The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ Helmholtz Centre for Geosciences.
The WSM database release 2025 contains 100,842 data records within the Earth’s crust. The data are provided in two formats: Excel-file (wsm2025.xlsx) and comma separated fields (wsm2025.csv). Data records with reliable A-C quality are displayed in the World Stress Map (doi:10.5880/WSM.2025.002). Further detailed information on the WSM quality ranking scheme 2025, guidelines for the analysis of borehole logging data, and software for stress map generation and the stress pattern analysis is available at www.world-stress-map.org. The database structure and content is explained in the WSM Technical Report TR 25-01 (https://doi.org/10.48440/wsm.2025.001).
The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ Helmholtz Centre for Geosciences.
All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale. The stress map displays A-C quality stress data records of the Earth’s crust from the WSM database release 2025 (doi:10.5880/WSM.2025.001). Further detailed information on the WSM quality ranking scheme 2025, guidelines for the borehole logging data, and software for stress map generation and the stress pattern analysis is available at www.world-stress-map.org.
The Herat-Panjshir-Badakhshan—the Paleo-Tethys—suture zone of Afghanistan marks the vestige of the subducted Paleozoic-early Mesozoic Paleo-Tethys oceanic lithosphere. We investigate the evolution of rocks north of this suture in the Hindu Kush and Pamir of Afghanistan. Our study identifies Carboniferous and Middle-Late Triassic continental arc magmatism, Paleo-Tethys oceanic relicts, and a mostly Middle Triassic accretionary wedge that underwent Late Triassic amphibolite-facies metamorphism and migmatization.
The Supporting Information to the publication provides: data tables of the analytical results (Tables S1, S3, and S4); a summary of the U-Th-Pb petrochronology (Table S2); a stratigraphic column of the hanging wall (north side in present coordinates) of the Paleo-Tethys suture zone (Turan-Karakum block) (Figure S1); a graphical representation of the U-Th-Pb petrochronology and specific zircon, titanite, and allanite trace element relationships (Figure S2); 40Ar/39Ar spectra and inverse isochron plots (Figure S3); rock classification diagrams with a petrographic thin-section documentation (Figure S4); and supplementary geochemistry plots (Figures S5 and S6).
Die Entstehung und das Wachstum der Archaischen Kerne von Kontinenten und die zeitliche und örtliche Entwicklung von Prozessen im subkratonischen Erdmantel und der darüber liegenden Kruste sind wichtige Eckpfeiler zum Verständnis der Stabilisierung von langlebigen kontinentalen Blöcken durch einen auftriebsfähigen Erdmantel. In einem vorherrschenden Modell wird der subkratonische Erdmantel als Restit von partiellem Schmelzen bei niedrigem Druck betrachtet, der durch Subduktion in Granatperidotit umgewandelt wurde. Eklogite und Granatperidotite des subkontinantalen lithosphärischen Mantels sind dementsprechend die subduzierten Schmelzprodukte. Um die Zeitlichkeit der partiellen Schmelzprozesse und von Wiederanreicherungsprozessen des Erdmantels unterhalb des Kaapvaalkratons einzugrenzen, haben wir bereits früher einzelne Körner von harzburgitischen, subkalzischen Granaten analysiert. Damit erhielten wir das Alter von definierten Ereignissen, die mit krustalen Ereignissen übereinstimmen und kein Kontinuum, wie es von Re Os Modellaltern angezeigt wird. Eklogite und Granatpyroxenite werden wie Peridotitxenolithe ebenfalls von Kimberliten durch die Archaische Kruste an die Erdoberfläche gefördert. Sie sind wegen ihrer möglichen sehr unterschiedlichen Entstehung und möglicher späteren Überprägungen sehr heterogen. Quälende Fragen sind die Art der Protolithe, deren Alter und das Alter der Eklogitisierung und der Bezug zu den Peridotiten. Wir fanden durch unsere Untersuchungen von Eklogiten und Granatpyroxeniten von Bellsbank (Kaapvaalkraton), dass eine Anzahl davon chemisch fast nicht modifizierte Teile subduzierter ozeanischer Kruste darstellen (= fast unveränderte Schmelz-zusammensetzungen, Plagioklas- und Klinopyroxenreiche Kumulate). Deren rekonstruierte Gesamtgesteinszusammensetzungen bilden eine Aufreihung in einem Lu Hf Isochronendiagramm. Drei Proben ergeben ein Alter von 4.12 +- 0.06 Ga mit eHfi = 3 (+-7), d.h. dem Verhältnis des Erdmantels zu dieser Zeit. Ein so hohes Alter findet man bisher nicht in der Kruste oder als Re Modellverarmungs-alter im Erdmantel. Lu Hf Modellalter von Granaten sind Minimumalter. Sie ergeben aber bereits Alter bis zu 3,5 Mrd. Jahre, was die hohen Alter bestätigt. Wir wollen unsere Arbeiten an subkalzischen Granaten auf weitere Lokalitäten des Kaapvaalkratons ausdehnen, um die detaillierte Geschichte des subkratonischen Erdmantels weiter zu erforschen, d.h. die Unterscheidung verschiedener Schmelz-regime, deren Zeitlichkeit und die Zeit der Modifikation des Erdmantels durch Metasomatose. Ein zweites Ziel ist die Verifizierung der 4.1 Mrd. Jahre Eklogitisochrone mit weiteren Proben aus Bellsbank. Wenn sie sich als richtig erweist, würde sie das höchste Alter darstellen, das jemals von einer Eklogitserie erhalten wurde. Dies hätte großen Einfluss auf Modelle zur Entstehung hadäischer Kruste und ihrer Erhaltung im lithosphärischen Erdmantel.
The aim of this project is to co-estimate models of the core and ionosphere magnetic fields, with the longer-term view of building a 'comprehensive' model of the Earths magnetic field. In this first step we would like to take advantage of the progresses made in the understanding of the ionosphere by global M-I-T modelling to better separate the core and ionospheric signals in satellite data. The magnetic signal generated in the ionosphere is particularly difficult to handle because satellite data provide only information on a very narrow local time window at a time. To get around this difficulty, we would like to apply a technique derived from assimilation methods and that has been already successfully applied in outer-core flow studies. The technique relies on a theoretical model of the ionosphere such as the Upper Atmosphere Model (UAM), where statistics on the deviations from a simple background model are estimated. The derived statistics provided in a covariance matrix format can then be use directly in the magnetic data inversion process to obtain the expected core and ionospheric models. We plan to apply the technique on the German CHAMP satellite data selected for magnetically quiet times. As an output we should obtain a model of the ionospheric magnetic variation field tailored for the selected data and a core-lithosphere field model where possible leakage from ionospheric signals are avoided or at least reduced. The technique can in theory be easily extended to handle the large-scale field generated in the magnetosphere.
1
2
3
4
5
…
26
27
28