = Pass, 2 = Suspect, 3 = Fail, 4 = Visually suspect, 5 = Salinity compensation fail (further explanations can be found in Franz, M. et al. 2019b).

Continuous recordings of environmental parameters at station 3, Schönberg (2019-09 - 2024-03)

Additionally, at four shallow water stations (Booknis Eck, Buelk, Behrensdorf and Katharinenhof) temperature, salinity and dissolved oxygen are continuously logged at 2-3 m depth by self-contained data loggers. These are: (I) MiniDOT loggers (Precision Measurement Engineering; http://pme.com; ±10 µmol L-1 or ±5 % saturation) including copper antifouling option (copper plate and mesh) to measure dissolved oxygen concentration and (II) DST CT salinity & temperature loggers (Star-Oddi; http://star-oddi.com; ±1.5 mS cm-1) to record the conductivity. Both sensor types additionally record water temperature with an accuracy of ± 0.1 °C. The sampling interval was set to 30 minutes for all parameters. In context of the long-term monitoring project RegLocDiv (Regional-Local-Diversity) by M. Wahl (Franz, M. et al. 2019a), another seven stations were equipped with the same two types of sensors at 4-6 m depth to continuously record environmental parameters (again: temperature, salinity, dissolved oxygen) and included into this data set. These stations are at: Falshoeft, Booknis Eck, Schoenberg, Westermarkelsdorf, Staberhuk, Kellenhusen and Salzhaff (abandoned in 2023). Since 2021, in the context of implementing a reef monitoring to fulfil obligations by the EU Habitats Directive, step-by-step, eleven further stations were installed at reefs in the Schleswig-Holstein Baltic Sea. These are at: Platengrund (14 m depth) and Mittelgrund (8 m) (both since 2021), at Walkyriengrund (9 m), Brodtener Ufer (8 m), Außenschlei (11 m), Kalkgrund (8 m), Stollergrund (7.5 m) and Flueggesand (10 m) (all since 2022), as well as at Gabelsflach (10 m), Sagasbank (8.5 m) and Stabehuk (11.5 m) (all since 2023). Again, at all of these 11 stations, temperature, salinity and dissolved oxygen are continuously logged by self-contained data loggers: Conductivity (and temperature) is logged by HOBO® Salt Water Conductivity/Salinity Data Logger (Onset Computer Corporation, Bourne, MA, USA; https://www.onsetcomp.com) using the U2X protective housing to prevent fouling on the sensors. The same MiniDOT loggers (Precision Measurement Engineering) as at the above mentioned more shallow stations (including antifouling copper plate and mesh) are used to measure dissolved oxygen concentration. Dissolved oxygen concentration data measured by the MiniDOT loggers are corrected for a depth of 10 m (or 2,5 m on the shallow stations) using the software provided by the manufacturer. Additionally, a manual compensation for salinity was calculated (see details in Franz, M. et al. 2019b). Quality control was carried out by spike and gradient tests, following recommendations of SeaDataNet quality control procedures (see https://seadatanet.org/Standards/Data-Quality-Control). All data values were flagged according to applied quality checks using the following flags: 1 = Pass, 2 = Suspect, 3 = Fail, 4 = Visually suspect, 5 = Salinity compensation fail (further explanations can be found in Franz, M. et al. 2019b).

Continuous recordings of environmental parameters at station 4, Westermakelsdorf (2019-09 - 2024-03)

Additionally, at four shallow water stations (Booknis Eck, Buelk, Behrensdorf and Katharinenhof) temperature, salinity and dissolved oxygen are continuously logged at 2-3 m depth by self-contained data loggers. These are: (I) MiniDOT loggers (Precision Measurement Engineering; http://pme.com; ±10 µmol L-1 or ±5 % saturation) including copper antifouling option (copper plate and mesh) to measure dissolved oxygen concentration and (II) DST CT salinity & temperature loggers (Star-Oddi; http://star-oddi.com; ±1.5 mS cm-1) to record the conductivity. Both sensor types additionally record water temperature with an accuracy of ± 0.1 °C. The sampling interval was set to 30 minutes for all parameters. In context of the long-term monitoring project RegLocDiv (Regional-Local-Diversity) by M. Wahl (Franz, M. et al. 2019a), another seven stations were equipped with the same two types of sensors at 4-6 m depth to continuously record environmental parameters (again: temperature, salinity, dissolved oxygen) and included into this data set. These stations are at: Falshoeft, Booknis Eck, Schoenberg, Westermarkelsdorf, Staberhuk, Kellenhusen and Salzhaff (abandoned in 2023). Since 2021, in the context of implementing a reef monitoring to fulfil obligations by the EU Habitats Directive, step-by-step, eleven further stations were installed at reefs in the Schleswig-Holstein Baltic Sea. These are at: Platengrund (14 m depth) and Mittelgrund (8 m) (both since 2021), at Walkyriengrund (9 m), Brodtener Ufer (8 m), Außenschlei (11 m), Kalkgrund (8 m), Stollergrund (7.5 m) and Flueggesand (10 m) (all since 2022), as well as at Gabelsflach (10 m), Sagasbank (8.5 m) and Stabehuk (11.5 m) (all since 2023). Again, at all of these 11 stations, temperature, salinity and dissolved oxygen are continuously logged by self-contained data loggers: Conductivity (and temperature) is logged by HOBO® Salt Water Conductivity/Salinity Data Logger (Onset Computer Corporation, Bourne, MA, USA; https://www.onsetcomp.com) using the U2X protective housing to prevent fouling on the sensors. The same MiniDOT loggers (Precision Measurement Engineering) as at the above mentioned more shallow stations (including antifouling copper plate and mesh) are used to measure dissolved oxygen concentration. Dissolved oxygen concentration data measured by the MiniDOT loggers are corrected for a depth of 10 m (or 2,5 m on the shallow stations) using the software provided by the manufacturer. Additionally, a manual compensation for salinity was calculated (see details in Franz, M. et al. 2019b). Quality control was carried out by spike and gradient tests, following recommendations of SeaDataNet quality control procedures (see https://seadatanet.org/Standards/Data-Quality-Control). All data values were flagged according to applied quality checks using the following flags: 1 = Pass, 2 = Suspect, 3 = Fail, 4 = Visually suspect, 5 = Salinity compensation fail (further explanations can be found in Franz, M. et al. 2019b).

1 2 3 4 587 88 89