API src

Found 587 results.

Similar terms

s/linse/Linde/gi

Klimaerlebnisbaum - Rottendorf - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in Rottendorf sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Linden stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 01.12.2024 12 Uhr](https://opendata.smartandpublic.eu/datasets/a00d7121-fc5b-4b4d-ad19-5b0e3689b5dd?locale=en#state=011dcbe3-d7f2-4512-ac48-b8d08b563e01&session_state=45ffef6b-701d-4846-ac6d-9af6d7c6ff80&iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub&code=a85c0ca8-b9b3-4785-bd45-11b0d3201e34.45ffef6b-701d-4846-ac6d-9af6d7c6ff80.cc28098c-2fc1-472b-a4ca-77a8ebde7f28)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Ludwigkai - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station am Ludwigkai sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/a879dea4-b157-4cac-9144-ce3d3e65e862?locale=en), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/338fe900-beac-4406-bdb8-b32c0e058cdb?locale=en)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Zu Rheinstraße - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in der Zu Rheinstraße sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Linden stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 13 Uhr](https://opendata.smartandpublic.eu/datasets/74e7c788-0882-4ffe-b0dc-74cb0e0fb782), [ab 13.11.2024 14 Uhr](https://opendata.smartandpublic.eu/datasets/b976e56e-9fbf-42dd-86db-1677c2a5dc91?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Landesgartenschaugelände - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station auf dem Landesgartenschaugelände sind mehrere Linden der Art Tilia mit Sensoren versehen. Die Daten eines dieser Bäume stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 14.04.2025 12 Uhr](https://opendata.smartandpublic.eu/datasets/2525e376-990b-45cb-90b3-71a2e5ae3cbc?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 14.04.2025 13 Uhr](https://opendata.smartandpublic.eu/datasets/7507c65c-a1b2-446d-82e1-fcc14a793552?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Klimaerlebnisbaum - Zu Rheinstraße - Robinia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in der Zu Rheinstraße sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Robinien stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 13.11.2024 21 Uhr](https://opendata.smartandpublic.eu/datasets/d1f68fc3-c76d-4147-b01e-dfe490ab6331?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub), [ab 13.11.2024 22 Uhr](https://opendata.smartandpublic.eu/datasets/5dc3648a-66fd-4310-accf-7256db111d5c?locale=en#iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Grundhafte Erneuerung und Umgestaltung der Straße Unter den Linden von Pariser Platz bis Schloßbrücke

Planungsphase Der Straßenzug Unter den Linden soll mit einem grundlegenden Umbau seine Bedeutung als attraktiver Hauptstadtboulevard Berlins zurückgewinnen. Seit den 1950er Jahren gab es keine umfassenderen Ideen für die Weiterentwicklung des Boulevards im Herzen des historischen Berlins. Mit neuer Zielrichtung starten im Herbst 2023 die Planungen für die Verkehrsanlage. Um die Mittelpromenade vorgezogen aufzuwerten, wurde die Entwurfsplanung der Freianlagen initiiert. Zentrale Vision ist es, einen öffentlichen Raum mit höherer Aufenthaltsqualität und mehr Verkehrssicherheit für alle zu schaffen. Zusätzlich soll er den Anforderungen aus dem Klimawandel Rechnung tragen. Im Fokus der mehrere Jahre dauernden Umgestaltung steht der etwa 770 Meter lange Abschnitt zwischen Wilhelm- und Universitätsstraße. Das Vorhaben Der Bau Zahlen und Daten Unter den Linden war in der Geschichte Berlins stets mehr als nur ein Verkehrsweg. Der Boulevard spiegelt seit seiner Entstehung im 16. Jahrhundert immer auch das Selbstverständnis Berlins wider. Während früher der Adel die Prachtstraße nach seinen Bedürfnissen anlegte, dominierte später der motorisierte Verkehr große Teile der Fläche im Herzen des historischen Berlins und tut dies bis heute. Berlin hat mit dem Mobilitätsgesetz festgelegt, dem Umweltverbund aus öffentlichen Verkehrsmitteln sowie dem Fuß- und Radverkehr mehr Bedeutung zu verschaffen und das Straßengrün zu stärken. Das Selbstverständnis Berlins hat sich erneut verändert: mit dem grundhaften Neubau der Straße Unter den Linden soll ein Ort entstehen, wo die Aufenthaltsqualität für alle im öffentlichen Raum deutlich zunimmt und in dem zu Fuß gehende, Spazierende und Radfahrende unter Berücksichtigung der Verkehrssicherheit ihren Platz finden. Es wird angestrebt, dass dieser Straßenabschnitt als gewidmete Bundesstraße aufgegeben wird. Die Modernisierung des Boulevards findet in mehreren Phasen statt. Projektstart mit einer Referenzfläche auf der Mittelpromenade zwischen Pariser Platz und Wilhelmstraße: Für die langfristig geplante gestalterische und ökologische Aufwertung der Mittelpromenade – auch mit Fokus auf den aktuellen Baumzustand der Linden – ist 2021 eine grüne Beispielfläche in Höhe Hotel Adlon realisiert worden. Gegenstand ist die hochwertige Einfassung der Baumbeete in Verbindung mit Staudenpflanzungen und einem digital gesteuerten Bewässerungssystem. Die bepflanzte Referenzfläche vor dem Hotel Adlon zeigt, wie die neue Grüngestaltung des Mittelstreifens aussehen kann. Weitere Informationen Erste Phase mit deutlichen Verbesserungen, für den Bus- und Radverkehr: Von Herbst 2021 bis Juni 2023 wurde der Straßenbelag in Abschnitten erneuert und die Fahrbahnen neu markiert. Im Zuge dessen erfolgte eine neue Aufteilung des Straßenraums unter Berücksichtigung der Vorgaben aus dem Mobilitätsgesetz mit je einem Fahrstreifen für den Kfz-Verkehr, den Busverkehr und den Radverkehr. So wurde erreicht, dass der Straßenraum viel gleichmäßiger verteilt ist. Zweite Phase mit einer grundhaften baulichen Erneuerung des Straßenraumes: Wir setzen die 2021 gestartete Debatte innerhalb der Stadtgesellschaft zur grundhaften Neugestaltung des Boulevards fort. Ziel ist es, die Aufenthaltsqualität in unmittelbarer Nähe von Kultureinrichtungen, der Humboldt-Universität und anderen Institutionen zu verbessern, so Handel, Gastronomie und Hotellerie zu unterstützen und Unter den Linden zu einem attraktiven Ort für Einheimische und Besucherinnen und Besucher zu machen. Schritt (1): Als vorgezogener erster Bauabschnitt ist die Neugestaltung der zum Teil baumlosen Mittelpromenade geplant. Dieser Abschnitt kann unabhängig von der verkehrlichen Querschnittsdiskussion umgesetzt werden. Aufgrund der geringen Vitalität und zu erwartenden geringen Lebensdauer des Altbaumbestandes ist der Ersatz und die Entwicklung einer neuen, gesunden und klimaangepassten Baumallee aus Silberlinden zentraler Bestandteil der Maßnahme. Darüber hinaus werden die lückenhaften und stark verdichteten Rasenflächen durch hochwertige Pflanzbeete mit einer attraktiven, reich blühenden, artenreichen und insektenfreundlichen Bepflanzung ersetzt. Zum Schutz ist eine erhöhte Umgrenzung aus Granitelementen vorgesehen. Durch das geplante dezentrale Regenwassermanagement wird das anfallende Regenwasser der Mittelpromenade direkt in die Baumbeete eingeleitet. So kann das Regenwasser sowohl den Pflanzen als auch zur Verdunstung mit Abkühlungseffekten dienen. Das entspricht dem Schwammstadtprinzip. Zusätzlich wird für Trockenperioden eine digital gesteuerte Bewässerungsanlage eingebaut. Die im April 2024 für die gesamte Mittelpromenade abgeschlossene Entwurfsplanung erfolgte optisch adäquat zur Gestaltung der Mittelinsel vor dem Hotel Adlon. Mit der Genehmigung der Bauplanungsunterlage (Entwurfsplanung) im Dezember 2024 und der Zusage des Hauptausschusses im Abgeordnetenhaus von Berlin im Juni 2025 zur Finanzierung wurden die Voraussetzungen für die Fortführung der Planung und die Realisierung erzielt. Der Baubeginn ist aktuell für das 2. Quartal 2026 avisiert. Seit 2020 waren Verbände, Behörden und die Öffentlichkeit involviert. Mit einer iterativen Baurealisierung wird gesichert, dass im Zuge des Gesamtbauvorhabens in der Straße immer die namensgebenden Linden präsent sind. Schritt (2): Die Verkehrsanlagenplanung ist im Dezember 2023 gestartet. Die öffentlichen Verkehrsflächen zwischen den Gebäuden und der Mittelpromenade, die sich von der Wilhelmstraße bis zur Universitätsstraße erstrecken, werden im Rahmen dieser Planung neu konzipiert. Im Focus steht insbesondere die Verbreiterung der Gehwege. Die Neuaufteilung der Flächen für den Rad- und Kfz-Verkehr erfolgt unter Berücksichtigung der Interessen des ÖPNV-/ Wirtschafts-/ Rad- und Individualverkehrs. Besonderes Augenmerk liegt auf einer dem Boulevard angemessenen hochwertigen Gestaltung der öffentlichen Räume. Im Rahmen der Vorplanung werden zur Querschnittsgestaltung Varianten planerisch konzipiert und Vor- und Nachteile herausgearbeitet. Die Auswahl einer Vorzugsvariante erfolgt unter Beteiligung der Träger öffentlicher Belange und maßgebender Akteure sowie unter Berücksichtigung von Hinweisen und Empfehlungen der 2021 durchgeführten Umfrage auf mein.berlin.de. Im 4. Quartal 2025 wird die Vorzugsvariante auf geeignete Weise der Öffentlichkeit präsentiert.

Erneuerung der Beleuchtungsanlagen auf dem Bebelplatz

Der Bebelplatz ist einer der herausragenden historischen und stadtgestalterisch bedeutsamen Orte in Berlin. Zentrale Bedeutung hat das Denkmal zur Erinnerung an die Bücherverbrennung inmitten des Platzes. Das Denkmal ist als unterirdischer beleuchteter Raum mit leeren Bücherregalen durch eine im Platzpflasterbelag eingelassenen Glasscheibe erlebbar. Raumbegrenzend sind die historischen Fassaden der Juristischen Fakultät der Humboldt-Universität im Westen, die Staatsoper Unter den Linden im Osten, im Süden der Block mit dem Hotel de Rom, sowie dem Portal der St. Hedwig-Kathedrale. Bereits zu Beginn der 2000er Jahre wurde im Zuge der Wiederherstellung der historischen Mitte Berlins ein Lichtmasterplan vom Büro Kardorff Ingenieure entwickelt, welcher der Bedeutung des Platzes und des Denkmals Rechnung trägt. Die damals errichteten Lichtstelen mit konventionellen Leuchtmitteln mussten nach mehr als 20 Jahren erneuert werden. Hieraus ergab sich die Möglichkeit, das ursprüngliche Konzept des Masterplans mit der nunmehr zur Verfügung stehenden LED-Technologie effizienter und besser umzusetzen, als es ursprünglich realisiert werden konnte. Seit Juli 2025 erstrahlt das historische Ensemble im Herzen Berlins nun in neuem Licht. Das Projekt wurde jetzt gemeinsam mit der Stromnetz Berlin GmbH BerlinLicht nach dem Entwurf des Büros von Kardorff Ingenieure Lichtplanung GmbH fertiggestellt. Die Kosten betrugen 486.000 Euro. Die Beleuchtungsanlagen sind als zylindrische Stelen in ihrem eigenen Ausdruck stark zurückhaltend. Ihre Anordnung ist flankierend zum Platz den Fassaden zugeordnet. Die möglichst gleichmäßige Beleuchtung der Fassaden hat zum Ziel, die Wirkung des Denkmals zu unterstützen und keine eigenen Akzente zu setzen. Es wurden besondere Anforderungen an die zu erzielende vertikale Beleuchtung der Fassaden gestellt und technologisch ausgereifte Produkte verwendet. Die tatsächliche Erfüllung der geforderten lichttechnischen Eigenschaften wurde nicht nur anhand aufwendiger Berechnungsmodelle, sondern auch mit einer Musterinstallation und visuellen Begutachtung gemeinsam mit Projektbeteiligten überprüft. Nach Abstimmung mit den betroffenen Anrainern wurden die Bestandsstandorte um zwei weitere Lichtstelen zur Beleuchtung der St. Hedwig Kathedrale ergänzt. Zusätzlich zur optimierten Lichttechnik verfügt die Anlage über eine Steuerung, die eine bedarfsgerechte Beleuchtung über den Verlauf des Abends und der Nacht ermöglicht. In den frühen Abendstunden mit einer hohen Frequenz von Fußgängern und Besuchsgruppen bietet eine helle Beleuchtung der Fassaden beste Orientierung und Wahrnehmung des Stadtplatzes mit seinem Denkmal. Aus der zentralen Perspektivachse ist keine Lichtquelle der Lichtstelen ersichtlich, die von der leuchtenden Fläche des Denkmals in der Platzmitte ablenkt. Hierfür sind die obersten Lichtmodule der Stelen ausgeschaltet. Ab einem späteren Zeitpunkt um 23 Uhr wird die Fassadenbeleuchtung reduziert und die horizontale Ausleuchtung der Platzoberfläche durch ein Zuschalten der obersten, gedimmten Lichtmodule gewährleistet. Der Stadtraum bleibt mit der Wahrnehmbarkeit der Fassaden weiterhin gut ersichtlich, die Lichtmenge ist aber stark reduziert. Ab den Nachtstunden von 1:00 Uhr bis zur Morgendämmerung wird die Fassadenbeleuchtung komplett ausgeschaltet und eine etwas höhere Lichtleistung der obersten Module übernimmt die Beleuchtung für die Verkehrssicherung auf der Fläche. Es ist gemeinsam mit den Projektbeteiligten in einem behutsamen Entwicklungsprozess gelungen, ein optimiertes Ergebnis zu erzielen. Dabei wurden nicht nur die bewährten Gestaltungsansätze verbessert umgesetzt, sondern auch eine neue Flexibilität für die aktuellen oder zukünftigen Beleuchtungsszenarien durch den Einsatz innovativer Telemanagement-Komponenten eingeführt. Die modular zusammengesetzten Lichtstelen sind zukunftssicher für künftige Anwendungen erweiterbar ausgelegt.

Grundwassermessstelle Groß Schönebeck,NE Suppenbruch (Messstellen-Nr.: 30471179)

Die Grundwasser-Messstelle mit Messstellen-ID 30471179 wird vom Landesamt für Umwelt Brandenburg betrieben, in Zuständigkeit des Standorts LfU Potsdam_N. Sie befindet sich in Groß Schönebeck,NE Suppenbruch (Weggabelung "Königs Linden"). Die Messstation gehört zum Beschaffenheitsmessnetz. Die Messstellenart ist Beobachtungsrohr. Nummer des Bohrloches: Hy Pb 11/79. Der Grundwasserleiter wird beschrieben als: GWLK 1 (weitgehend unbedeckt). Der Zustand des Grundwassers wird beschrieben als: frei. Der zugehörige Grundwasserkörper ist: DEGB_DEBB_ODR_OD_1-1. Der Messzyklus ist 4 x monatlich. Die Anlage wurde im Jahr 1979 erbaut. Ein Schichtverzeichnis liegt vor. Das Höhenprofil in diesem System ist: Messpunkthöhe: 63.63 m Geländehöhe: 63.10 m Filteroberkante: 51.19 m Filterunterkante: 49.69 m Sohle (letzte Einmessung): 49.06 m Sohle bei Ausbau: 48.69 m Die Messstelle wurde im Höhensystem NHN92 eingemessen.

LSG Arendsee Gebietsbeschreibung Landschafts- und Nutzungsgeschichte Geologische Entstehung, Boden, Hydrographie, Klima Pflanzen- und Tierwelt Entwicklungsziele Exkursionsvorschläge Verschiedenes

Das LSG liegt in der Landschaftseinheit Westliche Altmarkplatten. Es umfaßt im wesentlichen den Arendsee, der mit 514 ha rund 77,5 % der LSG-Fläche einnimmt. Ein relativ schmaler Uferstreifen rings um den See vervollständigt das LSG. Im Süden grenzt die Ortschaft Arendsee mit ihrer Uferpromenade unmittelbar an das Gebiet. Der rundovale, buchtenlose Arendsee ist fast völlig von Wald umgeben. Er wird oftmals als ”Perle der Altmark” bezeichnet. Lediglich im Südosten grenzen die Bebauung der Stadt Arendsee und am Nordufer Felder und Wiesen bei Zießau an den See. Das Waldgebiet besteht vorwiegend aus forstlich geprägten reinen Kiefernbeständen. Es bildet im Süden und im Westen einen nur 150 bis 200 m breiten Gürtel, wogegen es im Osten und Nordosten weitflächiger ist. Die waldbestandenen Uferpartien im Süden und Westen sind steil ausgeprägt und erreichen mit den Sand-Bergen eine Höhe von 38,9 m über NN, während der Seespiegel bei 23 m über NN liegt. Am Hangfuß verläuft bei Arendsee die mit Linden und Eichen bestandene Uferpromenade, ein anschließender schmaler Uferstreifen ist mit Laubgehölzen bestanden. Er verbreitert sich westlich der Ortslage Arendsee und ist parkartig gestaltet. Das Nordufer des Sees ist flach. Kleine Ackerflächen und die sogenannte ”Försterwiese” als Grünland sind dort in das LSG einbezogen. Der am See vorhandene Schilfgürtel ist durch den Bau zahlreicher Bootsstege und durch die Schaffung von Zufahrten ebenso beeinträchtigt wie der Gehölzbestand an der Wochenendsiedlung und dem ehemaligen Zeltplatz. Der Arendsee wurde im Jahr 822 zum ersten Mal genannt. Dabei wird berichtet, daß die Landschaft um den Arendsee zum Land der Sachsen gehörte und dem Gebiet der Slawen benachbart lag. Im 9. und 10. Jahrhundert ließen sich die Slawen dann auch in der Umgebung des Arendsees nieder. 1184 wurde mit dem Bau eines Benediktiner-Nonnenklosters begonnen, das bis zur Mitte des 16. Jahrhunderts existierte. 1457 erhielt der Ort Arendsee Stadtrecht. Neben Handel und Handwerk bildeten Land- und Forstwirtschaft die wirtschaftliche Grundlage. Die ursprünglich in der Altmark vorhandenen großen Wälder wurden teilweise bereits zwischen dem 8. und 14. Jahrhundert, also in der Zeit der Landnahme bis zur Kolonisation, besonders auf den leicht zu bewirtschaftenden Sandböden gerodet und zu Acker umgenutzt. Die verbliebenen Wälder wurden beweidet. Es gab Zeiten, in denen sich die Wälder durch Nichtnutzung wieder ausdehnten, zum Beispiel im Dreißigjährigen Krieg. Auch die Zeit von 1750 bis 1850 war eine Flurwüstungsperiode. Ausgedehnte sogenannte ”Wölbackerfluren” unter Wald künden von dieser Zeit. Zu Beginn des 19. Jahrhunderts erfolgten auch Aufforstungen, jedoch vorwiegend nur mit Kiefer. Durch Schafhutung entstanden nutzungsbedingt auch größere Heideflächen. Der Arendsee selber wird aufgrund seines Fischreichtums seit langer Zeit fischereilich genutzt, in der jüngst zurückliegenden Zeit sogar recht intensiv. Industrie ist im unmittelbaren Umland nicht zu finden, an dem See hat sich zunehmend eine Erholungsnutzung entwickelt. Der Arendsee befindet sich geologisch gesehen im Bereich der Nordöstlichen Altmark-Scholle, die zur Norddeutschen Senke gehört. Der variszisch (vor ca. 325 Millionen Jahren) gefaltete altpaläozoische Untergrund ist entlang der herzynisch (von Südost nach Nordwest) verlaufenden Störungszonen zerblockt und abgesenkt worden, so daß er sich heute unter der permischen, mesozoischen und känozoischen Senkenfüllung in ca. 5 500 m Tiefe befindet. Die Senkenfüllung besteht im wesentlichen aus Bildungen des Tafeldeckgebirges, das vor zirka 250 Millionen Jahren im oberen Perm mit den Zechsteinschichten begann. Diese enthielten primär ca. 500-600 m mächtige Stein- und Kalisalze, die für das nachfolgende Strukturbild in der Altmark verantwortlich sind. Die tektonischen Bewegungen führten ab der Keuperzeit zur weiteren Zerblockung des postsalinaren Deckgebirges und zur Entstehung von Schwächezonen, insbesondere im Kreuzungsbereich der Störungen. Da die Zechsteinsalze plastisch reagieren, wanderten sie mit der zunehmenden Mächtigkeit des postsalinaren Deckgebirges aus Gebieten hoher Druckbeanspruchung zu den Schwächezonen ab, wo sie sich mit hohen Mächtigkeiten von zirka 3 000 m sammelten. Entlang einer rheinisch (von Südwest nach Nordost) verlaufenden Störungszone reihen sich die Salzstrukturen Jahrstedt-Ristedt, Poppau, Apenburg, Lüge und Arendsee ein, die ab dem Keuper aufstiegen. Nach dem Durchbruch der Salzstrukturen am Anfang der Kreide (Wealden) sind viele später mit Ablagerungen der Kreide, des Tertiärs und des Quartärs wieder bedeckt worden. Andere, wie zum Beispiel der Salzstock Arendsee, blieben weiterhin aktiv. Durch die anhaltende Aufwölbung an der Spitze des Salzstockes wurden jüngere Deckschichten immer wieder abgetragen. Im Pleistozän wurden die Salzbewegungen insbesondere während der Warmzeiten durch Druckentlastung nach dem Abschmelzen des Eises verstärkt. Eine Folge von periodischen Hebungen an der Spitze war die weitere Abtragung der Schichten, so daß die löslichen Salze ungeschützt nahe der Oberfläche dem Wasser ausgeliefert waren. Die Auslaugung der Salze ist wahrscheinlich in der Weichselkaltzeit durch mehrmaliges Auftauen des Dauerfrostbodens verstärkt worden, an der Spitze des Salzstockes bildete sich ein Gipshut mit Kavernen und Hohlräumen. Im Nordteil des heutigen Sees entstand im Spätglazial ein Einsenkungssee, der als ”Wendischer See” bekannt war. Darin lagerte sich ab der Allerödzeit Seekreide ab, die heute am Nordufer noch als weißer Streifen unter dem Wasser erkennbar ist. Das Einbrechen der restlichen Deckschichten über Hohlräumen führte zur Erweiterung des Sees im Holozän. Als Auslöser des ersten historisch erwähnten Einbruches wird ein Erdbeben im Jahre 815 im nördlichen Deutschland vermutet. Es folgten weitere große Erdfälle von 820 und 1685, die zur Vergrößerung der Seefläche und zu örtlichen trichterförmigen Vertiefungen (bis zu 50 m) in dem sehr unebenen Seeboden führten. Die Salzbewegungen beschränken sich heute nur auf den westsüdwestlichen Teil des Salzstockes. Die aufsteigenden Salze heben die Deckschichten, die hier das markante Steilufer bilden, weiter nach oben. Im Ort Arendsee und am Südwestufer (zum Teil unter den Dünen) sind saalekaltzeitliche Geschiebemergel und am Westufer miozäne kohleführende Sande an steilen Hängen zu beobachten. Dagegen versumpfen die flachen Seeufer im Norden und Nordosten und weisen damit auf eine relative Absenkung dieser Bereiche hin. Die Versumpfung wird allerdings durch die Anwehung der Dünensande von Nordosten begrenzt. Der Arendsee liegt auf der Westlichen Arendsee-Platte. Im Nordwesten grenzt er an die Niederung der östlichen Altmark, im Nordosten an die Lüchower Niederung. Der Ufersaum beinhaltet Gleye und teilweise humusreiche Gleye aus Sand. Im Bereich der Niederterrassen kommen hierzu lokal Niedermoore aus Torf und aus Torf über Mudde, inselhaft sind hier die Vorkommen der Podsol-Gley-Braunerden aus Flugsand über Niederungssand. In den Dünenbereichen der Lüchower Niederung und der westlichen Arendsee-Platte sind Eisenhumuspodsole bis Regosole aus Flugsand entwickelt. Auf der Arendsee-Platte dominieren im Randbereich des Sees Sandböden: Podsole bis Braunerde-Podsole aus Flugsand über tertiärem Sand und podsolige Braunerden bis Podsol-Braunerden aus periglaziärem Sand über Schmelzwassersand. Gering verbreitet sind Braunerde-Fahlerden bis Podsol-Fahlerden aus Geschiebedecksand über Geschiebelehm. Auf der Arendsee-Platte dominieren im Randbereich des Sees Sandböden: Podsole bis Braunerde-Podsole aus Flugsand über tertiärem Sand und podsolige Braunerden bis Podsol-Braunerden aus periglaziärem Sand über Schmelzwassersand. Gering verbreitet sind Braunerde-Fahlerden bis Podsol-Fahlerden aus Geschiebedecksand über Geschiebelehm. In der gewässerarmen Landschaft der Altmark bildet der 514 ha große und durchschnittlich 29 m (max. 48,7 m) tiefe Arendsee das einzige größere Gewässer. Neben seiner großen Tiefe und einem geringen oberirdischen Zufluß wird er durch eine überaus lange Verweilzeit des Wassers von 114 Jahren gekennzeichnet. Seine Wasserbeschaffenheit ist eutroph, verursacht durch die Einleitung kommunaler Abwässer der Stadt Arendsee. Trotz Bau und Betrieb einer zentralen Abwasserbehandlungsanlage und durchgeführter Sanierungsmaßnahmen, wie Tiefenwasserableitung (seit 1976) und Zuführung von seeigener Kreide vom Nordufer (1995), hat sich der Trophiegrad noch nicht durchgreifend verbessert. Es ist sogar eine Zunahme der Phosphatbelastung festzustellen, die auf die starke Kotzufuhr durch die Scharen überwinternder Gänse zurückgeführt wird. Die beiden dem Arendsee zufließenden kleinen Fließgewässer, der Werftgraben aus Richtung Heiligenfelde-Gestien und der von Genzien kommende Kanal, sind verrohrt. Ein Abfluß erfolgt über das Tiefenrohr in den Mühlengraben bei Schrampe. Klimatisch liegt das Gebiet um den Arendsee im Übergangsbereich zwischen dem atlantischen Seeklima und dem mitteldeutschen Binnenklima, wobei die große Wasserfläche kleinklimatisch eine temperaturausgleichende Wirkung ausübt. Mit 578 mm durchschnittlichem Jahresniederschlag weist das Gebiet die höchste Niederschlagsmenge der Altmark auf. Die Jahresmitteltemperaturen betragen ca. 8,5 o C (Mittel: Juli 17,5 o C, Januar 0 o C). Neben der Wasservegetation ist für das Gebiet um den Arendsee der Hainsimsen-Rotbuchenwald als potentiell natürliche Vegetation anzusehen. Von Nordwesten her erreichten die Erlen-Bruchwälder der Lüchower Niederung das Seegebiet. Die forstliche Überprägung der Wälder bewirkte jedoch ein Überwiegen der reinen Kiefernforste, so daß diese Baumart zu rund 75 Prozent die Baumartenzusammensetzung bestimmt. Zu einem geringen Anteil finden sich Schwarz-Erle vermischt mit Weiden- und Pappelarten sowie Birke und Aspe in einem kleinen bruchartigen Gebiet zwischen See und Seeuferweg. Das Grünland ist als Wirtschaftsgrünland ausgebildet, lediglich die ”Försterwiese” ist artenreicher. In der Uferzone des Sees stockt ein Binsengürtel, vorwiegend aus Flatter-Binse bestehend. In flachen Wasserzonen kommen Wasserschlauch und Froschbiß vor. Das Röhricht wird aus Schilf sowie Breit- und Schmalblättrigem Rohrkolben gebildet, in seinen Randzonen wachsen Gemeiner Froschlöffel, Ästiger Igelkolben und Pfeilkraut. Die Sumpf-Sitter, eine selten gewordene Wiesenorchidee, wächst in einer Wiese an der Fischerei Kagel. Die Tierwelt wird bestimmt durch die Vogelwelt, von der besonders die Wasservögel sowohl als Brutvögel als auch als Durchzügler und Wintergäste auftreten. Vor allem Saat- und Bleßgänse in großer Zahl und Singschwäne überwintern im Gebiet und nutzen den See, solange er eisfrei ist, als Schlafgewässer. Stockente, Höckerschwan, Bleßralle, Wasserralle, Rohrweihe, Schilf- und Teichrohrsänger sowie Rohrammer brüten im Röhricht. In der Nähe des Arendsees befinden sich auch zwei Storchenhorste. Eine Graureiherkolonie mit etwa 15 Brutpaaren besteht an der Fischerei Kagel. Der Fischreichtum des Sees animiert durchziehende Fischadler zum Verweilen, und auch überwinternde Seeadler finden reichlich Nahrung. In den Uferwäldern brüten Mäusebussarde und eine Reihe von Kleinvogelarten, wie Nachtigall, Zilpzalp und Baumpieper. In den Uferregionen und angrenzenden Waldgebieten trifft man die Säugetierarten Reh, Wildschwein, Fuchs, Steinmarder, Iltis und Hermelin sowie Igel, Eichhörnchen, Bisamratte und die Fledermausarten Braunes Langohr, Wasserfledermaus, Zwergfledermaus und Rauhhautfledermaus. Von den Kriechtieren kommen die Zauneidechse in den offenen, trockenen Bereichen und die Ringelnatter unmittelbar am See vor. Kammolch, Teichmolch, Erdkröte und Teichfrosch sind nachgewiesene Lurcharten. Die Fischfauna ist mit 12 einheimischen Arten relativ artenarm, als Besonderheit kommen die Große und Kleine Maräne vor. Darüber hinaus hat der durch Besatz geförderte Karpfen wirtschaftliche Bedeutung. In früheren Jahren sind aus Ostasien stammende sestonfressende Silberkarpfen eingesetzt worden. Die kontinuierliche Verbesserung der Wasserbeschaffenheit des Arendsees ist die wichtigste Aufgabe im LSG. Die begonnenen Sanierungsmaßnahmen sind fortzusetzen, um besonders die sommerlichen Blaualgenmassenentwicklungen zurückzudrängen. Jegliche Abwassereinleitungen aus landwirtschaftlichen Betrieben oder Lagerstätten sind zu unterbinden. Zur Erhaltung der floristischen Vielfalt ist die ”Försterwiese” bei Zießau als Mähwiese ohne zusätzliche Mineraldüngung zu nutzen. Die reinen Kiefernbestände in den Uferwäldern am See sollten schrittweise in Bestände aus standortgerechten Laubbaumarten umgewandelt werden, jedoch ohne Kahlschläge. Der Waldbestand an den Steilhängen ist wegen der akuten Erosionsgefahr als Schutzwald zu erhalten und von Hiebsmaßnahmen zu verschonen. Die Uferbereiche des Arendsees in der Ortschaft Arendsee und bei Schrampe sind weiter mit Weiden und Erlen zu bepflanzen. Eine weitere Bebauung der Uferbereiche, insbesondere zwischen Strandweg und Ufer, ist zu vermeiden. Eine freie Begehbarkeit des Ufers ist zu erreichen, aufgestellte Zäune sind schrittweise zu entfernen. Vorhandene Müllablagerungen sind zu beseitigen. Der Baumbestand der Allee an der Strandpromenade ist zu ergänzen. Gezielter Entwicklung bedarf das Erholungswesen. Badebetrieb, Bootsverkehr und Fahrgastschiffahrt dürfen nicht zu ökologischen Schäden, zum Beispiel am Schilfgürtel, führen. Die Anzahl der kleinen Bootsstege sollte minimiert werden. Ein Rundwanderweg um den See ist zu gestalten und zu pflegen. Für kleinere Spaziergänge ist die Uferpromenade in Arendsee geeignet. Längere Wanderungen können entlang des Seeufers unternommen werden, wobei ausdauernde Wanderer eine Umrundung des Arendsees durchführen können. Diese führt vom Ort Arendsee westwärts zum Steilufer, von wo sich ein besonderer Blick über die Seefläche bietet. Vorbei am ”Schramper Eck” ist am Nordufer zunächst entweder ein Weg durch Feld und Wiese oder die Straße über Friedrichsmilde und Zießau zu wählen, bevor am Nordost- und Ostufer der Weg durch den Wald führt. Auch kürzere Strecken, etwa nach Genzien oder nach Gestien mit Blick vom ”Weinberg”, bieten sich an. Anziehungspunkte im Ort Arendsee bilden die Ruine des 1184/1208 errichteten Benediktiner-Nonnenklosters sowie die Klosterkirche als einer der schönsten romanischen Backsteinbauten der Altmark mit bemerkenswerter Ausstattung. Auch das Heimatmuseum im früheren Klosterhospital mit Exponaten zur Geschichte der Stadt und des Sees sowie zur Flora und Fauna des Gebietes, denkmalgeschützte Bauten in der Stadt, besonders Fachwerkhäuser aus dem Neuaufbau nach dem Stadtbrand von 1831 oder die Destillieranlage der ehemaligen Kornbrennerei sowie eine Bockmühle sollten Aufmerksamkeit finden. Bemerkenswerte Dorfkirchen befinden sich in mehreren Ortschaften der Umgebung, so in Kaulitz, Kläden und Leppin, die von Arendsee aus erreichbar sind. Maränen im Arendsee Die Kleine Maräne (Coregonus albula) ist mit einer Fangmenge von 10 bis 12 t/Jahr einen wichtigen Wirtschaftsfisch der Arendseer Berufsfischer. Maränen sind sauerstoffbedürftige Kaltwasserfische, die klare, tiefe Seen bewohnen und sich von Plankton ernähren. Sie laichen erst im Spätherbst, wenn nach Eintritt der Homothermie in der gesamten Wassermasse der Seen eine gleichmäßig niedrige Temperatur zwischen 7 und 4° C herrscht. Neben der Kleinen Maräne kommt im Arendsee auch ein kleiner Bestand der Großen Maräne (Coregonus lavaretus) vor. Der Maränenbestand des Arendsees stammt vermutlich aus Besatzmaßnahmen, da der Arendsee ein relativ junges Gewässer ist. Während die Große Maräne durch Besatz aus dem Schaalsee vor dem 1. Weltkrieg in den Arendsee gekommen ist, stammt die Kleine Maräne aus dem Enzigsee bei Nörenberg in Hinterpommern. Von dort wurden in den Jahren 1928 bis 1945 alljährlich viele Millionen Stück Brutbesatz in den Arendsee gebracht und ein fischereilich nutzbarer Maränenbestand aufgebaut. In einer Brutanstalt werden heute ”Arendseemaränen” gezogen und von vielen Fischern Nord- und Mitteldeutschlands für Besatzmaßnahmen erworben. veröffentlicht in: Die Landschaftsschutzgebiete Sachsen-Anhalts © 2000, Landesamt für Umweltschutz Sachsen-Anhalt, ISSN 3-00-006057-X Die Natur- und Landschaftsschutzgebiete Sachsen-Anhalts - Ergänzungsband © 2003, Landesamt für Umweltschutz Sachsen-Anhalt, ISBN 3-00-012241-9 Letzte Aktualisierung: 24.07.2019

Vitalisierung von Linden an streusalzbelasteten Standorten durch gezielte Düngung

Die Anwendung von Auftausalzen im Rahmen des differenzierten Winterdienstes ist zur Sicherung des öffentlichen Lebens in Berlin notwendig. Auf den Straßen wird vorwiegend Natriumchlorid (NaCl) eingesetzt. Natriumchlorid verursacht jedoch ab einer bestimmten Konzentration an Bäumen gattungsspezifisch unterschiedlich starke phytotoxische Schäden. Diese sind besonders an Bäumen in unmittelbarer Fahrbahnnähe gesalzener Straßen ausgeprägt. Dies war insbesondere in den Jahren 2014 und 2015 auffällig. In der Folge führt eine wiederholt verstärkte Aufnahme von NaCl zu vorzeitigen Vergreisungserscheinungen im System Baum wie z. B. verstärkte Kurztriebbildung, vermehrte Totholzbildung sowie lichteren Kronen. Darüber hinaus kommt es an vielen streusalzbelasteten Standorten, welche meist ohnehin schon ein geringes Nährstoffangebot aufweisen, durch NaCl zu einer Verschiebung der Nährstoffaufnahme durch Kationenaustausch – allen voran Kalium – und Magnesium Ionen. Im Rahmen eines gemeinsamen Versuches des Pflanzenschutzamtes Berlin mit dem Straßen- und Grünflächenamt Neukölln, der Fa. ARBORrevital und der Fa. COMPO expert sollten praktikable Lösungswege getestet werden, um den negativen Auswirkungen von Auftausalzen auf Straßenbäume zu begegnen. Zentrale Fragestellung war hierbei, inwieweit sich die negativen Auswirkungen von Schadionen (NaCl) des Taumitteleintrags an Straßenbäumen durch die gezielte Gabe von antagonistischen Nährelementen (Kalium, Magnesium) und durch die bedarfsgerechte sensorgestützte Wasserversorgung über drei Vegetationsperioden mindern lassen. Der Freilandversuch fand im Berliner Bezirk Neukölln im Mittelstreifen des Tempelhofer Wegs statt. Die dort gepflanzten Linden ( Tilia sp. ) standen durchschnittlich im 25. Standjahr und wiesen z. T. deutliche Vergreisungserscheinungen auf. Auf dem in zwei Abschnitte (nördlich und südlich der Gradestraße) unterteilten Standort wurden insgesamt drei Versuchsvarianten (Unbehandelte Kontrollvariante – UK, Düngervariante – DüV und Wasservariante – WaV) à 15 Wiederholungen angelegt, welche in Dreierblöcken nahezu randomisiert konzipiert wurden. Bei der 1. Variante (UK) wurden keine Veränderungen im Wasser- und Nährstoffhaushalt durchgeführt. Lediglich Gießmulden wurden analog zu den beiden weiteren Varianten angelegt. Bei der 2. Variante (DüV) wurden Gießmulden angelegt, um im zeitigen Frühjahr Nährstoffe in granulierter Form und Wasser zu applizieren. Der eingebrachte Dünger ist ein kalibetonter Volldünger (9+5+20 (+4)). Mit Hilfe der angelegten Gießmulden wurden direkt nach der Düngergabe 500 Liter Wasser pro Baum ausgebracht, um den Dünger zu lösen. Für die 3. Variante (WaV) wurden ebenfalls Gießmulden angelegt und zeitgleich mit Düngevariante DüV die gleiche Gabe Gießwasser (500 Liter), jedoch ohne Dünger, verabreicht. Zusätzlich wurden an sechs Standorten Bodenfeuchtemessgeräte (Tensiometer) in zwei Bodentiefen zwecks Überwachung des Wasserhaushaltes der unterschiedlichen Varianten eingebaut. Diese dienten als Marker für weitere Bewässerungsgänge im Jahresverlauf. Sowohl die Applikation von Nährstoffen im zeitigen Frühjahr, als auch die sensorgestützte, zusätzliche Bewässerung über die Vegetationsperiode, wurden in den Jahren 2017 und 2018 identisch wiederholt. Der Versuch wurde auf sieben Jahre angelegt und in zwei Phasen unterteilt. Erste Ergebnisse wurden nach Ablauf der Phase I Ende 2018 erwartet. In den darauffolgenden Jahren wurde die weitere Vitalitätsentwicklung der Bäume verfolgt. Eine zusätzliche Applikation von Wasser und Dünger fand hingegen nicht mehr statt. Die Betreuung des Feldversuchs erfolgte durch das Pflanzenschutzamt Berlin, dem Straßen- und Grünflächenamt Neukölln sowie der Fa. ARBORrevital. Während des Versuches erfolgten mehrfach baumpflegerischer Maßnahmen in den Kronen (Totholzentfernung, Kronenpflege, Kronenteilentnahmen sowie zwei Fällungen) der untersuchten Gehölze. Hierdurch waren Auswertungen zu Trieblängenwachstum, aber auch das Erfassen von Blattparametern wie Blattgröße, -farbe nur unzureichend möglich, sodass diese in abschließende Bewertung der Maßnahmen nicht einfließen konnten. Dies führte dazu, dass als einziger verwertbarer Parameter die Entwicklung der Stammumfänge im Untersuchungszeitraum herangezogen werden konnte. Die DüV und WaV zeigten gegenüber der unbehandelten Kontrolle, sowohl in Phase I des Versuchs als auch danach, eine verbesserte Zuwachsleistung. Dies stimmt mit der Erwartung von verbesserten Wachstumsbedingungen bei geringerer NaCl-Konzentration in der Baumscheibe überein. Abbildung 1 zeigt höhere Zuwachsleistungen der Varianten DüV und WaV (2,2 cm und 2,3 cm) gegenüber der UK (1,6 cm) im Zeitraum der aktiven Behandlung (Phase I 2016–2018). Abbildung 2 zeigt eine langfristige Verbesserung der Zuwachsleistung auch nach Einstellung der aktiven Behandlung. WaV und DüV lagen sowohl mit Mittelwert als auch Median über der UK. Zwischen DüV und WaV ließen sich keine signifikanten Unterschiede feststellen. Eine erhöhte Wuchsleistung am Parameter Stammzuwachs der Düngevariante gegenüber der Wasservariante war nicht zu verzeichnen. Der Versuch zeigte, dass eine zeitlich begrenzte Versorgung mit Wasser und Dünger das Wachstum der Bäume auch für die folgenden Jahre nach Ende der Behandlung maßgeblich beeinflusst. Die in Abbildung 3 dargestellte statistische Auswertung des Versuchs konnte keinen Unterschied zwischen den Varianten feststellen. Dies liegt zum einen an dem komplexen Versuchsobjekt Straßenbaum, das vielen verschiedenen Umweltfaktoren ausgesetzt ist, und zum anderen an dem begrenzten Stichprobenumfang des Versuches. Trotz eines nicht-signifikanten Kruskal-Wallis-Test wurde ein anschließender paarweiser Vergleich der einzelnen Varianten durchgeführt.

1 2 3 4 557 58 59