Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station am Ludwigkai sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/a879dea4-b157-4cac-9144-ce3d3e65e862?locale=en), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/338fe900-beac-4406-bdb8-b32c0e058cdb?locale=en)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)
We study the effects of plants and root-associated fungi on wind erosion within the alpine environment of Tibet. China is one of the countries most affected by desertification processes and Tibet, in particular, a key region in desertification combat. The presented project focuses on the Barkha Plain surrounded by Mount Kailash and the Lake of Manasarovar (Ngari Prefecture). This Western Tibet region experienced little scientific attention but, nowadays, faces rapidly increasing touristic activities and expanding local settlements associated with socio-economic changes that are serious threats to the delicate ecological balance and potential triggers of desertification. It exists almost unanimous agreement that revegetation is the most efficient and promising strategy to combat wind erosion and desertification in the long term. However, re-colonising success is often poor, mainly under extreme environmental conditions. Compared to conventional practices, the approach of the presented project attains better accordance with natural succession processes and promises acceleration of both plant and soil development and, conclusively, more efficient desertification control. The project assesses the potential of native plants and symbiotic fungi to control wind erosion and desertification processes. It aims to identify key plants and fungi that increase soil aggregate stability and efficiently drive succession into a natural and self-maintaining cycle of the ecosystem. Furthermore, it provides crucial information for implementing environmentally compatible and cost-effective measures to protect high-elevation ecosystems against desertification. Within three successional stages (early, intermediate, late), field investigations are performed on the basis of Modified-Whittaker plots. Classic methods of vegetation analysis and myco-sociology are combined with analysis of distribution patterns at different scales (patchiness, connectivity). Comprehensive soil analysis is performed comprising grain size distribution, aggregate stability, pH as well as water and nutrient contents. Additionally, important parameters of wind erosion are measured concurrently and continuously to assess their magnitude and variability with respect to vegetation and soil at different levels of development. The parameters addressed, include sediment transport, air temperature, radiation, precipitation, relative humidity as well as speed and direction of wind. Surface moisture is recorded periodically and roughness described. Species and environmental parameters are checked for spatial correlation. Cutting edge technologies are applied in laboratory work, comprising molecular methods for fungal species identification and micro-tomography to analyse soil structure. Furthermore, successfully cultivated fungi and plants are subject of synthesis experiments and industrial propagation in view of practical implementation in restoration measures.
Darstellung der über 120.500 registrierten Bäume (Einzelbäume) im Stadtgebiet der Landeshauptstadt Dresden. Dazu zählen Straßenbäume sowie Bäume in Park- und Grünanlagen, auf Spielplätzen, auf Freiflächen von Bildungseinrichtungen, an Gewässern zweiter Ordnung und auf sonstigen kommunalen Flächen. Neben den stark vertretenen typischen Baumarten wie Linde, Ahorn und Kastanie wachsen beispielsweise Ginkgo, Magnolie, Lederhülsenbaum und andere seltenere Baumarten in über 139 Arten und Sorten im Stadtgebiet.
Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in der Zu Rheinstraße sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Linden stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/74e7c788-0882-4ffe-b0dc-74cb0e0fb782), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/b976e56e-9fbf-42dd-86db-1677c2a5dc91?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)
Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station auf dem Landesgartenschaugelände sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 14.04.2025 12 Uhr](https://opendata.smartandpublic.eu/datasets/2525e376-990b-45cb-90b3-71a2e5ae3cbc?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 14.04.2025 13 Uhr](https://opendata.smartandpublic.eu/datasets/7507c65c-a1b2-446d-82e1-fcc14a793552?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)
Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in der Zu Rheinstraße sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Robinien stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 21 Uhr](https://opendata.smartandpublic.eu/datasets/d1f68fc3-c76d-4147-b01e-dfe490ab6331?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 13.11.2024 22 Uhr](https://opendata.smartandpublic.eu/datasets/5dc3648a-66fd-4310-accf-7256db111d5c?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)
Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.
Die Grenzfläche zwischen Ozean und Atmosphäre ist durch einen allgegenwärtigen, < 1 mm dicken marinen Oberflächenfilm, den sogenannten sea-surface microlayer (SML), charakterisiert. Der SML ist nicht nur direkter UV-Strahlung und atmosphärischen Oxidantien ausgesetzt, sondern zeichnet sich im Vergleich zum unterliegenden Wasser auch durch höhere Konzentrationen an organischen Stoffen aus. Bisher ist unklar, welche Bedeutung die dadurch bedingten SML-spezifischen abiotischen Prozesse für die Umsetzung und die Emission organischer Stoffe insgesamt haben und wie man diese Prozesse parametrisieren kann. In diesem Projekt, das eng mit anderen Projekten der interdisziplinären Forschungsgruppe â€ÌBiogeochemische Prozesse und Ozean/Atmosphäre- Austauschprozesse in marinen Oberflächenfilmen (BASS)â€Ì verbunden ist, sollen daher molekulare Details SML-spezifischer Reaktionen (Photochemie, heterogene Oxidation, Radikalchemie) genauer untersucht werden. Ziel ist es, Reaktionsprodukte und -geschwindigkeiten quantitativ zu erfassen und Unterschiede zwischen Reaktionen im SML und in der freien Wassersäule herauszuarbeiten. Basierend auf der Expertise der drei beteiligten Arbeitsgruppen im Bereich Photochemie, Reaktionskinetik, Laserspektroskopie, Analytik und theoretischer Modellierung, soll ein molekulares Verständnis ausgewählter Reaktionen und des Einflusses der komplexen SML-Reaktionsumgebung erreicht werden. Dazu sollen experimentelle Verfahren wie Schwingungs-Summenfrequenzerzeugung, hochempfindliche Chromatographie-Massenspektrometrie und gepulste Laserphotolyse-Langwegabsorption mit Methoden der Quantenchemie und Molekulardynamik kombiniert werden. Arbeitsschwerpunkte bilden die Oxidationskinetik von Halogen- bzw. Hydroxyl-Radikalreaktionen in der flüssigen Phase, die Ozonolyse von Fettsäure-Monoschichten und die durch Photosensibilisatoren verstärkte Bildung von reaktiven Radikalen bzw. Zersetzung von organischen Schichten. Neben wohldefinierten Labor-Modellsystemen werden auch natürliche Proben analysiert werden. Dabei stellt sich z.B. die Frage nach den Einflussfaktoren der während einer Algenblüte zunehmenden Bildung von oberflächenaktiven Stoffen im SML und der Bedeutung der durch die Sonne bedingten Photolyse auf die abiotische Umsetzung organischer Stoffe. Flankierend werden im Projekt auch die eingesetzten Untersuchungsmethoden weiterentwickelt; das beinhaltet sowohl die Ausarbeitung von Messprotokollen zur Quantifizierung bestimmter organischen Substanzklassen (z.B. Carbonyle und Kohlenhydrate) im SML, die Synthese und Charakterisierung von neuartigen oberflächenaktiven Photosensibilisatoren (z.B. Benzoyl-Benzoesäure-funktionalisierte Lipide) sowie die Entwicklung und Erprobung mehrstufiger Modellierungsverfahren zur theoretischen Beschreibung von Struktur-Reaktivitätsbeziehungen der Fettsäure-Ozonolyse (z.B. Beschreibung des Einflusses sterischer und elektronischer Effekte der organischen Matrix).
Zum Gebärdenvideo Auf einem Rundgang mit 42 Tafeln – davon 30 Tafeln mit außergewöhnlichen, detailstarken Fotos und 12 inklusiven Tafeln mit taktilen Elementen und einem Kunstobjekt – regt die Ausstellung „Bahnbrechende Natur“ dazu an, die Stadtnatur zu entdecken. Wegbeschreibung zum Besuch der Ausstellung für Menschen mit Seheinschränkung Zu allen Themen finden Sie auf den folgenden Seiten eine Hörfassung mit den Ausstellungstexten, ausführlichen Bildbeschreibungen und vereinzelt auch Tierstimmen. Sounddesign: picaroMedia Tierstimmen: Tierstimmenarchiv des Museums für Naturkunde Berlin Auf einzelnen Seiten finden Sie außerdem Gebärdenvideos. Der Natur-Park Schöneberger Südgelände ist eine Naturoase, die sich mitten in der Großstadt Berlin auf dem ehemaligen Rangierbahnhof Tempelhof entwickelt hat. Eine Besonderheit ist seine Verbindung von Natur, Bahnrelikten und Kunst. Um den Artenreichtum und die Naturentwicklung langfristig zu erhalten, wurde er 1999 als Naturschutz- und Landschaftsschutzgebiet gesichert. Rücksichtnahme und die Achtung vor Tieren und Pflanzen tragen dazu bei, den Natur-Park Schöneberger Südgelände und seine Einrichtungen zu erhalten. Der Natur-Park Schöneberger Südgelände wurde 2021 erstmals von “Reisen für Alle” auf Barrierefreiheit geprüft und erhält die Zertifizierung bis Mai 2024. Hunde dürfen in den Natur-Park nicht mitgenommen werden. Im Natur-Park ist das Fahrradfahren nicht gestattet. Für Fahrräder stehen Stellplätze zur Verfügung. Das Verlassen des Steges im Naturschutzgebiet ist nicht erlaubt. Lassen Sie Blumen und Pflanzen an Ort und Stelle. Wild lebende Tiere dürfen nicht beunruhigt und Nester nicht zerstört werden. Das Sammeln von Früchten und Pilzen ist nicht gestattet. Müll ist in den dafür vorgesehenen Abfalleimern zu entsorgen. Grillen oder das Anlegen von Feuer ist nicht erlaubt. Der Besuch des Natur-Parks ist kostenpflichtig. Bitte lösen Sie Ihre Eintrittskarte an den Automaten der Eingänge (siehe Plan). Bild: Holger Koppatsch Natur-Park Schöneberger Südgelände Der Natur-Park verdankt seine Entstehung den politischen Entwicklungen nach Kriegsende, der Aufgabe des Rangierbahnhofs im geteilten Berlin, seinem besonderen ökologischen Wert inmitten der Stadt und dem Engagement einer Bürgerinitiative. Das Konzept einer Grüntangente wird entwickelt. Natur-Park Schöneberger Südgelände Weitere Informationen Bild: Andreas Langer Bahnbrechende Natur Der Natur-Park ist Lebensraum seltener und gefährdeter Tier- und Pflanzenarten. Ein Großteil der Fläche steht unter Naturschutz. Der etwa 18 Hektar große Park verfügt über zwei behindertengerechte Rundwege. Veranstaltungen und neue Wege der Umweltbildung verbinden Wissenschaft, Kunst und Naturschutz. Bahnbrechende Natur Weitere Informationen Bild: Konstantin Börner Technische Sehenswürdigkeiten Im Gelände finden sich einige Sehenswürdigkeiten. Solche aus der Bahnära wie der 50 Meter hohe, restaurierte Wasserturm - Wahrzeichen des Geländes, die 1940 gebaute Dampflokomotive 50 3707 sowie die restaurierte Drehscheibe. Die Beschleunigungsröhren sind zwei L-förmige, tunnelartige Installationen. Technische Sehenswürdigkeiten Weitere Informationen Bild: Carl Bellingrodt, Archiv Alfred Gottwald Geschichte und Entwicklung Der Natur-Park verdankt seine Entstehung den politischen Entwicklungen nach Kriegsende, der Aufgabe des Rangierbahnhofs im geteilten Berlin, seinem besonderen ökologischen Wert inmitten der Stadt und dem Engagement einer Bürgerinitiative. Das Konzept einer Grüntangente wird entwickelt. Geschichte und Entwicklung Weitere Informationen Bild: Archiv Bezirksamt Tempelhof-Schöneberg von Berlin, Stadtentwicklungsamt Verschiebebahnhof Tempelhof Ende des 19.Jahrhunderts erforderte zunehmender Personen- und Güterverkehr den Neubau von Werkstätten und Rangierbahnhöfen. Die Gesamtleistung des Verschiebebahnhofs Tempelhof lag an zweiter Stelle unter den neun Rangierbahnhöfen Berlins. Hier wurden Züge der Dresdener und Anhalter Bahn abgewickelt. Verschiebebahnhof Tempelhof Weitere Informationen Bild: Archiv Geoportal Berlin Luftbilder 1953 · 1989 · 2015 Luftbilder von 1953, 1989 und 2015 lassen erkennen, wie sich die Natur das ehemalige Bahngelände nach und nach zurückerobert und sich immer stärker Gehölze ausbreiten. Inzwischen bedecken sie mehr als Zweidrittel des Geländes. Luftbilder 1953 · 1989 · 2015 Weitere Informationen Bild: Josef Vorholt Schutz und Pflege Der Natur-Park wird ab 1996 durch die Grün Berlin GmbH entwickelt, Baumaßnahmen werden großzügig durch die Allianz Umweltstiftung gefördert. 1999 wird das Gelände unter Schutz gestellt. Pflegemaßnahmen der Obersten Naturschutzbehörde steuern die Sukzession und verhindern eine vollständige Bewaldung. Schutz und Pflege Weitere Informationen Bild: Sebastian Hennigs Die Natur kehrt zurück Mit der Aufgabe der Bahnnutzung nehmen Tiere und Pflanzen das Gelände wieder in Besitz. Die Veränderung und zeitliche Abfolge unterschiedlicher Gemeinschaften aus Pflanzen und Tierarten wird „Sukzession“ genannt. Das Endstadium ist ein Waldtyp, der den jeweiligen Standortbedingungen entspricht. Die Natur kehrt zurück Weitere Informationen Bild: Archiv Geoportal Berlin/Luftbild 2011 Grüntangente und Biotopverbund Der Natur-Park ist mit dem Park am Gleisdreieck durch die Fuß- und Radwegeverbindung über den Flaschenhals-Park verbunden. Für den Erhalt der biologischen Vielfalt spielt der Biotopverbund eine große Rolle. Gerade Bahndämme sind dabei von besondere Bedeutung. Grüntangente und Biotopverbund Weitere Informationen Bild: Archiv Stiftung Naturschutz Berlin Natur und Kultur verbinden Die Stahl-Kunst von ODIOUS, Bahnrelikte und wilde Natur geben dem Natur-Park seinen besonderen Charakter. Im Gelände werden vielfältige Aktivitäten und Projekte rund um oder in Verbindung mit der Natur angeboten. Natur und Kultur verbinden Weitere Informationen Bild: Konstantin Börner Giardino Segreto Die Künstlergruppe ODIOUS errichtete mit 30 stählernen Kuben und Skulpturen auf dem 130 Meter langen und 22 Meter breiten ehemaligen Lagerplatz des Rangierbahnhofs einen Giardino Segreto, italienisch: „geheimer Garten“ . Giardino Segreto Weitere Informationen Bild: Grün Berlin/Frank Sperling Kunstobjekt Waldohreule Die Waldohreule ist Symbol für den Naturschutz. Für die Freilandausstellung schuf der Bildhauer Stephan Hüsch 2019 ein Kunstobjekt aus Kunststein, das in wesentlichen Zügen dem natürlichen Vorbild entspricht. Wie Waldohreulen aussehen und was sie besonders auszeichnet, erfahren Sie hier. Kunstobjekt Waldohreule Weitere Informationen Bild: Josef Vorholt Artenvielfalt dank Schutz und Pflege Auf den nährstoffarmen, trockenen Kies- und Schotterböden des ehemaligen Bahngeländes siedelte sich eine an diese Bedingungen angepasste Tier- und Pflanzenwelt an. Um die Lichtungen zu erhalten, wird dem Vordringen von Bäumen und Sträuchern durch Pflegemaßnahmen Einhalt geboten. Artenvielfalt dank Schutz und Pflege Weitere Informationen Bild: Paul Westrich Gefährdete Arten zwischen den Gleisen Viele gefährdete Insektenarten, wie Langhorn- und Seidenbiene, Heidegrashüpfer und Blauflügelige Ödlandschrecke kommen auf den Offenflächen vor. Das Wiesen-Habichtskraut hat hier eines seiner wenigen Vorkommen in Berlin. Ideale Lebensbedingungen findet die europaweit geschützte Zauneidechse. Gefährdete Arten zwischen den Gleisen Weitere Informationen Bild: Andreas Langer Blütenmeer im Gleisbett Die blütenreichen Wiesen ziehen viele Insekten, darunter Schmetterlinge an. Wie auch bei den Wildbienen sind viele an bestimmte Futterpflanzen gebunden. Der Schwalbenschwanz bevorzugt rotviolette bis blaue Blumen wie Natternkopf und Flockenblume, seine Raupe aromatische Doldenblütler wie Wilde Möhre. Blütenmeer im Gleisbett Weitere Informationen Bild: Kühne & Saure Artenreichtum auf engem Raum Wildbienen ernähren sich von Pollen und Nektar der Blüten. Etwa 30 % der Arten sind auf bestimmte Blühpflanzen angewiesen. Bienen sind weltweit die wichtigsten Bestäuber. Anders als die Honigbiene nisten Wildbienen im Boden, andere in Pflanzenstängeln. Mehr über ihren Lebenszyklus lesen sie hier. Artenreichtum auf engem Raum Weitere Informationen Bild: Konrad Zwingmann Lautstarke Hüpfer Im Natur-Park kommt u.a. der Heidegrashüpfer vor, eine typische Art der Sandtrockenrasen. Heuschrecken unterscheiden sich in ihrer Gestalt, aber auch in ihren Lauten, an denen sie sich wie Vögel erkennen lassen. Die Lauterzeugung geschieht auf unterschiedliche Weise. Lautstarke Hüpfer Weitere Informationen Bild: Wolfgang Brandmeier Gefiederte Rückkehrer Der Wald nimmt mehr als zwei Drittel des Geländes ein. Nachtigall und Buntspecht gehören zu den Vogelarten, die die parkartigen Waldbereiche bevorzugen. Der Neuntöter fühlt sich in den nur locker mit Gehölzen durchsetzten Flächen wohl. Stieglitze finden hier Samen aller Art und der Turmfalke Mäuse. Gefiederte Rückkehrer Weitere Informationen Bild: Holger Koppatsch Der Wald ist auf dem Vormarsch Hier lässt sich die Waldentwicklung auf einer innerstädtischen Brache verfolgen. Birken und Robinien, die sich als Pioniergehölze angesiedelt hatten, werden nun durch die nächste Baumgeneration aus nährstoffliebenden Arten wie Linde, Spitzahorn und Stieleiche abgelöst. Der Wald ist auf dem Vormarsch Weitere Informationen Bild: Josef Vorholt Baumporträts Im Gelände kommen verschiedene Baumarten vor. Ausgewählte Arten werden vorgestellt. Was Hänge-Birke, Zitterpappel, Robinie und Stieleiche unterscheidet, erfahren sie hier. Baumporträts Weitere Informationen Öffnungszeiten von 09:00 Uhr bis zum Einbruch der Dunkelheit – bei Abendveranstaltungen auch länger. Bitte beachten Sie, dass das Gelände abgeschlossen wird. Führungen und Veranstaltungen Hinweise entnehmen Sie bitte den aktuellen Aushängen oder der Website Natur-Park Schöneberger Südgelände . Einen angenehmen und erholsamen Besuch wünschen Ihnen die Parkverwaltung Grün Berlin GmbH, das Bezirksamt Tempelhof-Schöneberg von Berlin und die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt – Oberste Naturschutzbehörde. Die Informationstafeln im Natur-Park wurden von der Obersten Naturschutzbehörde der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt erstellt. Die Erschließung und Gestaltung des Natur-Parks wurden unterstützt durch die Allianz Umweltstiftung. Das Planungskonzept wurde von der Arbeitsgemeinschaft planland/ÖkoCon entwickelt.
Im Museum sollen die hergebrachten Formen der Waldbewirtschaftung aufgezeigt werden. Im Niederwald werden die Bäume zur Brennholzgewinnung in 15- bis 25-jährigem Turnus auf den Stock gesetzt. Vor allem Hainbuche, Ahorn und Linde treiben rasch wieder aus, während Nadelbäume durch häufigen Hieb verdrängt werden. Im Mittelwald bleiben zur Bauholzgewinnung einige Bäume als Überhälter stehen, während der Rest niederwaldartig genutzt wird. Im heute üblichen Hochwald kann die Umtriebszeit mehr als hundert Jahre betragen. Außer zur Holznutzung diente der Wald früher als Viehweide, zur Streuentnahme, zur Harz-, Pottaschen- (Glasherstellung) und Rindengewinnung (Gerberei) sowie als Bienenweide (Zeidlerei).
| Origin | Count |
|---|---|
| Bund | 507 |
| Kommune | 63 |
| Land | 274 |
| Wissenschaft | 3 |
| Zivilgesellschaft | 43 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 21 |
| Chemische Verbindung | 6 |
| Daten und Messstellen | 54 |
| Ereignis | 5 |
| Förderprogramm | 342 |
| Gesetzestext | 1 |
| Hochwertiger Datensatz | 1 |
| Taxon | 73 |
| Text | 146 |
| Umweltprüfung | 41 |
| WRRL-Maßnahme | 31 |
| unbekannt | 103 |
| License | Count |
|---|---|
| geschlossen | 205 |
| offen | 543 |
| unbekannt | 65 |
| Language | Count |
|---|---|
| Deutsch | 706 |
| Englisch | 250 |
| andere | 1 |
| Resource type | Count |
|---|---|
| Archiv | 21 |
| Bild | 9 |
| Datei | 30 |
| Dokument | 88 |
| Keine | 416 |
| Unbekannt | 1 |
| Webdienst | 47 |
| Webseite | 281 |
| Topic | Count |
|---|---|
| Boden | 423 |
| Lebewesen und Lebensräume | 791 |
| Luft | 353 |
| Mensch und Umwelt | 772 |
| Wasser | 351 |
| Weitere | 776 |