Ermittlung der optimalen Kompostausbringungsmenge zur Stabilisierung des Humusgehalts, zur Verbesserung der Bodenstruktur, zur optimalen Nährstoffversorgung der Reben und zur Erzielung einer optimalen vegetativen und generativen Entwicklung der Reben unter sich ändernden klimatischen Bedingungen. Untersuchungen zur Nährstoffdynamik (speziell Stickstoff, Phosphor, Kalium) über einen Zeitraum von 5 Jahren.
Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg. Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg. Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg.
Entwicklung von wirtschaftlichen Sauerstoffeintrag-Systemen nach eigenem Tiefschachtprinzip, basierend auf Versuchsanlagen. Bau von verschiedenen Anlagen und langfristige Beobachtungen der Auswirkung der Belueftung auf die Wasserqualitaet von Seen.
The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational ozone total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The new improved DOAS-style (Differential Optical Absorption Spectroscopy) algorithm called GDOAS, was selected as the basis for GDP version 4.0 in the framework of an ESA ITT. GDP 4.x performs a DOAS fit for ozone slant column and effective temperature followed by an iterative AMF / VCD computation using a single wavelength. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/
Im Projekt erfolgt eine Langzeitbeobachtung des Eintrages von Nitrat, Nitrit und Ammonium in das sich unter landwirtschaftlichen Nutzflächen befindliche Grundwasser. Dazu werden im Landkreis Gifhorn seit 1989 ausgewählte Beregnungsbrunnen beprobt. Diese Erhebungen werden ergänzt durch eine Auswertung der beim Gesundheitsamt des Landkreises Gifhorn vorliegenden Daten zur Trinkwasserüberwachung. Herangezogen werden auch die Grundwasser-Überwachungsdaten aus den im Landkreis Gifhorn verbreitet anzutreffenden Trinkwasserschutzgebieten. Mit dem Projekt soll insbesondere der Fragestellung nachgegangen werden, in wieweit bei Böden mit hohem Nährstoffauswaschungspotential Stickstoffeinträge langfristig in immer tiefere Grundwasserbereiche verlagert werden. Da aus tieferen Grundwasserleitern in der Regel auch die öffentliche Trinkwasserversorgung gespeist wird, ist diese Fragestellung von besonderer Relevanz. Wegen des Vorhandenseins vielfach sandiger Böden in Kombination mit verbreitet intensiver Landwirtschaft und mit einer i.d.R. auf den landwirtschaftlichen Nutzflächen gegebenen Grundwasserneubildung, kann im Landkreis Gifhorn von einem insgesamt hohem Nährstoffauswaschungspotential ausgegangen werden. Das Untersuchungsgebiet Landkreis Gifhorn eignet sich daher gut als 'worst case'.
Das Wachstum und die Erträge von Weizen sind durch eine Veränderung der Dürre- und Hitzewellen, infolge des Klimawandels, beeinträchtigt. Eine Kombination aus Hitze- und Trockenstress kann sich zusätzlich auf die höheren Durchschnittstemperaturen direkt negativ auf die Phänologie der Pflanzen auswirken. Es werden keine alten und modernen Weizensorten auf das Vorhandensein oder das Potenzial von phänologischer Plastizität (PP) untersucht, um Überschneidungen zwischen den sensiblen Phasen und den extremen Hitze und Trockenheit zu vermeiden. Zudem gibt es nur wenige Informationen darüber, a. Ob die phänologische Plastizität (PP) als Escape-Mechanismus in alten Winterweizensorten, die in Deutschland unter Trocken- und Hitzestress angebaut werden, vorhanden sind oder ob es sich um eine neue Eigenschaft handelt b. Ob die Pflanzenmodelle die langfristigen Raum und zeitliche Variabilität des Weizenertrags erfassen können, indem der PP-Mechanismus als neues Modellierungsmodul implementiert wird c. Ob die Änderung der Sorte, der Aussaattermine integraler Bestandteile und die Anpassung an dem Klimawandel für die Weizenproduktion in Deutschland sein könnten. Diese Wissenslücken werden durch eine Reihe von Experimenten im Feld und in der Wachstumskammer (Hitze- und Trockenstress), durch langfristige Datenverarbeitung, Modellentwicklung und Experimente zur Modellierung von Kulturen geschlossen. Winterweizensorten (alte und moderne) werden den Feld- und Kammerversuchen unterzogen, um die Mechanismen zu entschlüsseln, die an ihrer phänologischen Reaktion auf den kombinierten Hitze- und Trockenheitsstress beteiligt sind. Auf der Grundlage der Ergebnisse wird eine neue Erntemodellierungsroutine entwickelt, die Hitze-/Trockenstress berücksichtigt. Die Validierung des Erntemodells wird anhand von Feldversuchen erfolgen. In dem deutschlandweiten Simulationsexperiment werden wir die neue Modellierungsroutine nutzen, um die Variabilität der Phänologie und des Ertrags von Winterweizen zu erfassen. Die Daten werden mit den langfristigen Phänologie Beobachtungen und Ertragsstatistiken verglichen. Daraus wird die Eignung langfristiger Änderungen von Sorten und Aussaatterminen als Anpassungsstrategie an den Klimawandel anhand von acht Modellrekonstruktionen getestet. Die Kombinationen aus historischem/aktuellem Klima - alten/modernen Sorten - historischem/modernerem Aussaattermin von Winterweizen enthalten.
Quellen sind empfindliche Lebensraeume, deren Temperaturen mehr oder weniger konstant sind. Wenn sich die grossraeumigen klimatischen Bedingungen aendern, hat dies Auswirkungen auf die Tier- und Pflanzenwelt der Quellen. Derzeit werden Grundlagen erhoben und Methoden geprueft, mit deren Hilfe langfristige Veraenderungen erfasst werden koennen.
Das Forschungsvorhaben soll dazu beitragen zu klaeren, welchen Veraenderungen die Vegetation von unter Schutz stehenden Feuchtgebieten langfristig unterliegt (ungelenkte Sukzession). Zur Klaerung moeglicher Ursachen werden die Nutzungsgeschichte, Daten der naechstgelegenen Klima- und Luftimmissionsstationen, die chemische Zusammensetzung regelmaessig entnommener Quell- und Grundwasserproben sowie die Naehrstoffvorraete im Boden ausgewertet. Die Vegetation wird in 3-5jaehrigen Abstaenden auf 2 x 2 m grossen Teilflaechen entlang von 50-100 m langen Beobachtungstransekten dokumentiert. Insgesamt werden 5 vermoorte Maare der Vulkaneifel, 5 waldfreie und 8 locker bewaldete Quellmoore des Hunsrueck und der Schneifel untersucht. Erste Ergebnisse zeigen den starken Einfluss von Klimaschwankungen, sekundaere Sukzessionsprozesse nach Nutzungsaufgabe sowie Wirkungen anthropogener Stoffeintraege (Versauerung, Eutrophierung).
To predict ecosystem reactions to elevated atmospheric CO2 (eCO2) it is essential to understandthe interactions between plant carbon input, microbial community composition and activity and associated nutrient dynamics. Long-term observations (greater than 13 years) within the Giessen Free Air Carbon dioxide Enrichment (Giessen FACE) study on permanent grassland showed next to an enhanced biomass production an unexpected strong positive feedback effect on ecosystem respiration and nitrous oxide (N2O) production. The overall goal of this study is to understand the long-term effects of eCO2 and carbon input on microbial community composition and activity as well as the associated nitrogen dynamics, N2O production and plant N uptake in the Giessen FACE study on permanent grassland. A combination of 13CO2 pulse labelling with 15N tracing of 15NH4+ and 15NO3- will be carried out in situ. Different fractions of soil organic matter (recalcitrant, labile SOM) and the various mineral N pools in the soil (NH4+, NO3-, NO2-), gross N transformation rates, pool size dependent N2O and N2 emissions as well as N species dependent plant N uptake rates and the origin of the CO2 respiration will be quantified. Microbial analyses will include exploring changes in the composition of microbial communities involved in the turnover of NH4+, NO3-, N2O and N2, i.e. ammonia oxidizing, denitrifying, and microbial communities involved in dissimilatory nitrate reduction to ammonia (DNRA). Stable Isotope Probing (SIP) and mRNA based analyses will be employed to comparably evaluate the long-term effects of eCO2 on the structure and abundance of these communities, while transcripts of these genes will be used to target the fractions of the communities which actively contribute to N transformations.
| Origin | Count |
|---|---|
| Bund | 809 |
| Land | 68 |
| Schutzgebiete | 2 |
| Wissenschaft | 48 |
| Type | Count |
|---|---|
| Daten und Messstellen | 34 |
| Ereignis | 4 |
| Förderprogramm | 742 |
| Hochwertiger Datensatz | 1 |
| Repositorium | 2 |
| Text | 48 |
| unbekannt | 64 |
| License | Count |
|---|---|
| geschlossen | 84 |
| offen | 791 |
| unbekannt | 20 |
| Language | Count |
|---|---|
| Deutsch | 735 |
| Englisch | 258 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Bild | 3 |
| Datei | 32 |
| Dokument | 35 |
| Keine | 496 |
| Unbekannt | 3 |
| Webdienst | 18 |
| Webseite | 340 |
| Topic | Count |
|---|---|
| Boden | 644 |
| Lebewesen und Lebensräume | 833 |
| Luft | 555 |
| Mensch und Umwelt | 895 |
| Wasser | 560 |
| Weitere | 873 |