Pathogene Legionellenarten, wie Legionella pneumophila, können die Legionärskrankheit, eine schwere Lungeninfektion mit einer Sterblichkeit von 5-10 %, verursachen. Sie werden durch das Einatmen von Legionellen-kontaminierten Aerosolen aus künstlichen Wassersystemen, wie zum Beispiel Kühltürme, Trinkwassernetzwerke und Kläranlagen, übertragen. Die Legionärskrankheit hat in Europa in der Zeit von 2015 bis 2019 um 65 % zugenommen. Es ist davon auszugehen, dass die Legionärskrankheitsfälle, die aus Kläranlagen entspringen, aufgrund der zunehmenden Wiederverwendung von Abwasser und wegen des Klimawandels weiter steigen werden. Das Letztere wird sich insbesondere auf die Abwassertemperaturen und die mikrobielle Zusammensetzung von Abwässern auswirken. Eine Lösung zur Verhinderung der Legionellenvermehrung in Kläranlagen mit warmen Abwassertemperaturen (>23 °C) steht mangels Grundlagenforschung nach unserem Kenntnisstand nicht zur Verfügung. Das Ziel dieses Antrages ist es, die Temperaturbedingungen zu definieren, die das Wachstum von pathogenen Legionella spp. aus Kläranlagen begünstigen, unter Berücksichtigung konstanter und dynamischer Temperaturverhältnisse. Dafür sollen Isolate aus behandeltem Abwasser oder Belebtschlamm von fünf verschiedenen Kläranlagen, die warme Abwässer behandeln, bei fünf verschiedenen Temperaturen zwischen 20 °C und 40 °C kultiviert werden. Um die Wirkung dynamischer Temperaturbedingung zu untersuchen, soll die Temperatur in der Mitte der exponentiellen Wachstumsphase um 5 °C innerhalb einer kurzen Zeitspanne erhöht werden. Die Wachstumsparameter der getesteten Legionellenarten sollen vor und nach der Störung verglichen werden. Aufgrund unserer Erfahrungen bei vergangenen Überwachungsprojekten von Legionella spp. in Kläranlagen wurde ein schneller Temperaturanstieg von 5 °C ausgewählt. Die isolierten Legionellenarten sollen anhand der Kultivierungsmethode aus der biologischen Behandlungsstufe gewonnen werden. Die Arten der Isolate und die Legionellendiversität in der biologischen Stufe soll durch eine gattungsspezifische Next-Generation-Sequencing identifiziert werden. Für das Temperaturexperiment werden Isolate ausgewählt, die sowohl die Kerngemeinschaft der Legionellen, die in allen fünf Kläranlagen vorhanden ist, als auch die einzigartigen Stammtypen, die nur in bestimmten Kläranlagen vorkommen, abdecken. Die Integration der Ergebnisse der Abwasser-/Kläranlagencharakterisierung, der Legionellendiversität und des temperaturabhängigen Wachstums von den Legionellenisolate wird unser Verständnis über die Rolle von Kläranlagen als ökologische Nische für das Legionellenwachstum verbessern. Unsere Erkenntnisse können verwendet werden, um die Überwachung von Legionellen in Kläranlagen zu verbessern und sie sollen die Entwicklung von Strategien zum Umgang mit plötzlichen Temperaturänderungen in Kläranlagen und Abwasserwiederverwendungsanlagen unterstützen.
Ziel: Bestimmung des Trophiezustandes im jeweiligen Untersuchsjahr und daraus Ableitung des Eutrophierungsverlaufes ueber mehrere Jahre. Aufgabe: Beratung von Fischerei und Behoerdenvorgehen: Befahrung der diversen Seen in regelmaessigen Abstaenden (moeglichst Monatlich, zumindest 3-4 mal jaehrlich), Probenentnahme zumindest an der tiefsten Atelle, bei manchen Seen auch an anderen wichtigen Punkten. Methoden: Probenentnahmen mit Ruttner-, Schindler- und Schroeder-Sampler (je nach Bedarf). Parameter: Sichttiefe, Temperatur, Sauerstoff, pH-Wert, Alkalinitaet, Gesamt-P, Partikulaerer-P, Nitrat-N, Ammonium-N, Eisen, Silizium, Chlorid, elektr. Leitfaehigkeit. Phytoplankton-Biomasse, Zooplankton - individuelle Zahl.
Im Thjorsarver-Gebiet in Zentral-Island soll ein grosser Stausee durch Aufstau der Thjorsa errichtet werden. Dadurch wird das Brutgebiet der Kurzschnabelgaense (Anser Grachyrhynchos) zerstoert. Da die Tausenden von grossen und kleinen fliessenden und stehenden Gewaessern dieses Gebietes bislang nicht limnologisch untersucht waren, wurde eine limnologische Bestandsaufnahme und oekologische Analyse dieses Gebietes durchgefuehrt. Die toxonomische und statistische Auswertung ist noch nicht abgeschlossen.
Unter anoxischen Bedingungen wird Arsen (As) in Form von Arsenit vermeintlich vollständig über Schwefel(S)-Gruppen an natürliches organisches Material (NOM) gebunden. Laborexperimente zeigten, dass selbst unter oxischen Bedingungen die Halbwertszeit mehr als 300 Tage betrug, damit sogar größer war als die von Arsenit an Eisen(Fe)(III)-Oxyhydroxiden. Global betrachtet heißt das, dass z.B. Moore, die reich an Organik und Sulfid sind, wichtige quantitative As-Senken sind. Allerdings wurden alle mechanistischen Studien bisher so durchgeführt, dass Arsenit einem zuvor gebildeten S(-II)-NOM zugegeben wurde. In einem System, das As(III), S(-II) und NOM enthält, spielt aber auch die As(III)-S(-II)-Komplexierung in Lösung unter Bildung von Thioarseniten ((H2AsIIIS-IInO3-n)-, n=1-3) und Thioarsenaten ((HAsVS-IInO4-n)2-, n=1-4) eine Rolle. Unsere zentrale Hypothese ist, dass die Kinetik der Thioarsen-Spezies-Bildung in Lösung schneller ist als die Sorption von As(III) und S(-II) an NOM und dass daher Thioarsen-Spezies das Ausmaß und die Kinetik der As-Sorption an Organik bestimmen. Auch die kompetitive Sorption an gleichzeitig auftretenden (meta)stabilen Fe-Mineralen wird vom bekannten Verhalten von Arsenit abweichen. Aufgrund ihrer Instabilität und einem Mangel an reinen Standards, ist über das Sorptionsverhalten von Thioarseniten bislang nichts bekannt. Für Thioarsenate gibt es keine Information zum Bindungsverhalten an NOM, aber es ist bekannt, dass die Sorption an verschiedenen Fe(III)-Mineralen geringer ist als die von Arsenit. Wir postulieren, dass Thioarsenate weniger und langsamer als Arsenit an S(-II)-NOM binden, da kovalente S-Bindungen in Thioarsenaten die Affinität für S(-II)-NOM Komplexierung verringern. An Fe(III)-NOM sollte die Bindung geringer sein in Analogie zur bekannten geringeren Affinität für Fe(III)-Minerale. Wir postulieren weiter, dass die Sulfidierung eine schnellere und größere As-Mobilisierung bewirkt als die zuvor untersuchte Oxidation, da abiotische Oxidation langsam ist, die As-S-Komplexierung in Lösung aber spontan und so As-Bindungen an NOM und Fe-Minerale schwächt. Um unsere Hypothesen zu testen, werden wir Batch-Experimente durchführen mit Mono- and Trithioarsenat-Standards und einem Arsenit-Sulfid Mix (der Thioarsenite enthält) bei pH 5, 7 und 9 an zwei ausgewählten NOMs (Federseemoor Torf und Elliott Soil Huminsäure; jeweils unbehandelt, S(-II)- und Fe(III)-komplexiert). Wir werden Sorptionsaffinität und -kinetik, sowie mittels Röntgenabsorptionsspektroskopie Bindungsmechanismen bestimmen. Die Stabilität der (Thio)arsen-beladenen NOMs wird unter oxidierenden aber auch unter sulfidischen Bedingungen studiert und präferenzielle Bindung in binären Systemen (Kombinationen aus Fe-Oxyhydroxiden, Fe(III)-NOM, S(-II)-NOM und Fe-Sulfiden) untersucht. Ziel ist, As-Bindungsmechanismen in S(-II)-Fe(III)-NOM-Systemen besser zu verstehen, um vorhersagen zu können, unter welchen Bedingungen As Senken zu As Quellen werden können.
Filterorganismen wie Suesswasserschwaemme, Bryozoen und Muscheln nehmen mit dem Wasserstrom Partikel entsprechend der Groesse ihres 'Filterporenapparates' auf. Die Belastbarkeit des jeweiligen Filtersystems soll quantitativ erfasst werden, dabei ist die gesamte Population zu kartieren und das Auswahl- und Anreicherungsvermoegen der einzelnen Arten zu analysieren. Angestrebt wird eine Bestimmung des Teils an der biologischen Selbstreinigung des untersuchten Gewaessers.
Methan (CH4) ist ein potentes Treibhausgas, das zur globalen Erwärmung beiträgt und eine wichtige Rolle in der Atmosphärenchemie spielt. Aquatische Systeme wurden kürzlich als bedeutende Quellen von CH4 identifiziert, die bis zu 50 % zu den globalen CH4-Emissionen ausmachen. Es besteht jedoch weiterhin erhebliche Unsicherheit über das Ausmaß dieser Emissionen, insbesondere über deren räumliche und zeitliche Treiber. Dies gilt besonders für CH4-Emissionen aus den aquatischen Systemen der Arktis, die bisher kaum untersucht wurden. Um das Verständnis des globalen CH4-Budgets zu verbessern, ist es daher entscheidend die Quellen von CH4 in aquatischen Systemen genau zu charakterisieren und zu klassifizieren. Aktuelle Methoden zur Klassifizierung von CH4-Quellen nutzen stabile Isotopenverhältnisse wie stabile Kohlenstoff- (delta13C) und Wasserstoff- (delta2H) Isotopenwerte von CH4 (13C vs. 2H Diagramme) sowie geochemische Bernard-Verhältnisse, welche die molaren Verhältnisse von CH4 zu Ethan und Propan gegen delta13C-CH4 Werte darstellt (Bernard-Diagramme). Beide Diagramme werden verwendet, da verschiedene CH4-Quellen durch spezifische Bereiche von delta13C- und delta2H-CH4-Werten sowie Bernard-Verhältnissen charakterisiert sind. Eine wesentliche Einschränkung ergibt sich aus der CH4-Oxidation (MOx) durch methanotrophe Bakterien, die in aquatischen Umgebungen weit verbreitet sind. Dieser Prozess verändert die CH4-Konzentrationen und stabilen Isotopenwerte sowie die Ethan- und Propankonzentrationen, wobei die Oxidation dieser Gase bezüglich der CH4-Quellenklassifizierung bisher unberücksichtigt bleibt. Dies kann zu einer erschwerten Klassifizierung von CH4-Quellen bis hin zu Fehlinterpretationen führen. Ein vielversprechender neuer Parameter, um die Klassifizierung von CH4-Quellen in dieser Hinsicht zu verbessern, ist der sogenannte Delta(2,13)-Parameter, der auf den delta13C- und delta2H-Werten von CH4 basiert, jedoch zusätzlich für die durch MOx verursachte Isotopenfraktionierung korrigiert. Derzeit beeinträchtigen jedoch die begrenzte Nutzung des Delta(2,13) Parameters sowie fehlendes Wissen über potenzielle Einflussfaktoren seine Zuverlässigkeit und erfordern eine systematische Untersuchung. Das Ziel von AMIOX ist es, das Verständnis des aquatischen CH4-Kreislaufs zu vertiefen, indem die Klassifizierung von CH4-Quellen und -Senken in gemäßigten und arktischen aquatischen Systemen verbessert wird. Dies soll durch die Einführung des neuen Delta(2,13)-Parameters in Kombination mit Bernard- und 13C vs. 2H-CH4 Diagrammen erreicht werden. Um diese Ziele zu erreichen, werde ich den Einfluss von MOx auf die Delta(2,13)-Werte und Bernard-Verhältnisse durch drei weit verbreitete methanotrophe Spezies in Laborstudien unter verschiedenen Umweltbedingungen untersuchen. Schließlich werde ich die erworbenen Erkenntnisse im Feld anwenden, um das Verständnis des CH4-Kreislaufs in Seen in gemäßigten Breiten in Deutschland und arktischen Seen in Grönland zu verbessern.
Die mikrobielle Umsetzung von organischem Material zu dem erneuerbaren Energieträger Methan ist eine bewährte und verbreitete Strategie der effektiven Abfallwirtschaft. In einem solchen methanproduzierenden Milieu nutzen elektrisch verbundene Bakterien und Archaeen direkten Interspezies-Elektronentransfer (DIET), als Alternative zum Interspezies-Formiat- und Wasserstofftransfer (IHT). Grundlegende Aspekte der mikrobiellen Ökologie in Bezug auf DIET sind dabei jedoch noch unerforscht, insbesondere der Stellenwert für die Biogasproduktion. Bis jetzt haben sich Studien zum Großteil auf DIET in Ko-Kulturen von wenigen Modellorganismen beschränkt, die für die Abwasserbehandlung in UASB-Reaktoren (Upflow Anaerobic Sludge Blanket) eine Rolle spielen. Wir beabsichtigen weithin anwendbare Erkenntnisse über die Zusammenhänge der syntrophen mikrobiellen Gemeinschaft und dessen Funktion in mesophilen und thermophilen Biogasreaktoren mit Hilfe moderner molekularbiologischer und mikrobiologischer Methoden zu generieren, um letztendlich eine höhere Prozessstabilität und Effizienz zu ermöglichen. Zentrale Ziele sind die Identifizierung neuer Organismen die an DIET beteiligt sind und das Verständnis der zugrundeliegenden genetischen Mechanismen. Der Schwerpunkt wird auf Bioabfall vergärende Anlagen liegen, die sich wesentlich von mesophilen UASB Reaktoren durch Konstruktion, Betriebsweise, Temperatur und Substratzusammensetzung unterscheiden. Wir vermuten, dass DIET ein weit verbreiteter Alternativprozess zum IHT bei der anaeroben Vergärung von Biomasse ist, wobei beide Prozesse wahrscheinlich parallel ablaufen. In dem vorgeschlagenen Projekt wird DIET erstmals in thermophilen aber auch in mesophilen Systemen Gegenstand der Forschung sein. Ein weiteres Ziel ist die Identifizierung neuer Substrate, die von den syntrophen Konsortien während DIET umgesetzt werden können. Hier wird der Fokus auf syntrophe Propionat- und Butyratoxidierer liegen, die für den anaeroben Abbau von organischem Material eine Schlüsselrolle spielen. Mittels Metagenomik wird das Stoffwechselpotential rekonstruiert und Genexpressionsmuster im Zusammenhang mit IHT und DIET werden mittels Transkriptomik untersucht. DIET ist möglicherweise vorteilhaft für die Stabilität des Vergärungsprozesses, da die Produktion von Wasserstoff umgangen wird, welcher schon in geringer Konzentration die Oxidation von kurzkettigen Fettsäuren inhibieren kann. Deshalb planen wir physiologische Vorteile von DIET gegenüber IHT in Anreicherungskulturen zu untersuchen. Die zu erwartenden Ergebnisse sind essentiell um das Potential der Biogasproduktion im vollen Umfang auszuschöpfen. Darüber hinaus werden die Ergebnisse auch für andere Forschungsgebiete relevant sein, wo elektrisch verbundene Mikroorganismen eine Rolle spielen, beispielsweise bei der Minimierung von Treibhausgasemission in methanogenen Habitaten oder bei der Nutzung in mikrobiellen Brennstoffzellen.
Algenblüten stellen eines der Hauptprobleme für die Wasserqualität vieler Seen und Küstengewässer dar. Trotz der Reduzierung externer Nährstoffeinträge treten sie wiederholt auf. Der Hauptgrund dafür wird in der pulsartigen Freisetzung von Nährstoffen, die in den Sedimenten der betroffenen Gewässer angereichert sind, gesehen. Daten zur Kinetik solcher Nährstoffpulse (Ursachen, Mengen) liegen aber kaum vor und die unmittelbaren Effekte auf das Phytoplankton sind bislang unerforscht. Das liegt vor allem daran, dass Methoden für zeitlich hochauflösende in-situ-Messungen erst in den vergangenen Jahren in größerem Umfang verfügbar wurden. Ihr Einsatz ist sehr arbeitsaufwändig und nur in begrenztem Zeitrahmen realisierbar. Dennoch gibt es in der Fachliteratur zahlreiche Beispiele für pulsartige Nährstofffreisetzungen (NSF), die im Rahmen von Monitoringprogrammen dokumentiert wurden. Dabei handelt es sich meist um sprunghafte Erhöhungen von Nährstoffkonzentration nach plötzlicher Änderung der Redox-Bedingungen in Folge von Sauerstoffmangel. Es ist zu erwarten, dass solche pulsartigen NSF-Ereignisse im Zuge des Klimawandels häufiger auftreten werden, da die Schichtung von Gewässern unter höheren Temperaturen länger anhalten und damit das Risiko für das Auftreten von Sauerstoffmangel ansteigen wird. Die Auswirkungen von NSF auf das Phytoplankton sind sehr wahrscheinlich erheblich, weil sein Wachstum in den Sommermonaten oft durch Nährstoffmangel (N, P, Fe) begrenzt ist. Das Ziel des vorliegenden Projekts ist es, Kurzeiteffekte auf das Phytoplankton (Artenzusammensetzung und physiologische Reaktionen, inklusive Art-spezifischer Reaktionen) unter in-situ-Bedingungen zu analysieren und daraus allgemeingültige Konzepte bezüglich der Trigger- und der Responsevariablen abzuleiten. Die Messungen werden in einem flachen Süß- und einem flachen Brackwassersystem mit einer Kombination aus neuartigen, hochauflösenden nasschemischen Sensoren (P), UV-Sensoren (C, N) und Methoden zur Charakterisierung der Phytoplanktonphysiologie (in-situ-Flow Cytometry, Gasaustauschmessungen und verschiedene Pulse-Amplitude-Modulated [PAM]-Fluorometer) durchgeführt. Im Mittelpunkt stehen die Verifizierung der Ursachen sowie die Quantifizierung der kinetischen Parameter (Dauer und Amplitude) von pulsartigen NSF in Kombination mit der quantitativen Erfassung der Auswirkungen auf Phytoplanktonentwicklung und -zusammensetzung. Parallel zu den Feldarbeiten sind Mesokosmos- und Laborexperimente vorgesehen, um unter kontrollierten Bedingungen die Kausalität der Freilandbeobachtungen zu überprüfen. Durch die Arbeiten des Projekts, vor allem die zeitlich hochaufgelösten Erfassungen von Freisetzungskinetik und Phytoplanktonreaktion, werden wegweisende Erkenntnisse erwartet, die insbesondere für Experten im Bereich Wasserqualitätsmanagement von fundamentalem Interesse sein werden. Es ist daher vorgesehen, die Ergebnisse auf frei zugänglichen Wissenschaftsdaten-Plattformen zur Verfügung zu stellen.
Natürliche Nanopartikel (NNP) und bodenstämmige Kolloide werden zunehmend als hoch relevante Transportform von Elementen in wässrigen Phasen von Ökosystemen anerkannt. Zur elementaren Zusammensetzung dieser Partikel und deren Größenspanne liegen erste Erkenntnisse vor, jedoch fehlen weiterhin wichtige fundamentale Informationen über deren zeitliche Dynamiken und deren Herkunft. Die Ziele dieses Projektes sind (i) die zeitlichen Dynamiken von NNP und Kolloiden aufzudecken, (ii) den Einfluss von signifikant erhöhten Abflussereignissen auf den Export von NNP und Kolloid-bedingtem Transport aufzuklären und (iii) die potentielle Herkunft von Bachwasser-NNP und Kolloiden zu erklären. Um eine Vorstellung über die Validität der Ergebnisse (iv) auf europäischer Skala und durch verschiedene Ökosysteme zu bekommen, werden die Analysen an Bachwasserproben von verschiedenen Dauerbeobachtungsflächen durch Europa durchgeführt. Diese Standorte, mit denen ich bereits erste eigene wissenschaftliche Kooperationen etablieren konnte, bieten Daten über die Böden, die Gewässerchemie und Stoffflüsse innerhalb des Ökosystems. Die Analytik wird mit Hilfe von Kombinationsverfahren der Feld Fluss Fraktionierung (FFF) durchgeführt. Für ausgewählte Proben wird größen- und elementspezifische Analytik von NNP und Kolloiden mit der Analyse von Lignin Phenolen, der natürlichen Häufigkeitsermittlung von 13C, Radiokarbondatierung und zusätzlicher d56Fe Analytik kombiniert. Durch die Kombination der Daten sollte es möglich sein das Vorkommen und die Variabilität von NNP und Kolloiden als vorherrschende Elementtransportform, sowie deren Herkunft aus verschiedenen Bodenhorizonten und die generelle Validität meiner Ergebnisse auf unterschiedliche Standorte in Europa besser verstehen zu können.
Bacteria of the genus Legionella cause waterborne infections resulting in severe pneumonia. In Europe, 70Prozent of the cases of the so-called Legionnaires disease (LD) originate from strains of L. pneumophila serogroup (Sg) 1, 20Prozent from other L. pneumophila serotypes and 10Prozent from other Legionella species. In contrast, in the Middle East most legionella infections are due to L. pneumophila Sg3. The overall objective of this project is to advance current knowledge on the ecology of legionella in freshwater systems, the environmental factors affecting their occurrence, virulence potential and infectivity and to understand their transmission to humans. We will analyze the major environmental factors regulating the abundance of legionella, such as grazing and assimable dissolved organic carbon, because the occurrence of these heterotrophic bacteria in aquatic habitats is highly dependent on these factors. We will use an integrated molecular approach based on highresolution diagnostics of environmental samples and clinical isolates to determine the abundance, activity and virulence potential of Legionella populations in-situ. Combining environmental and molecular epidemiological data, we aim at understanding the link between ecology and population dynamics of legionella and cases of LD. The project will result in a novel understanding of the molecular epidemiology of legionella and provide new surveillance tools and strategies to prevent LD.
| Origin | Count |
|---|---|
| Bund | 1290 |
| Land | 15 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 1283 |
| Text | 10 |
| unbekannt | 10 |
| License | Count |
|---|---|
| geschlossen | 16 |
| offen | 1287 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 1044 |
| Englisch | 721 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 2 |
| Dokument | 12 |
| Keine | 422 |
| Webseite | 872 |
| Topic | Count |
|---|---|
| Boden | 1163 |
| Lebewesen und Lebensräume | 1068 |
| Luft | 751 |
| Mensch und Umwelt | 1304 |
| Wasser | 1246 |
| Weitere | 1302 |