Der Layer gibt die Standortskarte des Landes Brandenburg mit den Flächen der Stamm-Informationen und der Klimafeuchte wider.
Stamm-Informationen sind relativ stabile Eigenschaften, die kaum durch den Waldbestand und zeitweilige Effekte beeinflusst werden. Hierbei werden auch standörtliche Kleinstflächen ausgewiesen.
Die Stamm-Informationen werden mit 3-zeiligen Einträgen beschrieben:
Zeile 1:
Feinbodenformen mit Zusatzmerkmalen wie Grundwasserstufen aus dem Geländebefund, ersatzweise auch Lokal-/ Sonder-/Komplexstandorte.
(Datenfelder BFFG1...BFFG3)
Zeile 2:
Die waldökologische Bewertungsgruppe als Stamm-Standortsgruppe bzw. Nährkraftfeuchtegruppe mit der Gesamt-Klimafeuchte.
Die Klimafeuchte eines Standortes wird zunächst großräumig zugewiesen (Wuchsbezirksklima).
Anschließend wird sie vor allem bei bewegtem Relief durch das Meso- und Mikroklima in Richtung frischer oder trockener modifiziert (fr/tr),
wodurch sich auch die Gesamt-Klimafeuchte in diesen Arealen vom umgebenen ebenen Standort unterscheiden kann.
Bei trockeneren Verhältnissen wird die eigene Stamm-Feuchtestufe (T)...3 verwendet.
(Datenfelder NFGR1...NFGR3, NFGR4 nur bei Kleinarealen, kf_gesamt)
Zeile 3:
Die Flächenanteile der jeweiligen Bodenformen/Stamm-Standortsgruppen in 1/10 Stufen (Anteilszehntel).
(Datenfelder AZ1...AZ3)
Standortsveränderungen betreffen auch im Klimawandel nur eine Teil der Merkmale, während die anorganische Substanz als stabil gilt.
Das Meso- und Mikroklima zeigt lokale, meist reliefbedingte Abweichungen zum Wuchsbezirksklima durch die Anzeige von frischeren (fr) und trockeneren (tr) Verhältnissen auf. Diese werden zur Gesamt-Klimafeuchte zusammengeführt.
Dieser Layer ist mit der Standortskarte gemeinsam zu betrachten.
Das Meso- und Mikroklima zeigt lokale, meist reliefbedingte Abweichungen zum Wuchsbezirksklima durch die Anzeige von frischeren (fr) und trockeneren (tr) Verhältnissen auf. Diese werden zur Gesamt-Klimafeuchte zusammengeführt.
Dieser Layer ist mit der Standortskarte gemeinsam zu betrachten.
In der oberen Erdatmosphäre ab 70 km herrschen spezielle Bedingungen, die ein Leuchten im sichtbaren und infraroten Licht verursachen. Die Airglow genannten Emissionen werden durch solare extreme Ultraviolettstrahlung hervorgerufen, die Luftmoleküle zerstört und Atome ionisert. Daraufhin finden diverse chemische Reaktionen und physikalische Prozesse statt, die teilweise zur Lichtemission durch verschiedene Atome und Moleküle führen. Bedeutend sind z.B. die Beiträge durch Sauerstoff- und Natriumatome sowie Hydroxyl-, Sauerstoff- und Eisenoxidmoleküle. Airglow ist zeitlich und räumlich sehr variabel und die damit verbundenen komplexen Prozesse sind noch nicht vollständig verstanden.Die direkte Erforschung der oberen Atmosphäre ist schwierig, da nur Raketen diese Höhe erreichen können. Daher werden hauptsächlich erd- und satellitengebundene Fernerkundungsmethoden angewendet. Die verbreitetsten Messverfahren erfassen nur einen kleinen Teil des Lichtspektrums, womit viele der gleichzeitigen und teilweise verknüpften Emissionen nicht studiert werden können.Eine bisher wenig genutzte aber vielversprechende Methode zur Airglowmessung sind astronomische Spektren von bodengebundenen Teleskopen. Neben dem Licht vom astronomischen Objekt zeigen diese immer auch atmosphärische Emissionen. Für astronomische Anwendungen müssen diese Beiträge aufwändig entfernt werden, aber für die Atmosphärenforschung sind sie wertvoll, zumal die Spektrographen an großen Teleskopen besonders leistungsfähig sind. Speziell Instrumente, die einen großen Spektralbereich abdecken, erlauben simultane Messungen von vielen verschiedenen Airglowemissionen.Das geplante Projekt wird auf Aufnahmen verschiedener Spektrographen am Very Large Telescope in Nordchile und Apache Point Observatory in New Mexico basieren. Der volle Datensatz, beginnend im Jahr 2000, wird um die 100.000 Spektren umfassen. Er wird viel größer sein als alles was bisher unter Nutzung von astronomischen Daten zur Erdatmosphäre publiziert worden ist.Das Projektziel ist die Charakterisierung der zeitlichen Variationen aller beobachtbaren Airglowemissionen in der oberen Erdatmosphäre mit besonderen Fokus auf (1) Linienemissionen von Hydroxyl- und Sauerstoffmolekülen, besonders im Hinblick auf ihren Wert als Temperaturindikator für die Klimaforschung, (2) Kontinuumsemission von Metall- und Stickoxiden und (3) hochvariablen aber zumeist schwachen Linienemissionen in der Ionosphäre. Die Analyse wird auch Modell-, ergänzende Satelliten- und bodengestützte Daten berücksichtigen. Die dabei gewonnenen Erkenntnisse werden einen signifikanten Beitrag zum Verständnis der chemischen und physikalischen Prozesse in der oberen Atmosphäre, aber auch zur Atom- und Molekülphysik liefern. Mit besseren Modellen der Emissionen wird es auch möglich werden die natürliche Nachthimmelshelligkeit genauer abzuschätzen und astronomische Daten besser zu verarbeiten.