API src

Found 126 results.

Related terms

Der Einfluss von Modellfehlern auf ENSO Projektionen für das 21. Jahrhundert

Das Projekt "Der Einfluss von Modellfehlern auf ENSO Projektionen für das 21. Jahrhundert" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.El Niño/Southern Oscillation (ENSO) ist die dominate Mode der Klimavariabilität des gekoppelten Ozean-Atmosphäre-Systems im tropischen Pazifik und ergibt sich aus einem komplexen Zusammenspiel zwischen verstärkenden und dämpfenden Feedbacks. Angesichts seiner großen sozioökonomischen Auswirkungen ist es sehr wichtig genau vorherzusagen, wie sich ENSO unter der globalen Erwärmung verändern wird. Obwohl in den letzten Jahrzehnten Verbesserungen bei der Simulation von ENSO erreicht wurden, bleibt eine realistische Darstellung von ENSO und seiner Projektion unter der globalen Erwärmung eine Herausforderung. Die Projektionen von ENSO unterscheiden sich stark zwischen den Klimamodellen, die an den Phasen 3 und 5 des Coupled Model Intercomparison Project (CMIP3 und CMIP5) teilnehmen. Obwohl diese Modelle ENSO simulieren, der in einfachen Indizes mit Beobachtungen übereinstimmt, unterscheidet sich die zugrunde liegende Dynamik stark von der beobachteten. In Beobachtungen wächst eine anfängliche SST-Anomalie während ENSO-Ereignissen durch windinduzierte Änderungen der Ozeandynamik. Dieser Tendenz wirkt ein dämpfendes Feedback der atmosphärischen Wärmeflüsse entgegen, insbesondere durch die Sonneneinstrahlung (SW) und latenten Wärmeflüsse. In den meisten Klimamodellen ist jedoch das Wind-SST-Feedback zu schwach und das SW-SST-Feedback fehlerhaft positiv, so dass ENSO ein Hybrid aus Wind-getriebener und SW-getriebener Dynamik ist. In den Modellen mit dem größten Fehler trägt der SW-SST-Feedback zum Wachstum der SST-Anomalie in ähnlichem Maße wie das Wind-SST-Feedback bei. In den Klimamodellen existiert ein breites Spektrum an ENSO-Dynamiken, das die große Streuung der ENSO-Projektionen für das 21. Jahrhunderts erklären könnte.Im IMBE21C-Projekt untersuchen wir die Auswirkungen der Modellfehler auf die ENSO-Projektionen. Mit einer neuen Methode, der „Offline Slab Ocean SST“, können wir die Rolle der verstärkenden und dämpfenden Feedbacks quantifizieren. Dafür separieren wir die SST-Änderungen der Wind-getriebenen Meeresdynamik von der durch atmosphärische Wärmeflüsse verursacht werden. In diesem Projekt werden wir diese Methode verwenden, um den Antrieb und die Dämpfung in der beobachteten ENSO-Dynamik zu quantifizieren und mit dem in Klimamodellen simulierten ENSO zu vergleichen, um die Fehler in der simulierten ENSO-Dynamik zu identifizieren und zu quantifizieren. Des Weiteren werden wir den Einfluss der fehlerhaften ENSO-Dynamik auf die Projektionen von ENSO im Klimawandel analysieren, indem wir die Modelle in Gruppen mit realistischer und fehlerhafter ENSO-Dynamik unterteilen. Darüber hinaus werden wir die Gesamtunsicherheit der projizierten ENSO-Amplitudenänderung in Modellunsicherheit, Szenariounsicherheit und Unsicherheit aufgrund interner Variabilität aufteilen. Insgesamt zielt das IMBE21C Projekt darauf ab, durch innovative Methoden die Quellen von Unsicherheiten in ENSO-Projektionen zu identifizieren und diese zu reduzieren.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), NAWDEX - North Atlantic Waveguide and Downstream Impact Experiment

Das Projekt "Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), NAWDEX - North Atlantic Waveguide and Downstream Impact Experiment" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Ludwig-Maximilians-Universität München, Meteorologisches Institut.The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) aims to provide the foundation for future improvements in the prediction of high impact weather events over Europe. The concept for the field experiment emerged from the WMO THORPEX program and contributes to the World Weather Research Program WWRP in general and to the High Impact Weather (HIWeather) project in particular. An international consortium from the US, UK, France, Switzerland and Germany has applied for funding of a multi-aircraft campaign supported by enhanced surface observations, over the North Atlantic and European region. The importance of accurate weather predictions to society is increasing due to increasing vulnerability to high impact weather events, and increasing economic impacts of weather, for example in renewable energy. At the same time numerical weather prediction has undergone a revolution in recent years, with the widespread use of ensemble predictions that attempt to represent forecast uncertainty. This represents a new scientific challenge because error growth and uncertainty are largest in regions influenced by latent heat release or other diabatic processes. These regions are characterized by small-scale structures that are poorly represented by the operational observing system, but are accessible to modern airborne remote-sensing instruments. HALO will play a central role in NAWDEX due to the unique capabilities provided by its long range and advanced instrumentation. With coordinated flights over a period of days, it will be possible to sample the moist inflow of subtropical air into a cyclone, the ascent and outflow of the warm conveyor belt, and the dynamic and thermodynamic properties of the downstream ridge. NAWDEX will use the proven instrument payload from the NARVAL campaign which combines water vapor lidar and cloud radar, supplemented by dropsondes, to allow these regions to be measured with unprecedented detail and precision. HALO operations will be supported by the DLR Falcon aircraft that will be instrumented with wind lidar systems, providing synergetic measurements of dynamical structures. These measurements will allow the first closely targeted evaluation of the quality of the operational observing and analysis systems in these crucial regions for forecast error growth. They will provide detailed knowledge of the physical processes acting in these regions and especially of the mechanisms responsible for rapid error growth in mid-latitude weather systems. This will provide the foundation for a better representation of uncertainty in numerical weather predictions systems, and better (probabilistic) forecasts.

Transportwege von Feuchte und Wasserdampfisotopologe

Das Projekt "Transportwege von Feuchte und Wasserdampfisotopologe" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung - Atmosphärische Spurenstoffe und Fernerkundung.Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.

Horizontale Variabilität von arktischem Meereis, Dynamik der Atmosphäre, Aerosol, Spurengasen und Strahlung auf der km-Skala zur Untersuchung der Interaktionsprozesse der Erdsystem-Kompartimente während der Schmelzsaison (HELiPOD4ArtofMelt)

Das Projekt "Horizontale Variabilität von arktischem Meereis, Dynamik der Atmosphäre, Aerosol, Spurengasen und Strahlung auf der km-Skala zur Untersuchung der Interaktionsprozesse der Erdsystem-Kompartimente während der Schmelzsaison (HELiPOD4ArtofMelt)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Das Projekt HELiPOD4ArtofMelt hat als übergeordnete Ziele, zum Verständnis des Einflusses von Warmluft-Einbrüchen auf die arktische Atmosphäre beizutragen, und Prozesse und Wechselwirkungsmechanismen zu verstehen, die zum räumlich inhomogenen Einsetzen des Schmelzprozesses von arktischem Meereis führen. Die Methode besteht in der Analyse von fluggestützten Messdaten, die während der Expedition Art of Melt des schwedischen Eisbrechers Oden im atlantischen Einflussbereich des Arktischen Ozeans im Mai/Juni 2023 erhoben werden. Dafür kommt die Hubschrauber-Schleppsonde HELiPOD zum Einsatz mit einer Vielzahl an Sensoren, um die räumliche Verteilung der Eigenschaften von Meereis, atmosphärischer Dynamik, Aerosol, Spurengasen und Strahlungsbudget in einem Radius von 100 km um die Oden zu charakterisieren. Zusätzlich werden weitere komplementäre Sensoren der internationalen Teilnehmer der Oden-Expedition in HELiPOD integriert, z.B. Messungen der Isotopenverteilung von Wasserdampf, um Evaporationsprozesse zu untersuchen, Bestimmung der Eiskeime, um ein Bindeglied zu Wolkeneigenschaften herzustellen, Sensoren für die Konzentration von Kohlenstoffmonoxid und Ruß, sowie Filtermessungen für zusätzliche mikroskopische Analysen im Labor. Es sind lange Flugabschnitte in niedrigen Höhen (ca. 15-20 m) geplant, um die Austauschprozesse zwischen Ozean, Meereis und Atmosphäre zu untersuchen, sowie Vertikalprofile zur Messung der atmosphärischen Stabilität und der vertikalen Verteilung und Variabilität der Parameter. Der Datensatz an gleichzeitig erhobenen Messgrößen ermöglicht es, Zusammenhänge und Wechselwirkungen zu quantifizieren. So kann z.B. eine Fläche mit einem größeren Anteil an Schmelztümpeln direkt in Zusammenhang gebracht werden mit Veränderungen bei fühlbaren und latenten Wärmeflüssen, Veränderungen bei der Größenverteilung und Anzahlkonzentration von Aerosolpartikeln und Veränderungen der Energiebilanz auf kleinen räumlichen Skalen. Nach der finalen Aufbereitung des großen Datensatzes wird die räumliche Variabilität der verschiedenen Parameter untersucht, um ein dreidimensionales Bild auf einer Skala von unter 1 km bis 100 km zu erhalten. Bei den Analysen mit den internationalen Partnern steht die Charakterisierung von sogenannten „Atmosphärischen Flüssen“ im Vordergrund, also von Zirkulationsmustern, die warme und feuchte Luftmassen in den arktischen Polarwirbel transportieren. Die damit assoziierten Eigenschaften und Veränderungen der Grenzschicht, wie z.B. die Veränderung der Temperaturprofile und Wärmeflüsse, werden untersucht, die letztendlich zum Abschmelzen des Meereises beitragen. Außerdem werden die Prozesse und Wechselwirkungen untersucht, die zum räumlich und zeitlich inhomogenen Einsetzen des Schmelzens von Meereis führen, basierend auf den fluggestützten Messungen, den kontinuierlichen Messungen auf der Oden, und unter Berücksichtigung des Netzwerks an Observatorien in der Arktis, wie in Spitzbergen, Grönland und Nordskandinavien.

Energiespeicherung durch Latentwärmespeicher - Wärmeuebertragung an schmelzende und erstarrende Substanzen

Das Projekt "Energiespeicherung durch Latentwärmespeicher - Wärmeuebertragung an schmelzende und erstarrende Substanzen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Fachgebiet Technische Thermodynamik.Da bisher keine Methode existiert, elektrische Energie in groesseren Mengen wirtschaftlich zu speichern, gewinnt die Speicherung von Waermeenergie zunehmend an Bedeutung. Es ist bekannt, dass eutektische Mischungen aus Fluoriden der Alkali- und Erdalkalimetalle (LIF, NaC18 NaF, MgCl2), aber z.B. auch reines Lithiumfluorid extrem hohe Schmelzwaermen besitzen. Fluoridmischungen koennen 2- bis 3-mal soviel Waerme speichern wie bisher benutzte Waermespeichermaterialien. Im Vergleich zum Bleiakkumulator weisen sie eine etwa dreissigmal hoehere Energiespeicherkapazitaet auf. Es besteht das Problem der Erreichung hoher Waermestromdichten zum Zweck einer moeglichst intensiven Waermezufuhr bzw. Waermeabgabe an der Oberflaeche.

Sonderforschungsbereich Transregio 172 (SFB TRR): Arktische Verstärkung: Klimarelevante Atmosphären- und Oberflächenprozesse und Rückkopplungsmechanismen (AC)3, Teilprojekt A02: Fesselballongetragene Messungen des Energiebudgets in der wolkenbedeckten Zentralarktis

Das Projekt "Sonderforschungsbereich Transregio 172 (SFB TRR): Arktische Verstärkung: Klimarelevante Atmosphären- und Oberflächenprozesse und Rückkopplungsmechanismen (AC)3, Teilprojekt A02: Fesselballongetragene Messungen des Energiebudgets in der wolkenbedeckten Zentralarktis" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz-Institut für Troposphärenforschung e.V..Während der Forschungsfahrt von FS Polarstern im Frühsommer (Mai bis Juni) 2017 werden Fesselballon-getragene Messungen von einer Eisschollenstation analysiert. Atmosphärische Vertikalprofile (bis zu einem Kilometer Höhe) der turbulenten Energieflüsse (sensible und latente Wärme), Strahlungsenergieflüsse und turbulente Impulserhaltung werden gemessen. Die Beobachtungen werden den Einfluss von makrophysikalischen (Wolkenbasishöhe, Temperatur, geometrische Dicke, Wolkenbedeckung) und mikrophysikalischen (effektiver Tropfenradius) Eigenschaften von arktischen tiefen Wolken auf (i) die Profile der Flüsse, (ii) den entsprechenden Strahlungsantrieb und (iii) die damit verbundenen netto Erwärmung/Abkühlung der bodennahen Lufttemperatur untersuchen.

Solardynamische Energieversorgungsanlagen fuer den Weltraumeinsatz

Das Projekt "Solardynamische Energieversorgungsanlagen fuer den Weltraumeinsatz" wird/wurde ausgeführt durch: Technische Universität München, Lehrstuhl C für Thermodynamik (Kältetechnik).Fuer den Einsatz im Weltraum werden solardynamische Energieversorgungsanlagen zur Erzeugung der erforderlichen Bordenergie fuer bemannte Raumstationen (COLUMBUS) untersucht. Aufgrund ihrer Konzeption sind derartige Systeme, speziell in Verbindung mit Energiespeichern fuer die Schattenphasen, in bezug auf die erforderliche Flaeche und das damit gekoppelte Orbitkeeping vier mal effizienter als photovoltaische Systeme. Im Rahmen zweier Dissertationen werden insgesamt drei unterschiedliche Spiegelsysteme (Newton-Anordnung, Off-axis-Anordnung und Cassegrain-Anordnung), zwei Receiver-Speicher-Systeme (Cavity-Receiver mit Latentwaermespeicher bzw kapazitivem Speicher), vier Waermekraftmaschinenprozesse (Hochtemperatur-Rankine-Prozess, Joule/Brayton-Prozess, organischer Rakine-Prozess sowie Freikolben-Stirling-Prozess) und zwei Radiatorbauformen (Heat-Pipe-Radiator und Rippenrohrradiator) in bezug auf ihre Realisierbarkeit, technologische Ausfuehrung sowie ihr Zusammenwirken im System untersucht. Neben der Erstellung eines umfassenden Simulationsprogramms wurden auch experimentelle Untersuchungen, speziell zur latenten Energiespeicherung durchgefuehrt. Dieses Projekt wird in Zusammenarbeit mit dem Institut fuer Raumfahrttechnik der TU Muenchen, Prof Dr Harry O Ruppe, und dem DLR Institut fuer Technische Thermodynamik in Stuttgart, Prof Dr Fischer durchgefuehrt. Eine Uebertragbarkeit der Ergebnisse auf erdgebundene Anlagen ist moeglich.

Tektur der Klärschlammtrocknung der Verbandskläranlage des Abwasserverbandes Kempten

Die bestehende Klärschlammtrocknung nutzt die Abwärme, welche bei der Verstromung des anfallenden Klärgases entsteht. Dadurch reduziert sich die zu entsorgende Klärschlammmenge von etwa 14.000 t/a auf derzeit etwa 7.200 t/a künftig. Geplantes Ziel ist die Menge auf ca. 4.800 t/a zu reduzieren. Die vorhandene Klärschlammtrocknung ist aus Kapazitätsgründen (Verdampfungsleistung bei max. 75 %) nicht mehr in der Lage den kompletten anfallenden Klär-schlamm zu trocknen. Daher wurden verschiedene Varianten untersucht. Letztendlich hat der AVKE sich für die Thermalöltrocknung entschieden. Die Wärme mit einer Größenordnung von 300 kW wird in dem bestehenden BHKW 3 erzeugt, die andere in einem bereits immissionsschutzrechtlich genehmigten Thermalölkessel. Die Kondensationswärme wird zur Versorgung des vorhandenen Bandtrockners eingesetzt. Somit ersetzt die entstehende Verdampfungs-wärme der Thermalöltrocknung beim Bandtrockner, die ansonsten zusätzliche erforderliche Wärmemenge. Die Abluft wird direkt an den Entstehungsorten abgesaugt und in Richtung der Tropfkörper geleitet. Dort werden die Tropfkörper verfahrenstechnisch als Abluftwäscher eingesetzt. Somit handelt es sich bei den Umbauarbeiten im Gebäude der Schlammentwässerung größtenteils um verfahrenstechnische Änderungen. Die Trocknung des Klärschlamms erfolgt mittels Thermalöl bei einer Temperatur von ca. 250 °C. Der Trockner selbst ist ca. 12,5 m lang und insgesamt knapp 6 m hoch. Der Trockner besitzt drei beheizte Schnecken. Die Aufgabe des vorher mittels Zentrifuge entwässerten Faulschlamms auf etwa 35 % Trockensubstanz erfolgt auf der obersten Ebene und wird aufgrund der hohen Temperatur schlagartig an der äußeren Schicht getrocknet (ähnlich beim Frittieren). Durch die Schnecken wird das zu trocknende Gut gebrochen und weiter transportiert. Die entstehenden ca. 1-3 cm großen Fragmente fallen dann in die nächste „Schneckenebene“ und werden weiter getrocknet. Unterhalb der untersten Ebene wird das getrocknete Material dann wieder nach oben gefördert und anschließend mit einem Becherhebewerk in die beiden Trockengutsilos transportiert. Die beiden vorgenannten Zentrifugen können etwa 20 m³/h Faulschlamm mit einem Eingangs-Trockensubstanzgehalt von etwa 2,5-3 % auf bis zu 35 % Trockensubstanzgehalt entwässern. Jährlich fallen etwa 12.000 t entwässerter Klärschlamm an. Zur Schlammentwässerung ist der Einsatz von Flockungshilfsmitteln erforderlich. Dieses Polymer wird in Big-Bags als Trockengranulat angeliefert und mit Wasser angesetzt. Die beiden Ansetzstationen wurden innerhalb des Gebäudes aufgestellt.

Deutscher Beitrag zu „Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD)“

Das Projekt "Deutscher Beitrag zu „Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD)“" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Fachrichtung Hydrowissenschaften, Institut für Hydrologie und Meteorologie, Professur für Hydrologie.Ziel des beantragten Projektes ist die Untersuchung des Einflusses von Oberflächenheterogenität auf die räumliche und zeitliche Variabilität und Dynamik der atmosphärischen Grenzschicht. Dieses Vorhaben ist als Kooperation mit US-amerkanischen Partnern geplant, die parallel einen NSF-Antrag einreichen. Der deutsche Beitrag besteht in der Durchführung von numerischen Simulationen (Large-Eddy Simulation) der turbulenten Transportprozesse, um die Ursache der scheinbaren Nichtschließung der Energiebilanz zu untersuchen. Dadurch soll analysiert werden, wie sich das Energiebilanz-Residuum zwischen fühlbarem und latenten Wärmestrom aufteilt, und es soll eine Parametrisierung zur Bestimmung der meso-skaligen Flussbeiträge in der Größenordnung vom 1 km entwickelt werden. Für den Erfolg dieses Vorhabens ist es von entscheidender Bedeutung, eine Vielzahl von Messdaten mit hoher zeitlicher und räumlicher Auflösung im Untersuchungsgebiet zur Verfügung zu haben. Im Zentrum der Messung steht ein 420 m hoher meteorologischer Turm, um den herum 20 Eddy-Kovarianz Stationen betrieben werden, ergänzt um Flugzeugmessungen und passive und aktive Fernerkundungssysteme. Der hier beantragte deutsche Beitrag zu den Messungen besteht in dem Einsatz von zwei scannenden Wind-LiDAR-Systemen und einem neuentwickelten scannenden LiDAR-System zur Messung der Temperatur- und Feuchteverteilung. Letzteres besteht aus einer Kombination von Rotations-Raman-LiDAR (Temperatur) und differenziellem Absorptions LiDAR (DIAL, absolute Luftfeuchte). Nur ein kontinuierlicher Betrieb dieses Gerätes liefert die für das Gesamtprojekt geforderte zeitliche und räumliche Auflösung. Insbesondere die Messung von Wasserdampf mit der DIAL-Technik auf einer mobilen Plattform ist hoch-innovativ. Ziel ist daher auch die Etablierung dieser Technologie im Bereich der Grenzschichtmeteorologie.

Verbesserte Thermokline-Konzepte zur thermischen Energiespeicherung in solarthermischen Kraftwerken, Teilvorhaben: Entwicklung und Herstellung des innovativen Füllstoffs

Das Projekt "Verbesserte Thermokline-Konzepte zur thermischen Energiespeicherung in solarthermischen Kraftwerken, Teilvorhaben: Entwicklung und Herstellung des innovativen Füllstoffs" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Kraftblock GmbH.

1 2 3 4 511 12 13